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Abstract
CNN is inspired from Primary Visual (V1) neurons. It is a typical deep learning technique
and can help teach machine how to see and identify objects. In the most recent decade,
deep learning develops rapidly and has been well used in various fields of expertise such
as computer vision and natural language processing. As the representative algorithm of
deep learning, Convolution Neural Network (CNN) has been regarded as a breakthrough
of historic significance in image processing and visual recognition tasks since the
astonishing results achieved on ImageNet Large Scale Visual Recognition Competition
(ILSVRC) Unlike methods based on handcrafted features, CNN models can build high-
level features from low-level ones in a data-driven fashion and have displayed great
potential in medical image analysis among the aspects of segmentation of histological
images identification, lesion detection, tissue classification, etc. This paper provides a
review on CNN from the perspectives of its basic mechanism introduction, structure,
typical architecture and main application in medical image analysis through analyzing
over 100 references from Google Scholar, PubMed, Web of Science and various sources
published from 1958 to 2020.
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1 Background

Deep Learning (DL) is a promising research direction in the Machine Learning (ML) area. By
means of utilizing DL technique, computational models are capable to learn the features and
representation of data with a process of extraction. This is an innovation that brings dramatical
improvements in image recognition, object detection, voice recognition, genomic science and
many other domains in real life [51, 84].

The study of machine learning is inspired in part by the exploration of human brain. Around
300 B.C., the concept of understanding the brain has attracted a lot of attention of researchers,
among which the celebrated philosopher Aristotle is considered as the forerunner, due to the
reason that he opens the history of human trying to learn the brain [72]. In 1943, the team of
McCulloch and Pitts [61] brought the earlier neural network model: MCP Neural Model into
the attention of public. About one decade later, Rosenblatt [75] introduced the perceptron based
on this MCP model to complete the classification task. However, just one decade after the
introduction, a significant flaw was identified by Minsky and Papert [64] that the perceptron
cannot handle in the nonlinear classification problems, which hindered the subsequent progress
of neural network for approximately twenty years [107]. In 1986, a book published by
Rumelhart, Hinton [78] bring the turnaround for the development of neural network. The book
detailedly introduced the back propagation algorithm as well as the whole derived process of
utilizing back propagation algorithm and the activation function Sigmoid to deal with the
nonlinear problems. This not only led to a great deal of uproar in academia but also attracted a
sharp increase number of people into the research of deep learning. In 1997, the CNNmodel is
presented [49, 63, 86]. In the same year, Hochreiter and Schmidhuber [29] discovered Long
Short-TermMemory (LSTM)Networks model. After the introduction of ReLU, neural network
has so far been known as the most outstanding tool to deal with learning problems [1, 8].

Because of the efforts of so many great scholars, as shown in Fig. 1, deep learning is
becoming more and more accurate and has evolved to perform many complex tasks and
achieve loads of unimaginable breakthroughs [22, 30, 48, 95].

This survey will introduce the application of CNN technology in analysing medical images.
The reason why we chose to introduce CNN is that it can process image information better
than deep neural network (DNN). DNN is one of the simplest neural networks. In DNN, each
neuron belongs to a different layer and is connected with all neurons in the previous layer.
Signal is transmitted one-way from the input layer to the output layer. While CNN is a
feedforward neural network through convolution computation, which is proposed by the
biological receptive field mechanism and has translational invariance. It utilizes the convolu-
tion kernel to maximize the application of local information and retain the planar structure
information. DNN is input in vector form, without considering the structure information of the
plane. In the field of image processing, the plane information is very significant, so CNN
performs better than DNN in medical image analysis [55].

A simple flowchart of this survey is organized as Fig. 2. The purpose and contribution of
this review is to: (i) introduce the theoretical basis and working principle of CNN in detail; (ii)
elaborate description of the popular forms of various CNN basic structures; (iii) detailedly
explain classic models and trends from the rise of CNN to the present. (iv) demonstrate the
outstanding contributions of CNN models in the medical field from recent years. It can be
found from our review that CNN model is increasingly being used in medical fields where it is
difficult to find the basis for diagnosis, or hard to achieve high accuracy or fast diagnostic
analysis by just utilizing human power. Perhaps in the next few years, humans will be able to
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use CNN to solve medical problems that are currently difficult to understand and analyze from
a medical perspective.

Section 2, 3 and 4 will explain CNN from three aspects: the basic operating mechanism, the
basic structure and typical architectures of CNN. The operating mechanism section introduces
the operation unit, operation thought, gradient vanishing, feedforward propagation and feed-
back propagation. The basic structure section describes principles and details of convolutional
layer, pooling layer and fully connected layer. The classic architecture section reviews the
theory and advantages of several typical architectures such as AlexNet, VGG-Net, Inception,
ResNet, R-CNN, SPP-Net and so on.

2 Basic operating mechanism

2.1 Operation unit: Neuron

In 1943, the MCP Model introduced by McCulloch and Pitts [61] is very similar with
biological neural network. From a biological kind of view, every neuron is linked with other

(a) ILSVRC Top-5 Error on ImageNet

(b) ImageNet Champion results over the years

Fig. 1 Breakthroughs in ImageNet competitions over recent years
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neurons. When the neuron is activated, which means the potential of neuron is over a
threshold, it will send chemical substances to the connected neurons to transform the potential
of other neurons. MCP model has the same mechanism. The circle in Fig. 3 represents neuron,
which receives the input signals (x1…xm) from the other neurons. These input signals will get
different weights (w1…wm) and bias (b) and then go to the neuron. The output by will be got
through the activation function [1, 59].

by ¼ σ zð Þ ¼ σ ∑m
j¼1wjx j þ b

� �
ð1Þ

Where we assume the input of the activation function as z.
In a multi-layer neural network, each neuron node will accept the output of previous layer

as its input value and then pass the value to the following layer. This function relationship
between neuron nodes is defined as the activation function. If you just utilize the linear

Fig. 3 The McCulloch and Pitts model of a neuron

Fig. 2 Simple flowchart of this survey
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activation function or do not use the activation function, all things are about calculating the
linear activation function, which is very limited, so in order to get more possibilities, the
nonlinear activation function is born [25, 67, 82].

2.2 Activation function and loss function

2.2.1 Sigmoid function

Sigmoid Function aims to alter the continuous real value of the input z to the output σ(z) of a
range between 0 and 1.

σSigmoid zð Þ ¼ 1

1þ e−z
ð2Þ

It’s clear from Eq. (2) that if the input is an extremely large negative number, the output is
going to be 0. If the input value is an extremely large positive number, the output will be 1. But
this function also has obvious disadvantages that it consumes loads of calculation time, and
will be easy to produce gradient disappearance and gradient explosion [16]. In addition, as
displayed in Fig. 4a, its data is not centralized and symmetric with (0,0.5) as the center, which
will bring a negative effect on the gradient calculation of the hidden layer.

(a) Sigmoid Function (b) Hyperbolic Tangent Function

(c) Rectified Linear Unit (d) Summary Graph

Fig. 4 Activation functions
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2.2.2 Hyperbolic tangent function (Tanh)

Tanh function performs superior to the sigmoid function in hidden layer. It can be viewed as
the shifted version of sigmoid as shown in Fig. 4b. The equation of Tanh is shown as:

σTanh zð Þ ¼ ez−e−z

ez þ e−z
ð3Þ

Although it achieves a similar effect of data centralization, in practice, sigmoid and tanh
functions tend to reach saturation at the end value, especially in the deep network training,
which leads to a slow training speed.

2.2.3 Rectified linear unit function (ReLU)

It can be seen from Fig. 4c, ReLU solves the gradient disappearance problem when there is a
positive input [6]. The equation is shown below

σReLU zð Þ ¼ max 0; zð Þ ð4Þ

Moreover, ReLU costs much less computation time when compared with sigmoid and tanh
function. But the gradient vanishing problem remains and the data distribution of ReLU is not
centralized when there is a negative input [69].

2.2.4 Loss function

After the activation function, the calculated value by j is got. However, the calculated value

cannot equal to the actual value yj due to some unexplained factors. The loss function aims to
minimize the distance between each actual value and the predicted value in the training set,
which refers to, the sum of the error J(w) between by j and yj through utilizing the mean square

error principle shown below:

J wð Þ ¼ 1

2
∑m

j¼1 by j−y j� �2
ð5Þ

Where w represents weight, which is the coefficient of linear relation.
However, the mean square error has many disadvantages when it is used in the back

propagation algorithm which will be introduced in Section 2.4.

2.3 Operation thought: Gradient descent

Most deep learning algorithms involve many kinds of optimizations. Gradient descent method
is one of the optimizations which used to minimize the loss function. In this method, the
minimum loss function and the value of model parameters are obtained by step-by-step
iteration [25].

In 1847, Cauchy, Augustin discovered gradient descent. Assume there is a function:

y ¼ f xð Þ ð6Þ

Where both x and y are real numbers.
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The derivative of the function is [dy/dx] or f ′ (x), which presents the slope of f(x) at point x.
Besides, it also shows if the input has a little change like ϵ, the output can also be represented
by the slope and the original output, the formula is shown below [52]:

f xð Þ← f xþ ϵð Þ ¼ f xð Þ þ ϵ f
0
xð Þ ð7Þ

Where ← represents the assignment operation.
With this equation, it is easy to control the output decrease. When the slope is negative the

input should become bigger, and when the slope is positive the input should become smaller in
order to get a smaller output value as the Fig. 5 shows.

Since the loss function should be smallest, the equation will run until it meets the three
possibilities as shown is Fig. 6. First, the output is the minimum value within limits, which is
called local minimum. Second, the output is the lowest point in the whole function, which is
called global minimum. And the third possibility is that the output is a saddle point. A saddle
point refers to a critical point which is neither maximum nor minimum.

In order to avoid the output which comes from the saddle point, it is important to choose the
suitable learning rate ϵ. As displayed in Fig. 7, if the learning rate is chosen suitable, the
minimum value can be found easily as the orange line. But if ϵ is too small as the green line,
the time to run the equation will increase and the output may be generated from a saddle point
or local minimum. If ϵ is large as the blue line, it is impossible to find the minimum. If ϵ is too
large as the red line, the equation will loss control and the output is far from the right point.
Therefore, it is important to control learning rate ϵ. It is convenient and visualized to draw a
graph about loss and parameters change. And from Fig. 7, it is obvious that the orange line
gives us the best learning rate.

Except choosing the suitable learning rate, different kinds of gradient descent can improve
the loss function in different levels. We assume the original equation is

by ¼ bþ w1x1 þ w2x2 þ…wmxm ð8Þ
The following introductions and equations come from the loss function based on mean squared
error:

Fig. 5 The relationship between a function and the derivatives of a function
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J wð Þ ¼ 1

2
∑n

l¼1∑
m
j¼1 by xlj

� �
−yl

� �2
ð9Þ

Where:
xlj the j-th neuron in the l-th layer.

n the total number of layers.
Three basic gradient descent variants are introduced next.

2.3.1 Batch gradient descent (BGD)

As shown in Eq. (10), BGD requires the calculation of partial derivatives for the whole data set
according to Eqs. (7) and (9). To get the optimum w for achieving the maximum value of J(w),
we will repeat the following equation until convergence:

wi←wi þ ϵ∑n
l¼1∑

m
j¼1 yl−by xlj

� �� �
xli; j ð10Þ

Where ← represents the assignment operation.
ϵ represents the learning rate.
i represents the number of iterations.
However, it also has obvious disadvantages. In one update, it calculates the gradient for the

whole data set, so the calculation time is very long. In this way, it will be very difficult to deal
with a large scale data set, and update the model in real time with new data [77].

Fig. 6 Three possibilities the formula will stop when it meets

Fig. 7 The relationship between loss and parameters change
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2.3.2 Stochastic gradient descent (SGD)

For a large data set, there may be similar samples, so the BGD method of calculating the gradient
with all the data at one time will be redundant.While SGDwill update each sample with a gradient
every time, which is not redundant and relatively fast, and new samples can be added in. Its
equation is shown in Eq. (11). However, for accuracy, SGD only uses one sample to determine the
direction of the gradient, resulting in a solution that is probably not optimal. However, due to the
reason that SGD is updated frequently, it may lead to serious oscillation of cost function [10, 11].

wi←wi þ ϵ yl−by xlj
� �� �

xli; j∀ j ¼ 1;⋯;m∧∀l ¼ 1;⋯; n ð11Þ

2.3.3 Mini-batch gradient descent (MBGD)

The difference between MBGD and SGD is that MBGD used a small batch of sample data
consists of n samples to calculate the loss function during each update. The value range of the
hyperparameter n is generally between 50 and 256. In this method, as shown in Eq. (12), when
updating the parameters, the variance will be reduced, the convergence will be more stable,
and the calculation speed will be faster. However, if ϵ is extremely small, the convergence rate
will be slow. Besides, if the loss is extremely large, the loss function will oscillate near the
minimum value. In addition, the choice of batch size is also difficult [28, 47].

wi←wi−ϵ∑tþn−1
l¼t ∑m

j¼1 by xlj
� �

−yl
� �

xli; j ð12Þ

2.3.4 Gradient vanishing and gradient explosion

Gradient disappearance and gradient explosion are essentially the same, both of which are due
to the continuous multiplication effect in gradient back propagation brought by the too deep
network layers. In other words, if the numbers in each layer are smaller than 1, then the
positive gradient that you get when you multiply them is very small, and that’s the gradient
disappearing. On the contrary, if the numbers in each layer are bigger than 1, then the forward
gradient will be extremely large, that is, the gradient explosion. There are many ways to solve
these two problems, such as switching to activation functions such as ReLU, LeakyReLU,
ELU, utilizing batch normalization, ResNet residual structure, LSTM structure, pretraining
plus finetuning, etc. [9, 68].

2.4 Propagation thought

2.4.1 Feedforward propagation

Like the introduced in Section 2.1, The core idea of MCP is a linear relationship plus an
activation function in a small local model, which is:

y ¼ σ zð Þ ¼ σReLU bþ ∑w*xð Þ: ð13Þ

Where * represents the convolution, b represents bias, σ represents activation function, usually
refers to ReLU.
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And since MCP is very simple which can only solve binary classification, the Multi-Layer
perceptron (MLP) is introduced which is also called deep neural network (DNN). The major
difference between DNN and MCP is the number of layers. With the core idea of MCP as the
feedforward propagation of DNN, the general formula is:

Assume l-1-th layer has m neurons:

ylj ¼ σReLU zlj
� �

¼ σReLU ∑m
j¼1w

l
jky

l−1
k þ blj

� �
ð14Þ

where wl
jk refers to weight between the jth neurons in the lth layer and the kth neurons in the

layer before.
It can be simplified that the output of l-th layer is:

yl ¼ σReLU zl
� � ¼ σReLU

�
Wlyl−1 þ bl ð15Þ

Where Wl refers to a n x m matrix formed by linear coefficient w of layer l.
yl − 1 refers to a m × 1 vector formed by output y of layer l-1.
bl refers to a n × 1 vector formed by bias b of layer l.
zl refers to a n × 1 vector formed by linear output before activating of layer l.
However, DNN has a critical defect that if the input is large, a huge amount of weights and

other parameters require being trained and is likely to lead to overfitting and local optimiza-
tion. Therefore, the convolutional neural network (CNN) is discovered by LeCun, Boser [50]
in 1989. It has two other kinds of layer, one is convolutional layer, the other is pooling layer.
The detail information will introduce in Section 3.

2.4.2 Feedback propagation

According to the Section 2.1, loss function aims to minimize the difference between the
calculated output (by j) and the real output (yj). And the difference between them is caused by

the random weights and bias. In order to get suitable weights and bias to make the calculated
output correctly, the feedback propagation is used. The main concept of feedback propagation
is to optimize the loss function by gradient descent. We assumeW and X represent the weights
matrix and input vector in one layer separately.

Since the loss function is

J Wð Þ ¼ 1

2
∑n

l¼1 by l−y
� �2

ð16Þ

Where:byl refers to calculated output in the l-th layer.
y refers to real output in the l-th layer.
n refers to total number of layers

by l ¼ σReLU zl
� � ¼ σReLU bl þ ∑Wl*X l−1� � ð17Þ

The loss function’s partial derivative respect to Wl is

∂J Wð Þ
∂Wl ¼ by l−y

� �
⊙σ

0
ReLU bl þ ∑Wl*X l−1� �h i by l−1

� �T

ð18Þ
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and its partial derivative respect to bl is

∂J Wð Þ
∂bl

¼ δl byl−y� �
⊙σ

0
ReLU bl þ ∑Wl*X l−1� �� 	

ð19Þ

Where ⊙ represents Hadamard Product, which is defined as the product of the corresponding
elements of two matrices.

With the two Partial derivative formula, we utilize gradient descent to get the new weight
Wl and bias of l-th layer bl [13]. The formulas are as following:

Wl←Wl−ε
∂J Wð Þ
∂Wl ð20Þ

bl←bl−ε
∂J Wð Þ
∂bl

ð21Þ

Where ε is learning rate.
Assume the layer number of the last layer which is output layer is L. Then, the equation of

gradient expression which is recorded as δ of the L layer is shown below:

δL ¼ ∂J W ; bð Þ
∂zL

¼ by L−y
� �

⊙σ
0
ReLU bL þ ∑WL*X L−1� � ð22Þ

With the above formulas, the gradient expression of layer can be calculated by the fully
connected layer (FC layer) after it. Assuming the parameters and gradient expression of l-th
fully connected layer are known, the gradient expression of (l − 1)-th layer can be got by this
formula:

δl−1 ¼ ∂J W ; bð Þ
∂zl−1

¼ ∂zl

∂zl−1

� �T ∂J W ; bð Þ
∂zl−1

¼ ∂zl

∂zl−1

� �T

δl ð23Þ

The relationship between zl and zl − 1 is

zl ¼ by l−1
*Wl þ bl ¼ σReLU zl−1

� �
*Wl þ bl ð24Þ

The above formula about the FC layer can be shown as following:

δl ¼ ∂zlþ1

∂zl

� �T ∂J W ; bð Þ
∂zlþ1

¼ Wlþ1
� �T

δlþ1⊙σ
0
ReLU zl

� � ð25Þ

When the l-th layer is convolutional layer, the gradient expression of l − 1 layer which is
hidden layer can be calculated by the formula shown below:

δl−1 ¼ ∂zl

∂zl−1

� �T

δl ¼ δl*rot180 Wl� �
⊙σ

0
ReLU zl−1

� � ð26Þ

The convolution kernel has been rotated 180 degrees. So rot180() means flip up and down
once, then flip left and right once. Since CNN also includes the pooling layer which
compresses data, the data should be restored.
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When the l-th layer is pooling layer, the calculation of gradient expression of (l − 1)-th layer
is according to equation as:

δl−1 ¼ upsample δl
� �

⊙σ
0
ReLU zl−1

� � ð27Þ

This up-sample function helps accomplishing the logic of pooling error matrix amplification
and error redistribution [85].

In conclusion, with the basic operating mechanism about CNN, it is relatively easy to
understand the structure of the CNN introduced in the following section.

3 Basic structure

CNN can optimize the performance and generalization capability of the network by using
multilayer structure [71, 76] illustrated in Fig. 8. The most commonly used layers are
introduced in the next.

3.1 Convolutional layer

The main ability of the convolutional layer is to extract critical features for getting a good
prediction from the input images, which means reducing images into forms that are easier to
process [17].

3.1.1 Standard convolution

The element utilized in conducting the convolution operation in a convolutional layer is named
the kernels whose parameters needs to be studied. The size of the kernel should be smaller than
those of the input image. In the convolution process, each kernel will be convolved with the
input image to compute an activation map. That is to say, the kernel will slide across the width
and height of the input, calculating the dot product between the input and the kernel at each
spatial position. Next, by superimposing the activation maps of each kernel along the depth
dimension, the output image of the convolution layer can be achieved. It is because each kernel
is smaller in width and height when compared to the input, each neuron in the activation map

Fig. 8 A sample structure of CNN
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is associated only to a small local area of the input image, which means size of each neuron’s
receptive field is small, equals to size of kernel [43].

Figure 9 is considering a 5 × 5 input image in which matrix is composed of 0.5 and 0 and a
3 × 3 kernel composed of 1 and 0. The size of kernel determines the receptive field of the
convolution. The most preference of selecting kernel size for a 2D input image is 3, which
means 3 × 3 pixels.

Here the kernel will convolve over each cell position of the input image and eventually we
will get a convoluted image. For every single point in it, you can take the point and the 3 × 3
points around it out and do the convolution. For instance, for the lower right (row 4, column 4)
point, the local convolution of the 5 × 5 image and the 3 × 3 matrix could be computed as
shown in Fig. 10.

3.1.2 Dilated convolution

One disadvantage of standard convolution is its design for up-sampling and pooling. During
these processes, there will be internal data structure loss and spatial hierarchical information
loss. To deal with this loss problem, one significant hyper-parameter called dilation rate is
introduced to convolutional layers. The dilation rate of kernel refers to the spacing between
values inside (for a standard convolution, the dilation rate equals to 1) [56]. Through the
utilizing of dilated convolution, the receptive field of a 3 × 3 kernel with a dilation rate of 2 and
no padding would as large as a 5 × 5 kernel as illustrated in Fig. 11.

(a) Input Image (b) 3×3 Kernel

Fig. 9 Basic component of Standard Convolutional Layer

Fig. 10 3 × 3 Convolution process
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In this way, a wider reception field would be provided at the same cost of computation
which makes dilated convolution a promising solution among the area of real-time segmen-
tation. It can be of great use especially when there is a need of wider field of view but larger
kernel size or multiple convolutions cannot be afforded [100].

3.1.3 Transposed convolution

For a conventional convolution layer, forward propagation is ‘standard convolution’, which
maps the input feature map into the output feature map as shown in Fig. 12, while reverse
propagation is ‘transposed convolution’ [105, 106], which calculates the gradient of the input
feature map according to the gradient of the output feature map and keeps the size of the
gradient map same as that of the feature map illustrated in Fig. 13.

The process of transposed convolution is to some degree resemble to the deconvolution in
that it produces the same spatial resolution as a deconvolutional layer. But the practical
mathematical process carried out on the values is not the same. The transposed convolution

Fig. 11 The process of convolution utilizing a 3 × 3 kernel with a dilation rate of 2

Fig. 12 Part of the process of convolution utilizing a 3 × 3 kernel over a 5 × 5 input using unit-stride
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guarantees that the output will be as large as before, while it is still carrying out a standard
convolution process. To accomplish the goal, some fancy padding on the input is performed.

The transposed convolution step will not reverse the operation just mentioned, especially
not concerning the numeric values. It only reconstructs the spatial resolution and carries out a
convolution. This is very helpful for Encoder-Decoder architectures. Through utilizing this,
upscaling of an image with a convolution can be achieved at one time, rather than two separate
operations.

To conclude, if convolution is regarded as the mapping of the map of input size to the map
of output size, transposed convolution is the mapping of the map of output size to the map of
input size [20], which aims to restore the size. Some typical cases of transposed convolution
are displayed in Fig. 14.

3.1.4 Separable convolution

In neural networks, separable convolution is commonly used in order to reduce the
computation. The convolution process can be divided into two steps: one depth wise
convolution and one point wise convolution [15]. In the depth wise convolution
process, we use three convolution kernels of 5x5x1 to produce an 8 × 8 × 3 image as
illustrated in Fig. 15.

In the pointwise convolution process, first, the convolution of 1x1x3 is used to check the
calculation of each pixel, and the image of 8 × 8 × 1 is obtained. Then, 256 convolution kernels
of 1x1x3 are used to produce the image of 8 × 8x256 as displayed in Fig. 16.

Considering the change in computation, originally, 256 convolution kernels of 5x5x3 were
moved 8 × 8 times, that is,

256� 5� 5� 3� 8� 8 ¼ 1; 228; 800 ð28Þ
times of multiplication.

During the utilization process of depth wise convolution, 3 convolution kernels of
5x5x1move 8x8 times, requiring.

3� 5� 5� 7� 8� 8 ¼ 4800 ð29Þ

times of multiplication.
During the utilization process of pointwise convolution, 256 convolution kernels of 1x1x3

move 8x8 times, requiring.

Fig. 13 Part of the transpose process of convolution utilizing a 3 × 3 kernel over a 4 × 4 input utilizing unit-stride
(same to convolution utilizing a 3 × 3 kernel over a 2 × 2 input with a zero padding of 2 with unit-stride)
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256� 1� 1� 3� 8� 8 ¼ 49; 152 ð30Þ
times of multiplication calculation, which adds up to 53,952 times of calculation Thus, the
complete separable convolution process only needs 53,952 times of calculation which is much
smaller than the computation of original process [14]. Separable convolution helps a lot in the
application of mobile devices due to it uses the parameters efficiently [88].

Fig. 14 Typical cases of transposed convolution (a) Part of the transpose of convolution utilizing a 3 × 3 kernel
over a 5 × 5 input utilizing 2 × 2 strides (same to convolution utilizing a 3 × 3 kernel over a 2 × 2 input (gapped)
with a zero padding of 2 utilizing unit-stride) (b) Part of the transpose of convolution utilizing a 3 × 3 kernel over
a 5 × 5 input with a zero padding of 1 utilizing 2 × 2 strides (same to convolution utilizing a 3 × 3 kernel over a
3 × 3 input (gapped) with a zero padding of 1 utilizing unit-stride) (c) Part of the transpose of convolution
utilizing a 3 × 3 kernel over a 6 × 6 input with a zero padding of 1 utilizing 2 × 2 strides (same to convolution
utilizing a 3 × 3 kernel over a 3 × 3 input (gapped) with a zero padding of 1 utilizing unit-stride

Fig. 15 Depth wise convolution: transform a 12x12x3 image to an 8 × 8 × 3 image by using 3 kernels
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3.2 Pooling layer

The function of pooling layer is reducing the resolution of feature maps. In other words, it aims
to reduce the size of matrix generated by a convolutional layer. Typical categories of pooling
will be introduced in the next [91].

3.2.1 Average pooling

In a simple term, average pooling means taking the average of a small range. Figure 17
indicates an instance of average pooling utilizing a kernel of 2 × 2 with a stride of 2. After
pooling, the average value in the 2 × 2 kernel will be calculated and reserved in a rectified
feature map. In this way, the 4 × 4 input is compressed to 2 × 2.

Error of feature extraction mainly caused by two sources. On the one hand, the increasing
variance of the estimated value led from the limitation of neighborhood size. On the other
hand, the parameter error from the convolutional layer will result in the deviation of the
estimated mean value. Generally, average pooling to some degree solve the first problem by
retaining more background information of the input image. Average pooling emphasizes the
sub-layer sampling of the overall feature information, reducing the parameter dimension while
ensuring the integrity of the information transferred. In a large model such as Dense Net,
average pooling is frequently utilized to shrink the dimension and at the same time facilitate
the transfer of information to the following module for extracting features [108].

3.2.2 Max pooling

In a simple term, max pooling means taking the maximum of a small range. Figure 18
indicates an instance of max pooling utilizing a kernel of 2 × 2 with a stride of 2. After

Fig. 16 Pointwise convolution: transform an image from 3 channels to 1 channel, then output an image with 256
channels by using 256 kernels

Fig. 17 Average Pooling using a 2 × 2 kernel with a stride of 2
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pooling, the maximum value in the 2 × 2 kernel will be left in a rectified feature map.
Eventually, the 4 × 4 input image is shrunk to 2 × 2.

Generally speaking, max pooling is more effective and commonly used in image process-
ing. As it feels more like doing a feature selection. It selects features with better classification
and identification as well as providing nonlinearity. Besides, max pooling is able to deal with
the second error mentioned in the average pooling paragraph, which means it can preserve
more texture information.

For instance, if the feature we need to find is a dog, then as long as there is a dog in one area
of the image, it means that there is a dog in the whole image. Therefore, we should take the
maximum matching degree between all areas in the image and the characteristics of the dog,
that is, maximum pooling should be utilized.

3.2.3 Stochastic pooling

In stochastic pooling, the pool mapping response is obtained by sampling the multinomial
distribution formed by the activation of each pool area. To be more exact, we compute the
probabilities p for each region j via normalizing the activations within the region using:

pi ¼
ai

Σk∈R jak
ð31Þ

Where a refers to value of element.
k refers to the index of element in region of feature map.
We then sample from the multinomial distribution according to p to choose a location

within the region. The procedure is in Fig. 19.
The samples for each pooling region in each layer for each training example are drawn

independently to one another. When back propagation is carried out over the network, the

Fig. 18 Max Pooling using a 2 × 2 kernel with a stride of 2

Fig. 19 The transformation process of stochastic pooling
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gradient is guided back to the pool area using the same selected location, similar to using the
maximum pool for back propagation. When passing information through the network, max
pooling only focuses on the strongest activation of each region. While, sometimes non-
maximal activations should also be taken into consideration. Stochastic pooling does well in
this as those additional activations could be taken into account.

In a word, stochastic pooling is between the average pooling and max pooling. Probability
is assigned to pixel points according to the value size, and then sub-sampling is conducted
based on the probability. In the average meaning, it obeys average pooling criterion, and in the
local meaning, it is similar to max pooling [104].

Although pooling operation has little effect on improving the overall accuracy, it plays an
obvious role in decreasing parameters, reducing overfitting, optimizing model performance
and saving computational force, so it is an essential process in neural network design [101].

3.3 Fully connected layer

Fully connected (FC) layers often appear near the end of CNN system and are utilized to sum
the features of the previous design. If we consider convolution and pooling in the front as
process of feature engineering, local amplification and extraction of local features. The FC
layer in the back can be regarded as feature weighting. A sample structure of FC layer as
displayed in Fig. 20 is usually a fast method for learning nonlinear combinations of the high-
level properties generated from convolutional layer. In that space, the FC layer will learn about
a possible nonlinear function.

The basic procedure of learning is as follow. Firstly, flatten the image that has already been
converted to a form suitable for a multilevel perceptron into a column vector and feeding it
back to the feedforward neural network. Then, apply the propagation after planarization to
each iteration of training. In this way, the model will have the ability to distinguish between the
main features and some low-level features in the image and classify them through classifica-
tion techniques such as SoftMax [31].

In some circumstances, FC layer can be realized by conducting convolution operation, that
is, we can utilize a convolutional layer with 1 × 1 kernel size to replace the FC layer that is
fully connected to the front layer. Within normal FC layer, the important feature weight is

Fig. 20 A sample structure of FC layer
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increased to obtain the category of the identified object. While in convolution operation, like
an intentional weakening of fully connection, the weak influence outside the local area is
directly erased to zero on the basis of the inspiration of local vision. There is also a bit of
enforcement that the parameters utilized in different parts are the same. The weakening reduces
the parameters, saves the calculation, and specializes in local areas rather than seek for more.
While the enforcement can help further reduce the parameters.

After introducing the basic structure of CNN, the next section will focus on some classic
CNN architectures.

4 Classic architecture

In the early stage, because of the lack of training data and computational ability, it is
impossible to train high performance CNN under no over-fitting circumstance. However, in
the past few years, with the introduction of ReLU and dropout, along with the historical
opportunity achieved by GPU and big data, the research on CNN has experienced several
historic breakthroughs, began to obtain first-class results and attracted attention of the world.
Figure 21 displays several classic architectures of CNN in its development history [103].

4.1 AlexNet

AlexNet came from a team led by Krizhevsky, Sutskever [48] in 2012 and its brief structure is
illustrated in Fig. 22. Due to the limited GPU capacity at that time, dual-GPU training was
used, and the network was cut into two parts accordingly. However, with the development of
GPU, single GPU can easily train AlexNet, so the two parts can be combined as shown in the
figure. (Note that this leads to more connections and more computation) From this figure, it is
obvious that the entire network structure of AlexNet consists of 5 convolutional layers and 3
FC layers, with a total depth of 8 layers [34, 102].

Fig. 21 Classic CNN architecture in development history
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There is a clear process of direct conversion between layers and a simple interpretation of
each layer is displayed in Fig. 23. And then during a dropout process, where you randomly
drop some information, you will get 4096 new neurons. The use of dropout can reduce
overfitting and enhance the generalization of the model because it makes the model depend
less on some local features. The dropout rate usually equals to 0.5.

4.2 VGG-net

VGG-Net is a well-known deep CNN developed by Simonyan and Zisserman [89]. It writes
about the relationship between the depth and performance of CNN [60]. Through repeatedly
stacking the convolutional layer and the maximum pooling layer, VGG-Net creates a 16 ~ 19
layers CNN which achieves the runner-up in ILSVRC 2014 and the champion in positioning,
with an error rate of 7.5% on the top5. So far, VGG-Net has still been a widely used network to
extract image features.

The innovation of VGG-Net is it uses 3 × 3 convolution kernel and 2 × 2 pooling kernel to
improve performance through deepening network structure. The growing number of network
layers does not result in an explosion in the number of parameters due to the reason that the
number of parameters is concentrated in the final three FC layers. Meanwhile, the series of two
3 × 3 convolutional layers can be regarded as one 5 × 5 convolutional layer, and the series of
three 3 × 3 convolutional layers can be regarded as one 7 × 7 convolutional layer, that is, the
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Fig. 22 A sample structure for AlexNet
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CONV1
Input image specification: 224x224x3 (RGB image), will actually be 

changed to 227x227x3 after preprocessing.

96 filters with size and specification of 11x11x3 are used for feature 

extraction. Use ReLU to ensure that the value of feature graph is within a 

reasonable range. 

Data after convolution is 55x55x96.

Down sampling operation pool1 (Pool1 kernel: 3x3 step size: 2)

Data is reduced to 27x27x96.

CONV2
Input data 27x27x96.

256 5x5 filters with step size 1 were utilized to further extract features 

from the 27x27x96 feature graphs.

Down sampling operation pool2 (Pool1 kernel: 3X3 step size: 2)

CONV3

Get 384 new feature maps of 13x13 (kernel 3x3, step size 1)

CONV4

Same as CONV3.

CONV5

Output data 13x13x256.

Pool3 for down sampling operation (Pool3 kernel: 3x3 step size: 2)

Data reduced to 6x6x256 [(13-3)/2+1=6]

FC6
A full connection was made with 4096 neurons to 256 feature 

maps of size 6 by 6. 

FC7 Similar to FC6.

FC8

A thousand neurons were used to fully connect the 4,096 

neurons in FC7, which then went through a gaussian filter to 

get 1,000 float values, which is what we consider as predictive 

probability.

Fig. 23 Interpretation of each layer in AlexNet
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size of the field of three 3 × 3 convolutional layers is equivalent to one 7 × 7 convolutional
layer. But the number of convolutional parameters of 3 × 3 is only about half of 7 × 7, and the
former can have 3 nonlinear operations while the latter only has 1 nonlinear operation, which
makes the former have relatively stronger learning ability for features than the latter.

During training, VGG-Net first trains network of level A, and then initializes the later
complex models by repeatedly using the weight of network A, in this way, the convergence
speed improves. The configuration of VGG-Net is shown in Fig. 24.

(a) A: 11 weight layers

(b) A-LRN: 11 weight layers

(c) B: 13 weight layers

Fig. 24 Configuration of VGG-Net
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The authors of VGG-Net conclude that LRN layer has little effect. The experiment
confirms that, when the network is going deeper, performance of network would be improved

(d) C: 16 weight layers

(e) D: 16 weight layers (VGG-16)

(f) E: 19 weight layers (VGG-19)

Fig. 24 (continued)
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as well. The convolution of 1 by 1 is also efficient, allowing linear transformations of pixels
without changing the number of output channels and the parameters of the neural network. But
it doesn’t work as well as the convolution of 3 by 3, because the convolution of 3 by 3 learns
more about spatial features.

4.3 Inception (GoogLeNet)

Inception (also known as GoogLeNet) is a classic deep learning structure proposed by
Szegedy, Ioffe [95]. Before this, many structures mentioned before all utilize adding the depth
of the network to achieve better training performance, however, utilizing more layers will at
the same time bring loads of negative effects, for instance, overfitting, gradient disappearance,
gradient explosion, etc. Inception improves the training results by proposing a new way which
is making more efficient use of computing resources, in other words, extracting more features
for the same amount of computation [93, 94].

The basic structure is illustrated in Fig. 25. The entire inception structure is made up of
several such inception modules in series. The inception structure has two main contributions:
one is using 1 × 1 convolution to raise and lower the dimension, the other is carrying out
convolution and reintegration on multiple scales at the same time.

There are multiple yellow 1 × 1 convolution blocks in the figure, which have two effects.
The first effect is they can help extracting richer features by adding more convolution to the

same size of the feeling field. This idea comes from the Network in the Network (NIN) which
indicates that if you put two convolutions in series, you can combine more nonlinear features.
The structure of NIN is likely to the multi-layer structure in the traditional neural network. The
latter multi-layer spans the receptive field of different sizes by adding pooling layer between
layers, so as to extract features at a higher scale. NIN structure is multi-layer in the same scale
(without pooling layer in the middle), so it can extract stronger nonlinearity in the same
receptive field [57].

The second effect is 1 × 1 convolution can be used to reduce the dimension, which helps
decreasing the computational complexity. More specifically, when a convolution layer has
loads of input features, the convolution operation on the input will produce much computation.
However, if shrinking the dimensionality of input first, and doing the convolution after the
number of features are reduced, the computation will significantly be reduced as well.
Figure 26 compares the multiplication times of the two schemes before and after optimization.

Fig. 25 Basic structure of the inception module
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With the same input of a set of 192 features, 32 × 32 size, and the output of 256 features, the
first scheme is directly realized by 3 × 3 convolution, which requires.

192� 256� 3� 3� 32� 32 ¼ 452; 984; 832 multiplications ð32Þ
In the second scheme, the convolution of 1 × 1 was first utilized to decrease the number of
features to 96, and then 3 × 3 was used to restore 256 features, which required.

192� 96� 1� 1� 32� 32þ 96� 256� 3� 32� 32

¼ 245; 366; 784 multiplications ð33Þ
The dimensionality reduction method of 1 × 1 was used to save half of the computation.
Besides, if the number of features in the final output remains the same (256 sets), the
dimensionality reduction in the middle is similar to the effect of compression and will not
influence the result of the eventual training.

Apart from the 1 × 1 convolution blocks, the input layer has four branches, which were
convolved or pooled with filters of different sizes, and finally integrated together on the feature
dimension. Szegedy explained the benefits of this new structure from a number of perspectives.

The first explanation is the features of different scales can be extracted by convolution on
multiple scales at the same time. The richer the features, the more accurate the final
classification.

The second explanation is utilizing the principle of decomposition of sparse matrix into
dense matrix to accelerate the convergence. For instance, the first matrix in Eq. (34) is a sparse
matrix (many elements are 0 and are unevenly distributed in the matrix), which is convolved
with a 2 × 2 matrix and needs to be calculated for each element in the sparse matrix. However,
if the sparse matrix is decomposed into 2 sub dense matrices and then convolved with the 2 × 2
matrix, the regions with more 0 in the sparse matrix can be eliminated from calculation, greatly
reducing the amount of calculation. Applying this principle to Inception needs decomposing
on the feature dimension. The input data of the traditional convolution layer convolved with
the convolution kernel of one scale (such as 3 × 3) and output fixed dimensions data (such as

Fig. 26 The comparison between the multiplication times of the two schemes before and after optimization
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256 features). All 256 output features were uniformly distributed on the scale of 3 × 3, which
can be understood as the output of a sparsely distributed feature set. While Inception module
extract features on multiple scales (such as 1 × 1, 3 × 3, 5 × 5), thus the output features of 256 is
not evenly distributed, but the features that have a strong correlation gather together (such as
96 1 × 1 features together, 96 3 × 3 features together and 64 5 × 5 features together). This can
be understood as multiple densely distributed sub-feature sets. In this feature set, as the more
relevant features cluster together, the non-relevant non-key features weaken, so that the
Inception method outputs the same 256 features with less ‘redundant’ information. With such
‘pure’ feature set transferred layer by layer and eventually used as input of reverse calculation,
the natural convergence rate becomes faster.

3 4 0 0 0 0
0 2 0 0 0 0
0 0 2 3 0 0
0 0 0 1 4 0
0 0 1 0 0 0
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26666664

37777775⨂
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2 4
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� 	
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� 	
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� 	 ð34Þ

Where ⨂ represents Kronecker Product which is used for operations between two matrices of
any size. ⇔ represents Substantively equivalent.

The third explanation is according to Hebbin’s principle [81]. The Hebbin’s principle is a
theory in neuroscience that explains what happens to neurons in the brain during the learning
process: fire together, wire together. Hebbin believes that ‘Two neurons, or systems of
neurons, that are always firing at the same time form a ‘combination’ in which the firing of
one neuron promotes the firing of the other’. For example, dogs drool when they see meat.
After repeated stimulation, the neurons in the brain that recognize meat and those responsible
for salivating will promote each other and ‘entwine’ with each other, making them drool faster
when they see meat in the future. The usage of this principle in Inception structures is to bring
together highly relevant features. It’s a little bit like the second explanation above, where you
separate the features of 1 × 1, 3 × 3, and 5 × 5. Since the ultimate goal of training convergence
is to extract independent features, the convergence speed can be accelerated as long as the
highly relevant features be gathered in advance.

4.4 ResNet

ResNet was proposed by He, Zhang [27] from Microsoft research institute in Dec, 2015.
Through utilizing residual Unit, ResNet successfully trained the 152-layer neural network, and
achieved the best result in ILSVRC 2015. Meanwhile, the number of parameters was lower
than VGG-Net, with outstanding effect. The structure of ResNet is able to greatly speed up the
training of ultra-DNN, as well as perfect the model accuracy.

The initial inspiration of ResNet comes from this problem: if depth of neural network is
continuously increasing, a degradation problem will occur. This means the accuracy will first
rise and then reach saturation, afterwards the continuous increase of depth will cause the
decline of accuracy. The difference between this problem and overfitting is, in this problem,
the error increases in both testing set and training set.

If a relatively shallow network reaches saturated accuracy, then adding several y = x
congruent mapping layers to the end will at least not increase the error, which means, the
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deeper network will not cause the increasing of error on training set. The idea of utilizing
congruent maps to transfer the previous layer of output directly to next layer was the
inspiration for ResNet. If we directly pass the input to the output as the beginning value, the
target we require to study at this point will be:

F xð Þ ¼ H xð Þ−x ð35Þ
Where x refers to input of neural network.

H(x) refers to expected output
The Residual Unit of ResNet is illustrated in Fig. 27. ResNet altered the learning objective

from learning a complete output to learning only the difference between output and input, thus
simplifying the learning objectives and difficulty.

The Residual block is realized by shortcut connection as displayed in Fig. 27. Through
utilizing shortcut, this block performs an element-wise superposition of the input and output.
This simple addition will not increase additional parameters and computation to network.
However, it could efficiently improve the training speed and training effect of the model. In
addition, if the layer number of model is increasing, this structure is also able to efficiently
handle in the problem of degradation.

Figure 28 shows a comparison between a 34-layer ordinary CNN and a 34-layer ResNet
network. It can be seen clearly that the biggest difference between a straight-through CNN and
ResNet is that ResNet has a large amount of bypass branches which transmit the input
straightway to the subsequent layer, allowing the subsequent layer to directly study the
residual. This category of structure is as well-known as shortcut or skip connection.

4.5 U-net

U-Net is a classical full convolutional network. This U-shaped structure can capture semantic
information in the process of down-sampling and accurately locate the corresponding up-
sampling process. This network can train end-to-end with a small number of images, but the
effect exceeds that of the previous best model, CNN based on sliding Windows [74]. The U-
shaped structure is shown in Fig. 29.

Assuming that the input image tile is of 572 × 572. The left side of the network
composed of four blocks is called contracting path, which is a series of reduction

Fig. 27 A sample structure of residual block
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sampling operations formed by convolution and max pooling. Finally, a feature map
with a size of 32 × 32 is obtained.

Network on the right-hand side is named expansive path. It is as well composed of four blocks.
Before the start of each block, it will use deconvolution to enlarge two times the size of the feature
map, and the number in half. Then, it is mergedwith the feature map of the symmetric contracting
path on the left due to the reason that the size of the feature map of the contracting path on the left
is different from that of the expansive path on the right. The normalization of U-Net is conducted

Fig. 28 Comparison between a 34-layer ordinary CNN and a 34-layer ResNet network
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by clipping feature map of the contracting path to the same size as feature map of the expansive
path (i.e., the dark green block in Fig. 29). Effective convolution operation is still used in
convolution operation of extension path, and the final size of feature map is 388 × 388.

U-Net mainly uses SoftMax cross entropy loss to deal with the problem that similar target
boundaries of medical images are not easy to be recognized. Besides, weights are added to
each pixel in the objective function to make the network more able to distinguish the
boundaries. The equations are as follows:

E ¼ ∑x∈Ωw xð Þlog pl xð Þ xð Þ
� �

ð36Þ

w xð Þ ¼ wc xð Þ þ w0 � exp −
d1 xð Þ þ d2 xð Þð Þ2

2σ2

 !
ð37Þ

Where pl(x)(x) is loss function of SoftMax.
l refers to the label value of a pixel.
w refers to the weight value of a pixel.
wc is the weight that balances the proportion of the category.
d1 is the distance from the pixel to the nearest cell.
d2 is the distance from the pixel to the second closest cell.
w0 and σ are constants.

4.6 R-CNN series

4.6.1 R-CNN

The general procedure for target detection of R-CNN is illustrated in Fig. 30: (i) Extract
regional proposals from input images using selective search algorithm and warp them to a
fixed size. Selective search synthesizes the methods of both continues search and

Fig. 29 The basic structure of U-Net
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segmentation. It aims at identifying possible target locations for object recognition. (ii) Input
the normalized regional proposals into the CNN network and extract features. (iii) SVM
classification is used for identification of these features, and linear regression is applied for
fine-tuning the border position and size, with each category separately training a bounding box
regression. By using less and higher quality region of interest (ROI), R-CNN performs better
than the system using traditional sliding window approach in the evaluation of accuracy and
speed [24].

However R-CNN framework still exist the following problems: (i) it is very time-
consuming and has lots of repeated computation as each candidate box needs to go through
CNN alone; (ii) its training is divided into several stages and the steps are tedious; (iii) it takes
up disk space: the convolved characteristics of the data needs to be kept separately [53].

4.6.2 SPP-net

In order to solve the problems of R-CNN, SPP-Net made the following improvements.
One of the main ideas of SPP-Net is to remove the operations such as crop/ warp on the

original image and replace them with the spatial pyramid pooled layer (SPP) on the convo-
lution feature. In R-CNN, the proposal was warped before it was sent to the net. Part of the
reason for the introduction of SPP layer is that different levels of crop/ warp on images in R-
CNN will not only take time and effort but also cause some problems as shown in Fig. 31. For
example, the crop in the figure will cause the object to be incomplete, and warp will cause
serious deformation after the object is stretched [70].

However, the more important reason is that in R-CNN, each regional proposal is subject to
a CNN feature extraction operation, which brings a lot of double calculations. In SPP-Net, we
only performed CNN feature extraction on the whole image once, and then map the proposal
to the feature map generated by the convolutional network, which is equivalent to feature map
obtained by image in a proposal going through the layer by layer convolution process.

4.6.3 Fast R-CNN

It could be obviously seen in Fig. 32 that fast R-CNN is also a method that makes some
perfections based on R-CNN. Similar to SPP-Net, it only conducts CNN feature extraction for

Fig. 30 The basic structure of R-CNN
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the whole image once, and then utilizes an ROI pooling layer. While, due to the reason that it is
not a fixed size input, the size of the pooling grid shall be adjusted dynamically each time to
achieve regional normalization. Fast R-CNN uses SoftMax to replace SVM for classification,
as well as multi-task loss function to carry out border regression and classification together
[23].

The main steps are as follows: (i) Take the whole picture as the input and use CNN to get
the feature layer of the image. (ii) Extract regional candidate boxes from the original image by
selective search and projected onto the final feature layer one by one. (iii) ROI pooling
operation is conducted for each area candidate box on the feature layer to achieve feature
representation of fixed size. ROI pooling is able to accelerate the speed of training and testing.
(iv) After two FC layers, utilize SoftMax to conduct multi-target classification respectively,
and apply regression model in fine-tuning the border position and size.

The disadvantage of fast R-CNN is that region proposal is extracted by selective search, and
most of the target detection time is spent on it (normally, if a region proposal is proposed 2 ~
3 s once, the feature classification will be proposed only 0.32 s once), which could not reach
the requirements of real-time application.

Fig. 32 The basic structure of fast R-CNN

Fig. 31 (a) Crop; (b) Warp
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In general, fast R-CNN uses feature CNN as extractors to extract features of the whole
image first. And then it applies the method of creating candidate regions directly to the
extracted feature map. For example, fast R-CNN chose feature map output by convolutive
layer Conv5 in VGG-16 to generate ROI. These ROI would then be combined with corre-
sponding feature graphs to cut out feature blocks and used in target detection tasks. We use
ROI pooling to convert feature blocks to fixed sizes and feed them to the FC layer for
classification and positioning. Because fast R-CNN has no repeated feature extraction

Fig. 34 The basic structure of RPN Network

Fig. 33 The basic structure of faster R-CNN
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operation, it saves lots of processing time. The training speed of fast R-CNN is 10 times faster
than R-CNN, and the predicting speed is 150 times that of R-CNN.

4.6.4 Faster R-CNN

As displayed in Fig. 33, faster R-CNN utilizes the proposal achieved by Region Proposal
Network (RPN) to replace the proposal achieved by selective search.

The function of RPN network is outputting a batch of rectangular candidate regions with
the input of an image, which is somewhat alike to the selective search in the previous target
detection. The network structure is according to a CNN, but includes the SoftMax and
Bounding box regression multi-task models [73].

In Fig. 34, above the dashed line is the structure in front of the last convolutional layer of
ZF network. Under the dashed line is the particular structure of RPN network. For the
particular structure, the convolution is 3*3, and then the output is divided into two ways

Fig. 36 The basic structure of SSD

Fig. 35 The basic structure of YOLO
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through 1*1 convolution, one way of which outputs the probability of target and non-target,
and the other way outputs the four parameters related to box.

The procedure of faster R-CNN is: (i) Same as fast R-CNN. (ii) K different Anchor boxes
are used in the final convolution feature layer to conduct a region proposal, that is, object/non-
object binary classification is carried out for the corresponding area of each anchor box, and k
regression models are used for fine-tuning the location and size of the candidate box. Regional
proposal (via RPN) is generated on the feature map, with about 300 suggestion windows per
image. iii) Same as fast R-CNN. iv) Classify the objects and do border regression.

4.7 Yolo

4.7.1 YOLOv1

YOLO series algorithm is a typical one-stage target detection algorithm. Its basic structure is
illustrated in Fig. 35. YOLOv1 is an end-to-end target detection approach, and the determi-
nation of position and category is accomplished by direct regression without need for
intermediate regional proposal to find the target.

If two small targets fall into a cell at the same time, the model can only predict one. Large
object intersection over union (IOU) error and small object IOU error are close to the loss
contribution value in network training. Thus, for small object, small IOU error will also bring a
great influence on the network optimization, reducing positioning accuracy of object detection.
YOLO uses multiple lower sampling layers, and the object features obtained from network are
not precise, which will also affect the detection effect [19].

Compared with faster R-CNN, YOLOv1 has more obvious advantages. Firstly, faster R-
CNN needs an RPN network to find the candidate region, while for YOLOv1, after the input
image has been divided, it directly takes the region as the candidate region. YOLOv1 utilizes
the end-to-end regression method rather than use those regional proposal steps, so direct
regression accomplishes the determination of position and category. Therefore, compared with
fast R-CNN, the main advantage of YOLOv1 lies in (i) its speed; (ii) global processing makes
background errors less than regional based methods; (iii) good generalization performance.
However, YOLOv1 performs not very well in target positioning process, which causes low
detection accuracy of YOLO.

To sum up, YOLOv1 proposes a new idea of a single stage. Compared with the two-stage
method, YOLOv1 has obvious advantages in speed and impressive real-time characteristics.
However, YOLOv1 also has some problems, such as rough grid division and the number of
boxes that could be generated by each grid, which limits the detection of small-scale objects
and objects that are close to each other.

4.7.2 YOLOv2

The differences between YOLOv2 and YOLOv1 are as follows:

1) The dropout layer was removed, and Batch Normalization was added in each convolutive
layer, with a 2% improvement in Mean Average Precision (mAP).

2) High-resolution classifier. Input data of high-resolution changed from 224*224 to
448*448, and mAP improved by 4%.
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3) YOLOv2 deletes a pooling layer to get high resolution data. Use anchor to replace FC
layer.

4) Anchor box is determined by k-mean clustering and distance calculation of clustering is
used instead of Euclidean distance.

5) YOLOv2 uses anchor box to predict the object category rather than use grid to predict the
probability of each grid in YOLOv1.

6) The bounding Box coordinate continues YOLOv1’s prediction of Bounding boxes’
coordinates with respect to the upper left corner of the grid. To ensure that the center of
bounding Box falls within the grid (i.e. its coordinates fall between 0 and 1), Bounding
Box center is sent into the activation function.

7) YOLOv2 adds a passthrough layer to improve the detection of small objects. This layer
conducts information fusion of high-resolution feature and low-resolution feature.
Through the stacked in adjacent features rather than the spatial location of different
channel, it integrates characteristic of high and low resolution, making the mAP value
increased by 1%.

8) YOLOv2 only uses convolutional layer and pooling layer, thus the size of input image
could be dynamically adjusted. Besides, the accuracy and speed can be adjusted according
to own requirements.

4.8 SSD

YOLO predicts a location utilizing full-image features, SSD predicts a location utilizing
features around that location [58].

Accroding to Fig. 36, it seems that SSD model is somewhat alike to RPN, for instance, the
Default Bounding Box in SSD is very likely to the anchor in RPN. However, SSD takes into
account different scales in different feature layers, and RPN thinks about different scales in one
feature layer.

SSD outputs a series of discretization boxes, produced on feature maps on different layers,
with different aspect ratio.

This section introduced the classic architectures in CNN from an early stage in nearly
10 years ago till now. The CNN model has been continuously evolved and eliminated in the
careful study of countless scientists, thus forming various model systems with their own
merits. The following section will focus on how different model made remarkable achieve-
ments and outstanding contributions in different medical fields.

5 Application

Since CNN have some many models and it can be used in lots of fields of image classification
like identifying human face and patient condition. The following content will introduce the
application of CNN for classifying the patient conditions in different body parts.

5.1 Breast

According to the statistical analysis defined from Institute for Health Metrics and Evaluation
(IHME), there was a noticeable increase in breast cancer mortality in most regions of the world
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between 1990 and 2015, with a total mortality rate of 0.7 per 100,000. Data also indicates that
the five-year survival rate of early stage breast cancer patients exceeds 95%, while the five-
year survival rate of late period breast cancer patients is less than 20%. The World Health
Organization (WHO) has confirmed that early diagnosis and treatment of breast cancer patients
could not only decrease mortality, but also help some patients avoid psychological suffering
and financial loss from mastectomy and axillary lymph node dissection [5, 83, 98]. Thus, early
detection is a critical step in prevention and treatment of breast cancer.

Mammography is a specific imaging method to screen and diagnose breast cancer. Lévy
and Jain [54] and his group used CNN to straightway classify pre-detected breast masses in
mammograms as benign or malignant. They utilized AlexNet, GoogleNet model and achieve
outstanding precision rate result as shown in Table 1. Another project focuses on applying
CNN to detect microcalcifications in mammograms, since CNN shows excellent performance
in classifying image data. In order to solve the problem of large class imbalance between pixels
from microcalcifications and other breast tissue, the research team of Mordang, Janssen [66]
applied a CNN architecture which is inspired by OxfordNet to classify the microcalcification
pixels which are difficult to be identified. The researchers also used cascade classifier for
comparison and find out that CNN classifier had significantly better results for different data
set with a sensitivity increase of about 6%. Except the Mammography, breast cancer cytolog-
ical specimen can also be analyzed in order to diagnose benign and malignant cases. To
improve the diagnosis of breast cancer, team of Gao, Wu [21] presented a network in
combination of a shallow CNN and a deep CNN. They developed the shallow one to achieve
‘virtual’ recombined images from input dataset and apply the deep CNN to extract features.
Finally, the recombined and ‘virtual’ recombined images would help the model to classify
benign or cancer category of brain circumstance. In the research of Sun, Tseng [92], the group
applied CNN into a semi-supervised learning scheme for breast cancer detection, which only
needs very few labelled data for training. This scheme allows the usage of unlabelled data if a

Table 1 Results of application of convolutional neural network in breast area

Authors Goals Model Results

Acc Sen

D Lévy et al. [54] Classify the mass, benign or
malignant

AlexNet 0.8900 0.8680
GoogLeNet 0.9290 0.9340

J Mordang et al.
[66]

Detect microcalcifications and
then classify the mass,
benign or malignant

Two CNNs / 0.7035
±0.0068

F Gao et al. [21] Classify the benign or cancer Shallow-Deep CNN 0.90 ± 0.06 /
W Sun et al. [92] Allow the usage of unlabelled

data in breast cancer diagnosis
A CNN model including

3 pairs of convolutional
layers

0.8818 /

H Su et al. [90] Relieve computational burden
in segmentation by reducing
the redundant computations

Fast scanning CNN 0.9100 /

F Ting et al. [96] Classify incoming medical
images as malignant, benign
or normal patient

CNNI-BCC 0.9050 0.8947

D Bardou et al. [7] Binary classification CNN using an ensemble
model

0.9833 /
Multi-class classification 0.8233

(Acc =Accuracy; Sen = Sensitivity)
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small amount of labelled data is already learned by the system. The final result achieves
88.18% with unlabelled data and 82.43% with the mixed and unlabelled data, which shows a
significant improvement than previous research in accuracy. In the pixel-wise region segmen-
tation scheme proposed by Su, Liu [90], fast scanning deep CNN was applied to relieve the
computational burden by reducing the redundant computations in the convolutional layers and
max pooling layers. Ting, Tan [96] introduced a model for breast cancer diagnosis and named
it as Convolutional Neural Network Improvement for Breast Cancer Classification (CNNI-
BCC). This algorithm achieves 89.47% sensitivity and 90.50% accuracy. Bardou, Zhang [7]
tried to figure out the breast cancer classification on the basis of histology images utilizing
CNN. The result reveals that CNN performs better than the handcrafted feature-based classifier
with 98.33% for binary classification and 82.33% for multi-class classification.

5.2 Lung

Lung cancer is a major global health problem today and for decades to come, as it is the major
cause of cancer deaths worldwide, far outnumbering breast cancer, accounting for 18.4% of all
cancer deaths. The data show that about 70% of patients are diagnosed with advanced lung
cancer, so only 15% of patients with lung cancer survive five years after being diagnosed. This
means that early diagnosis and improved diagnostic accuracy are crucial to the treatment of
lung cancer and this area of technology has long been the subject of research [12, 18].

Alakwaa, Nassef [2] with his team used CT scans as input and 3D-CNN as model to
detect and classify the lung unmarked nodules. They first segmented out lung tissue by
thresholding, and then, a modified U-Net that can determine nodule candidates in CT
scans is used to locate the regions that has relatively high possibility of containing
nodule candidates. Finally, these regions with nodule candidates were sent to 3D-CNN to
be identified if there exists lung cancer, since the 3D-CNN could make fully usage of the
spatial 3D context information of lung nodules. The accuracy of model achieved 86.6%.
In another similar research displayed in Table 3 in detail, the group of Kang, Liu [45]
added the concept of multi-view strategy into the usage of 3D-CNN to improve the
model performance. They conducted a binary classification and a three-type classifica-
tion on CT images and compared results among different methods. Compared with 2D

Table 2 Results of application of convolutional neural network in lung area

Authors Goals Model Results

Acc Sen

W Alakwaa et al. [2] Detect the lung unmarked nodules U-Net and 3D CNN 0.867 0.853
G Kang et al. [45] Binary classification MVO-3D CNN-CNN1 0.9541 /

Ternary classification 0.923 /
W Shen et al. [87] Model raw nodules to detect

nodule heterogeneity
Multi-scale CNN 0.8684 /

A Chris et al. [4] Lung Pattern Classification Self-created 0.8561 /
H Sahiner et al. [26] Automatically detect lung nodules 3D FCN +CNN / 0.95
H Gillies et al. [33] Lung nodule characterization TUMORNET 0.9231 /

(MVO=multi-view-one; Acc = Accuracy; Sen = Sensitivity)
* (CT1 = CT image channel 1; CT3 = CT image channel 3)
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CNN, 3D CNN is no doubt better in error rate whatever in binary classification or ternary
classification. Moreover, compared with one-view-one-network strategy, the multi-view-
one-network strategy also achieves a lower error rate. The final best results achieved a
superior error rate of 4.59% for the binary classification and 7.70% for the ternary
classification. One breakthrough brought by Shen, Zhou [87] and his team was that, in
terms of regional analysis, instead of depending on nodule segmentation, they directly
modeled raw nodule patches without any prior definition of nodule morphology. A
Multi-scale Convolutional Neural Networks (MCNN) model was set up to capture
nodule heterogeneity and the input also comes from CT which shows both lung nodule
screening and nodule annotations. The best accuracy rate achieved 86.84% with the RF
classifier as displayed in Tables 2,3 and 4. The first model for dealing lung pattern
classification problem was presented by Anthimopoulos, Christodoulidis [4] and proven
to be effective when compared to previous methods on a public dataset. In the research
of Hamidian, Sahiner [26], they first presented a fully convolution network (FCN)
transferred from 3D CNN and used it to produce scoring results for all the volumes
rather than just volumes of interest. Then, utilizing the difficult negative examples
produced by FCN to train a new discriminant CNN model. The whole system was a

Table 3 Details in research of G Kang et al. [45]

Input data Goals Model Acc Sen Spc

CT 1 binary classification MVO 3D CNN CNN1 0.9518 0.9556 0.9301
CNN2 0.9503 0.9551 0.9299
CNN3 0.9481 0.9845 0.8976

2D CNN CNN1 0.9454 0.8888 0.9967
CNN2 0.944 0.8893 0.9972
CNN3 0.9413 0.894 0.9874

CT 3 3D CNN CNN1 0.9525 0.956 0.9394
CNN2 0.9524 0.9561 0.9389
CNN3 0.9362 0.9417 0.8973

2D CNN CNN1 0.9459 0.8892 1
CNN2 0.9446 0.89 0.9976
CNN3 0.944 0.8897 0.9968

CT MVO 3D CNN CNN 0.9541 / /
OVO CNN1 0.9472 / /

CNN2 0.9439 / /
CT 1 ternary classification MVO 3D CNN CNN1 0.9188 / /

CNN2 0.9158 / /
CNN3 0.8906 / /

2D CNN CNN1 0.8234 / /
CNN2 0.8373 / /
CNN3 0.8479 / /

CT 3 3D CNN CNN1 0.9222 / /
CNN2 0.9175 / /
CNN3 0.9069 / /

2D CNN CNN1 0.8184 / /
CNN2 0.8195 / /
CNN3 0.8681 / /

CT MVO 3D CNN CNN 0.923 / /
OVO CNN1 0.9187 / /

CNN2 0.9093 / /

(MVO=multi-view-one; OVO = one-view-one; Acc = Accuracy; Sen = Sensitivity; Spc = Specificity)
* (CT1 = CT image channel 1; CT3 = CT image channel 3)
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combination of FCN and the new CNN. An excellent result in lung nodule characteri-
zation was achieved by Tumor Net in the work of Hussein, Gillies [33]. The network
they proposed had nearly 6% improvement in accuracy when compared to methods
without utilizing CNN on the same dataset.

5.3 Brain

In the application field of brain, CNN has also made outstanding contributions as illustrated in
Table 4. It is well known that there are huge differences in appearance between brain tumors,
which undoubtedly poses difficult challenges for pathologists or doctors to accurately segment
and identify brain tumors. Thus, making use of deep learning to segment and identify brain
tumors becomes a promising way of thinking in human medicine [35–42, 97, 99].

Khan, Shah [46] and his team proposed a fully automated CNN-based method for
segmenting brain tumors that required a combination of handcrafted features, and achieved
excellent results in terms of complete, core, and enhancing tumor. More recently, a fine-tuned
VGG-19 (FT-VGG-19) approach to classifying multistage brain tumors that can help radiol-
ogists better analyze MRI has yielded compelling results, according to Sajjad, Khan [79] and
his team. This classification system not only made use of deep learning to segment the tumor
region in the image, but also made usage of data expansion to solve the problem of insufficient
data, which showed improved performance in comparison to other existing methods. In
addition, to help doctors detect gliomas at an early stage, Anaraki, Ayati [3] and his team
came up with a glioma classifier that combines genetic algorithms with a CNN model (CNN-
GA) and gets it right more than 90% of the time. This classifier is very flexible because it can
be effectively classified in multiple case studies on the classification of brain tumors.
Moeskops, Viergever [65] introduced an automatic segmentation method based on CNN,
which aims to segment MR brain images into lots of tissue classes. This method tried to learn
to recognize the significant information for classification on the basis of training data rather
than just dependent on explicit features. The team applied the methods to 5 datasets and

Table 4 Results of application of convolutional neural network in brain area

Authors Goals Model Results

Acc Dss

Com Co E

K Shah et al. [46] Fully automatically segment the
brain the brain tumor

TP-CNN** / 0.81 0.76 0.73

S Khan et al. [79] Classify multi-grade brain tumor FT-VGG-19 0.9458 /
A Ayati et al. [3] Classify different grades of glioma CNN-GA 0.909 /

0.942 /
P Moeskops et al. [65] Segment MR brain images into

tissue classes
Self-created / 0.91

S Erdogmus et al. [80] Brain extraction Auto-context CNN / 0.9773
K Chen et al. [44] Segment lesion Multi-scale CNN / 0.66
H Anwar et al. [32] Segment Glioma tumors in brain Self-created / 0.86 0.87 0.90
M and S [62] Segment deep brain structure M-net / 0.8578

(Dss = Dice Similarity Score; Acc = Accuracy; Com =Complete; Co = Core; E = Enhancing)
* (TP-CNN is a combination of CSGP+MRILP+MRIGP)
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achieved good Dice similarity score (Dss) over segmented tissue classes with the highest result
of 0.91, which proves that this automatic segmentation method using CNN has robustness to
datasets of different age and acquisition protocol. A brain extraction tool based on the auto-
context CNN invented by Salehi, Erdogmus [80] outperforms several results recently reported
in brain analysis research. It was superior than other brain extraction methods not only in high
Dss results, but also due to its characteristic of registration-free, which means this CNN
technique relied less on accuracy of alignment between atlases and anatomy in brain and
did not require making assumptions in geometry of brain image. The team of Kamnitsas, Chen
[44] introduced a multi-scale CNN solution to segment brain lesion and achieved better
performance than previous method on a small-scale dataset. Hussain, Anwar [32] presented
several architectures based on CNN to segment Glioma tumors in brainand reaches higher
results when compared to state-of-art methods. Mehta and Sivaswamy [62] introduced M-net
to help segmenting human brain structure. M-net attracted attention in medical research field as
it ran 3 times faster in speed when compared to traditional methods.

Overall, we can see that CNN does bring excellent performance when compared to other
state-of-art methods in various areas of medical image analysis. It is often possible to quickly
achieve accuracy of up to 90% or more than 95% from data sets that human pathologists may
expend considerable effort and time on. There is no doubt that CNNwill be of great help to the
diagnosis in the medical image analysis area.

6 Conclusion

This review presents a comprehensive view on Convolutional Neural Network in the medical
field. The content including its developing history, basic operating mechanism, basic structure,
classic architecture and applications in medical image analysis.

We first outlined the basic operating mechanism of convolutional neural network, with the
survey in neuron, activation function, loss function, gradient descent, feedforward and feedback
propagation. And then detailedly introduced 4 categories of convolutional layer, 3 categories of
pooling layer, and fully connected layer. The major benefits and limitations of several classic
architecture: AlexNet, VGG-Net, Inception, Resnet, U-Net, R-CNN Series, YOLO and SSD are
concluded. The applications of CNN among breast, lung and brain area are finally considered
from summarizing a number of relevant core journals. We hope that by reading our review,
readers can understand the basic principles and popular use framework of CNN, be able to utilize
popular format of convolutional or pooling layer like transposed convolutional layer, separable
convolutional layer, stochastic pooling in appropriate circumstances, and feel the rapid develop-
ment of CNN and outstanding contributions brought by CNN in the field of medicine.

A growing number of cases prove that CNN can explore and discover the mysteries of
some unknown medical fields. It is expected that the CNN could effectively has the ability to
aid diagnostic applications for evaluating more and more diseases in humans in the future.
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