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A new image encryption scheme based on hybrid
chaotic maps

Abstract
In this paper, a novel grayscale image cryptosystem based on hybrid chaotic maps is
proposed. The scheme employs both confusion phase to scramble the location of pixels
and diffusion phase for changing the content of pixels in consecutive manner. In this
scheme, Arnold’s cat map is introduced to perform confusion operation and the principle
of diffusion is achieved by using the proper selection of combined Sine map, Logistic
map, and Tent map. Furthermore, exclusive OR (XOR), exchange, and transform oper-
ations are used to enhance the efficiency of diffusion phase. Accordingly, the use of
chaotic maps and XOR operation provides a dual layer of security. Depending on the
average absolute value of horizontal, vertical, and diagonal correlation coefficient of plain
image as well as bifurcation properties of chaotic maps, one of the mentioned chaotic
maps is selected for diffusion phase. First, original gray scale image matrix is extended to
square matrix by adding the sequences generated with proper chaotic maps to implement
the first step of diffusion phase. Then the Arnold’s cat map changes pixels location of
new extended matrix by means of certain equation as confusion phase. The encrypted
image is generated after applying XOR, exchange and transform operations on the
content of pixels as second step of diffusion phase. Thus the system is able to build
several more complicated chaotic structures. In addition the encryption and decryption
processing time directly depend on the value of correlation coefficient of original image.
Plain images with less correlation coefficient have less encryption and decryption pro-
cessing time, and vice versa. Compared with several existing methods, the proposed
scheme has more better properties, including wider chaotic ranges and more complex
chaotic behavior. Experimental results show that the proposed system has proper encryp-
tion and decryption processing time, unified average changing intensity (UACI), number
of pixel change rate (NPCR), and extensive security analysis for kind of images.
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1 Introduction

With the rapid development of computer networks, information leakage events occur in the
process of network transmission and storage in an endless stream. This makes most network users
aware of the threat from privacy leakage [12, 26]. Secured storage and transmission of the digital
image is one of the prime concerns in multimedia communication [49, 55]. Cryptography,
steganography, and watermarking are three ways to protect digital data from unauthorized access
and illegal usage [17, 21, 50]. Among these, cryptography plays a significant role in providing
highly secured transmission over insecure channel. The cryptographic algorithms are classified
into stream ciphers and block ciphers. Stream ciphers uses a secret key generator to encrypt the
digital data bit by bit, while block ciphers encrypts blocks of bits instead. Most commonly used
stream ciphers are linear feedback shift registers (LFSR) based on stream cipher and RC4. Block
ciphers include the well-known advanced encryption standard (AES), data encryption standard
(DES), triple DES (TDES) [16, 39], and etc. These conventional encryption schemes are not
suitable for image encryption since image data requires strong real time property in communica-
tions [22]. Moreover, these ciphers require higher processing time, more computational resources,
and high power for real time image encryption [42]. Furthermore, some intrinsic features of
image, such as big storage capacity, high data redundancy, and strong correlation among adjacent
pixels, are different from other information [25, 46, 52]. Hence, researchers have presented many
effective image cryptographic schemes [5, 36] based on different theories and purposes. Chaotic
cryptography offers a series of properties whitch are suitable for image encryption. These
properties have extreme sensitivity to initial conditions, also have non-periodicity, pseudo-
randomness, ergodicity, reproduction, and can generate a large number of chaotic sequences
quickly and accurately [44].

The chaotic maps that are used in image encryption schemes, can be divided into two
categories: one dimensional (1D) and higher dimensional (HD) chaotic maps. 1D chaotic maps
have simple structures and are easy to be implemented [2, 22], but they have the defects of
limited chaotic ranges [28, 36] and vulnerability [43].

HD maps have more complex structures and better chaotic behaviors. This makes their
chaotic orbits more unpredictable [14]. However HD chaotic maps have the limitations of high
computation cost and implementation difficulty [37, 38]. In order to overcome these difficul-
ties, numerous encryption algorithms based on optical transformation [6, 7, 25], DNA
computing [29, 37, 48], cellular automata [30, 41], and others [11, 15, 20] have been proposed.

Recently a new image encryption scheme has been introduced based on the phase-truncated
short-time fractional Fourier Transform and the hyper-chaotic system [31]. In this method the
plain image is divided into four sub-images to be encoded separately.

Huang Zhi-Jing et al. proposed a method based on chaotic system and two-dimensional
linear canonical transform [51]. The scheme has proper robustness against different attacks due
to the elimination of linearity and the main keys associated with the plain images.

Lihua Gong et al. presented an image compression and encryption scheme based on chaotic
system and compressive sensing [18]. The bitwise XOR operation and a pixel-scrambling
method controlled by chaos map are employed to improve the efficiency of diffusion and
confusion operations of the measurement results, respectively. The keys used in the chaotic
systems are related to the plain image and generated by the SHA-256 algorithm.
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To save more storage space than the existing quantum image representation models and
encrypting an arbitrary number of images simultaneously, Zhou Nan run et al. presented a new
scheme based on quantum3DArnold transform and scaled Zhongtang chaotic system [54]. In this
method a quantum representation model for multiple images and a novel quantum multi-image
encryption scheme has been proposed by combining quantum 3DArnold transform and quantum
XOR operations with scaled Zhongtang chaotic system. Moreover, a quantum image encryption
scheme based on generalized Arnold transform and double random-phase encodingwas proposed
by Zhou Nan run et al. [53]. In this scheme, by combining generalized Arnold transform with
double random-phase encoding, a quantum image encryption algorithm has been introduced.

In order to reduce the processing time and enhance the efficiency of encryption and
decryption for color images, Guangfeng Cheng et al. proposed a novel color image encryption
scheme based on hyper chaotic system and permutation-diffusion architecture [10]. In this
method, a block permutation is employed to enhance the efficiency, and a hyper chaotic
system generates the key streams to diffuse the pixels. For better security three R, G, B color
components are affected each other by different mixing schemes.

Studies have revealed that intrinsic properties of the chaotic maps are equivalent to the
counterparts of cryptography [19, 36, 52]. Hence, hybrid chaotic systems are the perfect
candidate for cryptography, which has been extensively used in image encryption. In this
paper an image encryption scheme based on a new hybrid chaotic system is presented. The
performance analysis is performed on key spaces, key sensitivity, the capability of resisting
statistical attacks, noise and cropping attacks, differential attacks, and quality evaluation
metrics of decrypted image.

The rest of the paper is organized as follows: Section 2 presents the basic definitions
concerning Arnold’s cat map and three other chaotic maps. The proposed method is discussed
in section 3. Section 4 exhibits the effectiveness of the proposed technique. Security analysis
and Extensive performance evaluation of the proposed cipher algorithm are analyzed in detail
within section 5. Section 6 gives a conclusion to the paper, and finally in section 7 we
introduce future work.

2 Preliminaries

This section briefly reviews four representative chaotic maps, namely Arnold’s cat map, Sine
map, Tent map, Logistic map, and their combinations respectively.

2.1 Arnolds’ cat map

According to Arnold’s transformation (Eq. (1)), an image is hit with the transformation that
apparently randomizes the original organization of its pixels. However, enough iteration can
generate the original image [1]. The number of considered iterations is known as the Arnold’s
period. The period depends on the image size, and parameters a, b.

xnþ1

ynþ1

� �
xnþ1

ynþ1

� �
¼ A

xn
yn

� �
mod Nð Þ ¼ 1 a

b abþ 1

� �
xn
yn

� �
mod Nð Þ: ð1Þ

Where N is the size of N×N square image, a and b are positive integers and det (A) = 1. (xn,
yn) is the position of samples in the N×N data such as image, so that (xn, yn) ϵ{0,1,2,…,N-1}
and (xn + 1, yn + 1) is the transformed position after cat map.
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Table 1 Arnold’s period for typical image sizes and different a, b parameters

Image Size a b Arnold’s Period

128 × 128 1 1 96
128 × 128 2 2 64
128 × 128 3 3 96
128 × 128 4 4 128
256 × 256 1 1 192
256 × 256 2 2 128
256 × 256 3 3 192
256 × 256 4 4 256
512 × 512 1 1 384
512 × 512 2 2 256
512 × 512 3 3 384
512 × 512 4 4 512
1024 × 1024 1 1 768
1024 × 1024 2 2 512
1024 × 1024 3 3 768
1024 × 1024 4 4 1024
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Arnold’s cat map, which bring chaotic movement, has two typical factors including tension
(multiply matrix (A) in order to enlarge (x, y)) and fold (taking mod in order to bring x, y in unit
matrix).

Table 1 the shows the Arnold’s period for typical image sizes and different a, b parameters.
In this paper for simplicity we choose a = b.

2.2 Sine map

Sine map, one of the mostly used 1D chaotic maps, has a simple dynamic structure, but it can
generate complex chaotic sequences with a range of [0, 1]. The definition of Sine map is:

f nþ1 ¼ s� sin π f nð Þ; ð2Þ
where s is a parameter and according to the bifurcation diagram [22], s ϵ [0.87, 1] and s0 is the
initial value for fn.

2.3 Tent map

Tent map is another 1D chaotic map that is used in many applications. It is well known that its
graph in bifurcation diagram looks like the curve of tent function. The definition of Tent map
is presented as follows [22]:

gnþ1 ¼ 2tgn gn < 0:5
2t 1−gnð Þ gn≥0:5;

�
ð3Þ

where t is a parameter and according to the bifurcation diagram t ϵ [0.5, 1] and t0 is the initial
value for gn.



2.4 Logistic map

Logistic map is derived from Sine map, so they have some similar properties. In order to restrict
the input value in a range of [0, 1], Logistic map is mathematically defined as follows [22]:

hnþ1 ¼ 4l hn 1−hnð Þ; ð4Þ
where l is a parameter and according to the bifurcation diagram l ϵ [0.9, 1] and l0 is initial value
for hn.

2.5 Hybrid chaotic maps

In this paper we use four hybrid chaotic systems; Logistic-Tent system (LT), Logistic-Sine
system (LS), Sine-Tent system (ST) and Logistic-Tent-Sine system (LTS). Each of chaotic
system is a nonlinear mixture of two or three different chaotic maps, i.e., Logistic map, Tent
map and Sine map, which are supposed to be seed maps. These hybrid chaotic maps are based
on the nonlinear combination of seed maps, which are described as follows:

LT system : xnþ1 ¼ Logistic Tent xnð Þð Þ mod 1: ð5Þ

LS system : xnþ1 ¼ Logistic Sine xnð Þð Þ mod 1: ð6Þ

ST system : xnþ1 ¼ Sine Tent xnð Þð Þ mod 1: ð7Þ

LTS system : xnþ1 ¼ Logistic Tent
�
Sine xnð Þ

� �
mod 1: ð8Þ

The mod operation here ensures the output is restricted to [0, 1]. The cascade operator is
applied to seed maps, which improves complexity level of the chaotic structure. Simulations
and analysis have clarified the excellent chaotic ness that characterize hybrid maps.

Fig. 1 Block diagram of the proposed encryption process
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Fig. 2 Extended matrix
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3 The proposed method

A new encryption scheme for efficient and secure image content preservation is presented in
Fig. 1. This method is specialized for grayscale images with different sizes, and it consists of
two iterative phases: chaotic confusion and pixel diffusion. An improved hybrid chaotic
system is employed by both of these phases, where it’s dynamical initial value and system
parameter are produced by means of the external secret key, for the sake of generating one-
time chaotic sequences, increasing the sensitivity to small changes of the plain image, and
hence ensuring the immunity of the cryptosystem against known/chosen plain image attacks.

The diffusion phase is ruled by means of extension, XOR, transform, and exchange
operations, aiming to elevate the sensitivity to plain image and accelerate the diffusion
mechanism of the whole cipher algorithm. The confusion phase is governed by Arnold’s cat
map. The detailed description of the encryption algorithm is given in 9 steps as follow:

Step 1: Let I be N×N gray scale plain image. In this step, the average absolute value of
correlation coefficient (r) for 3000 randomly horizontaly, verticaly, and diagonal adjacent
pairs of pixels in plain image is calculated. If 0 < r ≤ 0.7 then letM = 1 and r1 = r. If 0.7 <
r ≤ 0.8 then let M = 2 and r2 = r. If 0.8 < r ≤ 0.9 then let M = 3 and r3 = r. If 0.9 < r < 1
then let M = 4 and r4 = r.
Step 2: Extend the original image I from N×N to (M+N) × (M+N) and denote it by R
(Fig. 2); M is obtained from step 1. For simplicity, we assume that original image is
square, otherwise we can add proper number of rows and columns to achieve square
matrix (for example we can add M+d rows and M+ e columns and fill them by binary
chaotic integers between [0,255], where d and e are positive integers).
Step 3: According to the features of bifurcation diagram of Logistic, Tent and Sine map,
one of the following combination of chaotic maps is applied to generate chaotic sequences:

For r1 mode, apply LT system (combination of Logistic and Tent map).
For r2 mode, apply LS system (combination of Logistic and Sine map).
For r3 mode, apply ST system (combination of Tent and Sine map).
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For r4 mode, apply LTS system (combination of Logistic, Tent and Sine map).

Step 4: Fill (M × N) +M×(M +N) components of extended matrix R by using the
generated chaotic sequences by using Eqs. (5–8) from left to right and up to down
according to step 5.

Step 5:Here we convert the chaotic sequenceWi generated by proposed hybrid chaotic
maps (LT, LS, ST or LTS), with a range [0, 1] into an integer sequence ((M×N) +
M×(M+N) components) with a range [0, 255] by using Eq. (9):

Si ¼ 10q �Wið Þ½ � mod 256; ð9Þ
where q is the number of floating point of generated chaotic sequences. Then Si is converted to
a binary sequence Bi. New extended (M+N) × (M+N) matrix R, contains the plain image I
and the extended components Bi.

Step 6: In this step, we apply Arnold’s cat map k times for scrambling the location of
pixels by means of confusion. To reduce the number of secret keys, we let a = b=M. k is
one of the secret keys with respect to the Arnold’s period by noting that mod (M+N) will
be used here.
Step 7: We use row and column XOR operations for diffusion; e.g. suppose we have 6
pixels:

Pixel No.1 Pixel No.2 Pixel No.3 Pixel No.4 Pixel No.5 Pixel No.6
11101010 10110100 01101101 11110010 11000101 11010101

We have:

a- (Pixel No.1)← (Pixel No.1)⊕ (Pixel No.2)
b- (Pixel No.2)← (Pixel No.2)⊕ (Pixel No.3)
c- (Pixel No.3)← (Pixel No.3)⊕ (Pixel No.4)
d- (Pixel No.4)← (Pixel No.4)⊕ (Pixel No.5)
e- (Pixel No.5)← (Pixel No.5)⊕ (Pixel No.6)

Therefore we will have:

Pixel No.1 Pixel No.2 Pixel No.3 Pixel No.4 Pixel No.5 Pixel No.6
01011110 11011001 10011111 00110111 00010000 11010101

Reverse operations are similar the scheme from e to a.

Step 8: Matrix R will be changed to matrix Z by exchanging the values of M and M + 4
positions in every binary number for all (M+N) × (M+N) components.
Step 9: Let row Zr and column Zc are generated by the step 8, then we define new matrix
D according to the following equations:
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Dc i; jð Þ ¼ 0 for Zr jð Þ; jð Þ
1 others

�
ð10Þ

Dr k; lð Þ ¼ 0 for k; Zc kð Þð Þ
1 others

�
ð11Þ

Final encrypted output is generated as follows:

E ¼ Dt
c Z Dt

r ð12Þ
In decryption process, the matrix Z will be recovered by the following way:

Z ¼ Dt
c

� �−1 E Dt
r

� �−1 ð13Þ
The decryption procedure is the same as that of the encryption one described above, unless it
must be performed in the reverse order.

3.1 Motivation

As first motivation, to reduce time complexity and more efficiency, we proposed that plain
images with different features and correlations must encrypt in different ways.

Furthermore, seed maps such as Logistic, Tent and Sine maps have the limitations of
chaotic performance, which will impair encryption effect and make the encrypted images easy
to crack. Also, high dimension chaotic maps suffer from high computation cost and difficult
implementation, so it is necessary to design a new chaotic system to enhance chaotic properties
for an extensive range of system parameters. Hence, as second motivation, we proposed to
employ hybrid chaotic systems.

3.2 Theoretical analysis of proposed scheme

To analyze the efficiency of our scheme theoretically, we use Lyapunov exponent (LE) to
study the chaotic behavior of proposed method. It is known that a system with bigger positive
LE values will have a good chaotic behavior. In this part we present a proof analysis of the
chaotic behavior of LT structure (combination of Logistic and Tent maps). Other structures
(LS, ST, LTS) proof analysis, are similar.

Suppose x0, y0 are two initial values and difference between them is too small. Also x1, y1
are the next iteration of x0 and y0. L(x), T(x) are Logistic and Tent maps respectively. We have:

x1−y1j j ¼ L T x0ð Þð Þ−L T y0ð Þð Þj j
T x0ð Þ−T y0ð Þj j

T x0ð Þ−T y0ð Þj j
x0−y0j j

	
:

If x0→ y0 then T(x0) →T(y0) and we have:

d Lð Þ
dx






T x0ð Þ












≈ lim

T x0ð Þ−T y0ð Þ
L T x0ð Þð Þ−L T y0ð Þð Þj j

T x0ð Þ−T y0ð Þj j ;
d Tð Þ
dx






x0












≈ lim

x0−y0

T x0ð Þ−T y0ð Þj j
x0−y0j j :



Now we have:

x1−y1j j≈ d Lð Þ
dx






T x0ð Þ












 d Tð Þ

dx






x0














 !
x0−y0j j:

So we have the following result after n iteration:

x1−y1j j≈ ∏n−1
i¼0

d Lð Þ
dx






T xið Þ












 ∏n−1

i¼0

d Tð Þ
dx






xi














 !
x0−y0j j:

Let ΔP(x) is the average chnage in each iteration from |x1 − y1| to |xn − yn| we have:

ΔP xð Þ≈ ∏n−1
i¼0

d Lð Þ
dx






d T xið Þð Þ












 ∏n−1

i¼0

d Tð Þ
dx






xi














 !1
n

:

According to the definition of Lyapunov exponent (LE), we can calculate LE of P(x) as:

λP xð Þ ¼ ln ΔP xð Þð Þ ¼ lim
n→∞

1

n
∑n−1

i¼0ln
d Lð Þ
dx






d T xið Þð Þ












 d Tð Þ

dx






xi














 !
¼ lim

n→∞

1

n
∑n−1

i¼0ln
d Lð Þ
dx






d T xið Þð Þ

 !

þ lim
n→∞

1

n
∑n−1

i¼0ln
d Tð Þ
dx






xi

 !
¼ λL xð Þ þ λT xð Þ;

where λL(x) and λT(x) are Lyapunov exponent of L(x) (Logistic map) and T(x) (Tent map).
We know the larger value of a positive LE has better chaotic performance, so λL(x) and

λT(x) must be positive numbers, and it is clear that λP(x) ≥ λL(x) and λP(x) ≥ λT(x). As a result, we
proved the structure with combination of Logistic and Tent maps (LT system) has wide chaotic
range rather than Logistic and Tent maps separately.

4 Security and performance analysis

In order to illustrate the performance clearly, simulation results are given in this section. The
experiment is conducted via MATLAB R2016b in a computer with 64 bit Windows 10
operating system, Intel(R) Core(TM) i7–6700 CPU @ 3.60GHz and 8GB RAM. All 26
images in the USC SIPI image database (http://sipi.usc.edu/database), are chosen as test
images.

4.1 Distribution of the cipher image

An image histogram displays that how pixels in an image are distributed by plotting the
number of pixels [2]. Here taking a 512 × 512 standard gray scale image in Fig. 3 (boat.512 in
http://sipi.usc.edu/database). The histogram of encrypted image is uniform-distributed com-
pared with those of the original images that are unevenly distributed. These results indicate that
the proposed algorithm performs well in breaking the correlations of image pixels and
achieving satisfactory image encryption performance. Histograms of the other images and
the corresponding ciphered images are shown in Fig. 4. As it was displayed, the histograms of
the original image and the ciphered image, it does not provide any clues to the use of any
statistical analysis attack on the encrypted image [28].
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Fig. 3 The first row shows original 512 × 512 standard gray scale image and its histogram. The second row
illustrate the decrypted image and encrypted histogram
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4.2 Shannon entropy analysis

Information entropy is the most significant measure of the strength of a cryptosystem. The
information entropy of plain image I is defined as Eq. (14). The ideal information entropy of an
8 bit truly random image is 8, where the image would not show any useful information to
attackers. Equation (14) implies that uniform distribution leads the algorithm to the better
entropy.

H sð Þ ¼ ∑
255

i¼0
P sið ÞLog2

1

P sið Þ ð14Þ

where si denotes the gray-level and P(si) is the probability of the occurrence si. Table 2
represents the entropy of sample standard gray level images. Results show that the entropy of
all encrypted images are more than 7.99.

Figures 3, 4 and 5 show the Boat, Lena, Peppers, Baboon, Female, Airplane and Stream &
bridge images. Shannon entropy of different images encrypted by the proposed scheme, is
listed in Table 3 and it shows that the Shannon entropy of the proposed encrypted images is all
close to 8.



4.3 Correlation analysis

The adjacent pixels of plain image always have high correlation coefficients, while an effective
encryption algorithm should significantly reduce the correlation coefficients of the cipher
image. We select 3000 horizontal (vertical and diagonal) adjacent pixels in the test plain and
cipher image randomly to analyze their correlation coefficients according to Eq. (18).

An efficient cipher algorithm should conceal such relations between adjacent pixels, and
exhibit a good performance of balanced 0–1 ratio and zero correlation [4, 5]. Table 4 shows the

Fig. 4 Simulation results of different types of images. The first and second columns show original images and
their histograms (a,b). The third and fourth columns illustrate the ciphered images and their histograms (c,d)
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obtained results of correlation coefficient values of the selected standard test images and their
modified images. To find plain images with different correlations, in order to cover 4 proposed
correlation modes (r1,...,r4), we employed modified standard images as shown in Table 4.

From the obtained correlation coefficient results, it is obvious that the high relations among
plain images’ neighboring pixels (correlation coefficient close to 1) effectively reduced in the
corresponding cipher images’ pixels (correlation coefficient close to 0), using the proposed
cipher algorithm, reflecting the efficiency of this later to conceal the spatial redundancy within
the cipher image’s pixels.

E xð Þ ¼ 1

N
∑
N

i¼1
xi ð15Þ

D xð Þ ¼ 1

N
∑
i¼N

i¼1
xi−E xið Þ½ �2 ð16Þ

Table 2 Information entropy test results for standard images

Test images Image size Cipher images entropy

Boat 512 × 512 7.999978
Lena 256 × 256 7.999834
Peppers 256 × 256 7.999297
Baboon 256 × 256 7.999481
Female 256 × 256 7.998741
Airplane 256 × 256 7.998523
Stream and bridge 512 × 512 7.999821

Fig. 5 Key sensitivity analysis. a Original image. b Encryption image E1 with Ke1. c Encryption image E2 with
Ke2. d Difference between encryption images |E1-E2|. e Decryption image D1 with correct secret key. f
Decryption image D2 from E1 with Ke1 + 10−14. g Decryption image D3 from E2 with Ke2 + 10−14. h Difference
between two decryption images |D2-D3|



Cov x; yð Þ ¼ 1

N
∑
N

i¼1
xi−E xið Þ½ � yi−E yið Þ½ � ð17Þ

Rxy ¼ cov x; yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D xð ÞD yð Þp ; ð18Þ

where x and y are two adjacent pixels in the horizontal, vertical, and diagonal directions.

Table 3 Comparison of the entropy value between proposed scheme and other methods

Encryption scheme Image Size Cipher images entropy

Our method Lena 512 × 512 7.999918
Ref. [2] Lena 512 × 512 7.999338
Ref. [8] Lena 512 × 512 7.999319
Ref. [43] Lena 512 × 512 7.999324
Ref. [47] Lena 512 × 512 7.999301
Ref. [35] Lena 512 × 512 7.999286
Our method Lena 256 × 256 7.999834
Ref. [2] Lena 256 × 256 7.996951
Ref. [32] Lena 256 × 256 7.997000
Ref. [23] Lena 256 × 256 7.997200
Ref. [42] Lena 256 × 256 7.997300
Our method Peppers 512 × 512 7.999880
Ref. [2] Peppers 512 × 512 7.999240
Ref. [9] Peppers 512 × 512 7.999275
Our method Peppers 256 × 256 7.999297
Ref. [2] Peppers 256 × 256 7.996940
Ref. [32] Peppers 256 × 256 7.997300
Ref. [42] Peppers 256 × 256 7.997500
Our method Baboon 512 × 512 7.999896
Ref. [2] Baboon 512 × 512 7.999350
Ref. [47] Baboon 512 × 512 7.999263
Ref. [9] Baboon 512 × 512 7.999345

Table 4 Correlation test results for 256 × 256 standard and modified images

Test Image Original Image Encrypted Image

Horizontal Vertical Diagonal Horizontal Vertical Diagonal

Standard Lena 0.9712 0.9854 0.9852 0.0054 0.0049 0.0042
Standard Peppers 0.9174 0.9741 0.9047 0.0081 0.0031 −0.0077
Standard Boat 0.9709 0.9365 0.9403 0.0065 0.0082 0.0054
Modified Lena 1 0.8315 0.8257 0.8421 0.0051 0.0060 0.0061
Modified Peppers 1 0.8168 0.8469 0.8112 0.0078 −0.0045 0.0043
Modified Boat 1 0.8452 0.8625 0.8321 0.0054 0.0075 0.0038
Modified Lena 2 0.7568 0.7357 0.7621 0.0049 0.0065 −0.0022
Modified Peppers 2 0.7834 0.7796 0.7365 0.0068 0.0041 0.0071
Modified Boat 2 0.7213 0.7392 0.7426 −0.0034 0.0067 0.0044
Modified Lena 3 0.5810 0.6126 0.5339 0.0028 0.0057 0.0061
Modified Peppers 3 0.3664 0.4842 0.4155 0.0031 0.0048 0.0029
Modified Boat 3 0.2012 0.1988 0.2467 0.0019 0.0033 −0.0025
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4.4 Robustness against differential attacks

A powerful attacker may be able to find a meaningful relationship between the original image
and the encrypted image [49]. For the sake of ensuring the effectiveness and robustness against
differential attacks, the standard grayscale Lena image is enciphered by the proposed method
(T1). Then six modified images are attained by only changing the least significant bit (LSB) of
the matching randomly chosen pixels at location (x,y), namely Lena (x,y).These modified
images are denoted by Lena (10,33), Lena (55,60), Lena (100,77), Lena (130,115), Lena
(190,155), Lena (250, 210). Equations (19), (20), and (21) are used to calculate NPCR and
UACI values. These values are shown in Table 5.

NPCR ¼ ∑i; jC i; jð Þ
W � H

� 100% ð19Þ

C i; jð Þ ¼ 1 if T1 i; jð Þ≠T2 i; jð Þ
C i; jð Þ ¼ 0 if T1 i; jð Þ ¼ T2 i; jð Þ

�
ð20Þ

UACI ¼ 1

W � H
∑
i; j

jT1 i; jð Þ−T2 i; jð Þj
255

" #
� 100% ð21Þ

where T1 represents the obtained cipher image from the original plain image, whereas T2 is
obtained after 1 bit plain image’s modification and W×H is the size of image. NPCR and
UACI are computed after randomly altering one pixel in the original image. The NPCR and
UACI of different original images are listed in Tables 5 and 6. Almost 99.7% pixels between
the encrypted images are different and the score of the UACI between the encrypted images is

Table 5 NPCR and UACI tests results for cipher Lena standard image

Test Image NPCR (%) UACI (%)

Lena (10,33) 99.6975 33.4788
Lena (55,60) 99.7491 33.4693
Lena (100,77) 99.7123 33.4515
Lena (130,115) 99.7422 33.4413
Lena (190,155) 99.7710 33.4891
Lena (250, 210) 99.7155 33.4801

Table 6 NPCR and UACI tests results for cipher standard 256 × 256 grayscale images

Test Image NPCR (%) UACI (%)

Lena 99.7298 33.4810
Peppers 99.6412 33.5102
Baboon 99.6236 33.4311
Female 99.6389 33.4132
Airplane 99.6311 33.5484
Boat 99.6215 33.4572
Stream and bridge 99.5621 33.5098
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not less than 33.41%. In proposed scheme any pixel changed in the original image would
result in significantly and substantially different encrypted images. The results clearly indicates
the effective performance of the proposed encryption algorithm resisting the differential
attacks.

Table 7 shows the obtained results of experimental values for different standard cipher
images attained under the application of certain existing methods including ours. These results
indicates that our method is highly sensitive to plain image bit modification, therefore render
differential attacks void.

Table 7 Comparison of the NPCR and UACI values between our proposed approach and the other methods

Method Image Size NPCR (%) UACI (%)

Our method Lena 512 × 512 99.6461 33.6252
Ref. [2] Lena 512 × 512 99.6452 33.6152
Ref. [8] Lena 512 × 512 99.6200 33.4300
Ref. [13] Lena 512 × 512 99.6070 33.4630
Ref. [43] Lena 512 × 512 99.6200 33.4100
Ref. [47] Lena 512 × 512 99.6052 33.4111
Ref. [35] Lena 512 × 512 99.6215 33.4654
Our method Lena 256 × 256 99.7298 33.4810
Ref. [2] Lena 256 × 256 99.5941 33.5052
Ref. [28] Lena 256 × 256 99.5894 33.4645
Ref. [32] Lena 256 × 256 99.6550 33.5160
Ref. [23] Lena 256 × 256 99.6100 33.4600
Ref. [42] Lena 256 × 256 99.6100 33.5300
Our method Peppers 512 × 512 99.7136 33.5413
Ref. [2] Peppers 512 × 512 99.6315 33.5073
Ref. [8] Peppers 512 × 512 99.6000 33.5400
Ref. [47] Peppers 512 × 512 99.6052 33.4372
Ref. [35] Peppers 512 × 512 99.6112 33.4612
Ref. [9] Peppers 512 × 512 99.6391 33.5128
Our method Peppers 256 × 256 99.6412 33.5102
Ref. [2] Peppers 256 × 256 99.5849 33.4641
Ref. [42] Peppers 256 × 256 99.6300 33.5800
Our method Baboon 512 × 512 99.6234 33.4156
Ref. [34] Baboon 512 × 512 99.6154 33.4354
Ref. [8] Baboon 512 × 512 99.6100 33.3351
Ref. [47] Baboon 512 × 512 99.3504 33.4520
Ref. [45] Baboon 512 × 512 99.6048 33.4554
Ref. [9] Baboon 512 × 512 99.6110 33.4354
Our method Baboon 256 × 256 99.6236 33.4311
Ref. [2] Baboon 256 × 256 99.6017 33.6287
Ref. [28] Baboon 256 × 256 99.6124 33.4891
Our method Boat 512 × 512 99.6194 33.5562
Ref. [2] Boat 512 × 512 99.6284 33.5407
Ref. [3] Boat 512 × 512 99.1025 33.1600
Ref. [13] Boat 512 × 512 99.6154 33.4654
Our method Boat 256 × 256 99.6215 33.4572
Ref. [2] Boat 256 × 256 99.6139 33.4751
Ref. [32] Boat 256 × 256 99.6250 33.4530
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4.5 Security key space

A good encryption scheme should have a key space more than 2100 to resist the brute force
attack [48]. For the proposed scheme, the security key includes eight parts; (s0, us), (l0, ul) and
(t0, ut) are the initial values for Sine map, Logistic map and Tent map respectively in a range of
[0, 1], also Arnold’s cat map iteration (k) and finally M are positive integers. If the length of
every sub key is set to 14 decimals, the key space of proposed method will be 10112 .

4.6 Key sensitivity analysis

Key sensitivity analysis is usually used to test the ability of resisting inimical deciphering,
which detects the variation of encryption results when a slight change (like 10−14) caused in the
encryption keys. Key sensitivity test is usually tested in the image encryption and decryption
procedures as follows [2]:

1. The cryptosystem should produce completely different encrypted image when slightly
different secret keys are used to encrypt the image.

Fig. 6 The images on the first row are the original encrypted ‘stream and bridge’ 512 × 512 Gy scale image (a),
and its damaged versions by 25% black cropping (b), 25% white cropping (c), 150 × 150 square black data loss
(d), 150 × 150 square white data loss (e). Those images on the second row are decrypted results of corresponding
encrypted images

Fig. 7 Lena 512 × 512 standard plain image (a), damaged by 5% Salt and Pepper noise (b), decryption of
damaged cipher image (c)
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2. The cryptosystem should be unable to decrypt cipher text even for the slight difference in
the encryption and decryption keys. In addition, the difference between failure recon-
struction images is distinct.

The key sensitivity simulation results are shown in Fig. 5. Ke1 and Ke2 are two encryption keys
with a tiny difference of 10−14. The pixel-to-pixel difference can be acquired by calculating the
absolute value of difference between the two encrypted images, which is shown in Fig. 5d. The
corresponding decrypted results with incorrect decryption keys.

Ke1 + 10−14 and Ke2 + 10−14 are shown in Fig. 5f and g, whose pixel-to-pixel difference is
obtained in Fig. 5h. This figure shows that a tiny difference makes great changes between
decrypted images. Therefore, we can conclude that proposed method has a high sensitivity to
security keys in both encryption and decryption process. Additionally, only a tiny difference of
10−14 can result in significant changes in encryption/decryption results, which means the
proposed algorithm has a large key space to defend the inimical deciphering.

4.7 Cropping and noise attack

A good cryptosystem should be robust enough to resist different types of noise and cropping
attacks. The analysis of cropping attack aims to check the robustness of the encryption
algorithm against cutting of cipher image [41]. To check the robustness of the proposed
scheme, we perform some experiments on the noise attack and the data loss. Grayscale image
in Fig. 6, encrypted by proposed algorithm, then encrypted image is attacked by a data cut of
different sizes.

To evaluate the resistance of proposed scheme against noise attack, encryption image of
Lena 256 × 256 standard grayscale image is attacked by 5% ‘salt & pepper’ noise (Fig. 7).
Then the corresponding decrypted image is given in Fig. 7c. The results show that decipher
images of cropped cipher images are still recognized visually, therefore proposed scheme is
robust against cropping and noise attacks.

5 Speed analysis

Execution-time is also an important factor with respect to security level. The duration of the
proposed cipher algorithm in 1 round is evaluated and compared with some schemes under
grayscale images of different sizes.

Table 8 shows the average encryption time of various methods. This comparision shows
that speed of proposed scheme is proper considering that the proposed method is based on
hybrid chaotic maps that possesses more complexity chaotic structures.

Table 8 The running time performance test (ms)

Image Size Ref. [52] Ref. [33] Ref. [2] Ref. [40] Ref. [27] Ref. [24] Proposed

256 × 256 178 109 48 7641 189 569 92
512 × 512 663 390 139 34,768 758 2251 109
1024 × 1024 3142 1482 481 151,709 3096 8986 351
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6 Conclusions

In this paper, a novel grayscale image cryptosystem based on chaotic maps is proposed. In
contrast to the traditional chaos based cryptosystems, the proposed cryptosystem with succes-
sive confusion and diffusion procedures enhances the security level. The confusion phase is
governed by Arnold’s cat map and the diffusion operation is controlled by extension of plain
image matrix, XOR operation, and exchange operation. The key space of the encryption
scheme is large enough to resist brute-force attacks, and the scheme is extremely sensitive
to keys. The encrypted image of the proposed scheme has a uniform histogram, a correlation
coefficient which is close to zero, and an entropy which is close to the maximum entropy. All
of these illustrate that the scheme can resist statistical attack substantially. The UACI scores are
close to the ideal score, and the NPCR scores are proper for resisting differential attack. In
addition the encryption and decryption processing time directly depend on the value of
correlation coefficient of original image. Plain images with less correlation coefficient have
less encryption and decryption processing time, and vice versa. The dynamical analysis and
evaluation results show that the proposed scheme has wide chaotic regime for an extensive
range of system parameters and offers good security, and can resist common attacks.

7 Future work

In the future work, we intend to introduce an intelligent scheme by using neuro-fuzzy methods
to improve the encryption speed and efficiency. In this scheme, different images with different
features will encrypt intelligently by proper encryption schemes, and make it more robust for
reliable and practical cryptographic applications.
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