
https://doi.org/10.1007/s11042-020-09632-9

Improvedmethod of word embedding for efficient
analysis of human sentiments

Santwana Sagnika1 ·Bhabani Shankar Prasad Mishra1 · Saroj K. Meher2

Received: 15 April 2020 / Revised: 10 August 2020 / Accepted: 13 August 2020 /

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
User database of the internet is expanding at a swift rate with the dramatic growth of social
media. These include information as well as personal opinions about products, ideas, news,
politics, etc. These online opinions and reviews act as a word-to-mouth medium for enhanc-
ing or diminishing the popularity of a product, item or concept. Thus, automated analysis
of the tone of online opinions helps customers and business personnel significantly to take
decisions and develop strategies efficiently. This task, known as sentiment analysis, is an
area of active research that relies heavily on the text processing methodology called word
embedding. Word embedding is a process of representing text into numeric format, to enable
mathematical operations on them. The present study proposes a method of enhancing the
performance of word embedding approaches, by integrating sentiment-based information,
to render them more suitable for sentiment analysis. Sentiment-based information is incor-
porated through self-organizing map, where similarity is calculated based on the scores
of sentiment-based words. The similarity is further tuned using particle swarm optimiza-
tion method. Experimentally, performance of the proposed method is justified for sentiment
analysis task using various classifiers. Different performance measurement indexes are used
to validate the superiority of the proposed method compared to existing approaches.

Keywords Sentiment analysis · Opinion mining · Natural language processing · Word
embedding · Self-organizing map · Particle swarm optimization

� Santwana Sagnika
santwana.sagnika@gmail.com

Bhabani Shankar Prasad Mishra
mishra.bsp@gmail.com

Saroj K. Meher
saroj.meher@isibang.ac.in

1 School of Computer Engineering, Kalinga Institute of Industrial Technology Deemed to be
University, Bhubaneswar, Odisha, 751024, India

2 Systems Science and Informatics Unit, Indian Statistical Institute, Bangalore Centre, 8th Mile,
Mysore Road, RVCE Post, Bangalore, 560059, India

Multimedia Tools and Applications (2020) 79:32389–32413

Published online: 27August 2020

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-020-09632-9&domain=pdf
http://orcid.org/0000-0001-7036-7981
mailto: santwana.sagnika@gmail.com
mailto: mishra.bsp@gmail.com
mailto: saroj.meher@isibang.ac.in


Multimedia Tools and Applications (2020) 79:32389–32413

1 Introduction

Advancement of technologies leads to the generation of a huge amount of data. This
includes a substantial amount of views, opinions and judgments about almost every topic
and object. Such data become useful to a wide range of users and entrepreneurs to know
about a product before dealing with them. For example, a movie-goer can read the review
of a movie and decide whether to watch it or not. Similarly, a company can access the rat-
ings of their products and address the problems for customer satisfaction. A political party
can follow the public trend and work upon their campaign plan. In this scenario, it becomes
useful to collect, analyze and quantify the mass of data. This process is known as sentiment
analysis or opinion mining [17].

Efficient sentiment analysis can facilitate decision making for users as well as busi-
nesses, by identifying the general conception of people towards any topic. Since a majority
of such data is textual, manual annotation and categorization is an accurate approach. But
it is extremely time-consuming, since user-generated data grows exponentially on online
platforms. More manual effort is needed, and this leads to increased cost and disagree-
ment among different annotators. To reduce manpower, time and effort, it is necessary to
automate the entire process. But, such kind of automatic analysis of data without direct
intervention of humans is a challenging task, owing to the fact that the data is huge,
varied and unstructured. This implies that an automation technique should be scalable,
robust and flexible, in order to deal with increasing quantities and heterogeneous types
of data. As a result, sentiment analysis has been an area of active research in recent
times [14, 28].

Technically, automated sentiment analysis refers to identification and categorization of
textual opinion into pre-defined sentiment categories. The categorization can be broad or
fine, depending upon the requirement. The automation process generally involves text min-
ing, i.e. natural language processing, which involves reading and analyzing the meaning
from text. Other aspects of sentiment analysis include subjectivity classification, spam
detection, aspect extraction, review usefulness measurement, etc. Sentiment analysis finds
application in the field of data analytics and decision making in the personal level, as well
as in business, news, political and marketing domains [5, 12].

Sentiment analysis and its related tasks face multiple challenges. Language specific
issues, such as context information, multiple meanings of the same word, hybridization of
different languages, figures of speech like irony and sarcasm, shortcut words and emoticons,
etc. make it difficult to process the text. Lack of lexicons and corpora, especially in non-
English languages, make it difficult to perform accurate analysis. [28] Even though manual
effort addresses some of these issues, it leads to more problems like discrepancies between
annotators, difference in quality of processing, etc. To address these problems and generate
uniform results through automated techniques, statistical and lexicon based approaches have
been developed. A substantial amount of work using statistical and lexicon based methods
exists in the literature of sentiment analysis. Recent popularity of neural networks has led
to a shift from lexicon based methods to neural network based approaches, which are faster,
more accurate, and require negligible manual intervention. Neural networks can also pro-
vide remarkable results in situations where there is a lack of sufficient lexicons or annotated
corpora. An explicit description of the state-of-the-art solutions to sentiment analysis is pro-
vided in the Related Work section of this paper. In this work, we have leveraged the power of
neural networks to generate features from words, and enhanced those features using infor-
mation from existing lexicons. These features are then used to perform efficient sentiment
analysis. The methods used are detailed in subsequent sections.

32390



Multimedia Tools and Applications (2020) 79:32389–32413

The rest of the paper in organized as follows. Section 2 contains some of the relevant
related literature in the area. Section 3 explains the motivation and need behind the work
carried out in this paper. Section 4 elaborates the proposed word embedding method and
details the various steps and concepts used in each step. Section 5 gives details on the
experiments performed. Section 6 mentions the indices used for performance evaluation of
the work. Section 7 discusses the obtained results and their implications. Section 8 contains
the conclusion and future scope of this work.

2 Related work

For the sentiment analysis task, several attempts have been made to solve problems in a
multitude of domains using machine learning methods [13, 20–22, 32], which was oth-
erwise difficult owing to the intractability of processing large-scale data by traditional
approaches. For example, polarity detection, i.e. categorizing an opinion into positive or
negative, is essentially a classification problem, and hence, classifiers like support vector
machine (SVM), naı̈ve bayes (NB), random forest (RF), etc. have proved to be extremely
useful and efficient [1]. Many research works are carried out using supervised [22], unsu-
pervised [32] and semi-supervised [13, 20] techniques on all kinds of domains, like product
reviews, movie reviews, news, tweets, etc. Pang et al. [22] have demonstrated the application
of naive bayes, maximum entropy and support vector machine classifiers on sentiment anal-
ysis, which are the initial works in this domain. This work became the basis of many further
applications of supervised learning methods. Again, Pang and Lee [21] have also presented
a movie review dataset that has been used as a standard dataset for sentiment analysis tasks.
Caschera et al. [4] have provided a technique to extract sentiments from multimodal data
by combining language-based formalization along with a machine learning approach, and
used hidden Markov model to represent extracted emotions for the purpose of classifica-
tion. Unsupervised learning methods have also been applied by Turney [32], who employed
part-of-speech tagging to identify recommendable reviews. Recently, Ju et al. [13] have
described semi-supervised learning by under-utilization techniques for sentiment analysis
in case of inadequate availability of labelled data. Ortigosa-Hernandez et al. [20] demon-
strated the solution of a multi-dimensional classification problem using a semi-supervised
Bayesian classifier to identify subjectivity, polarity and will-to-influence aspects.

These research works motivated us to use machine learning approach for automatic and
minimum computation burdened sentiment analysis. However, efficiency of these meth-
ods is mostly controlled by the reliable training data that represent all possible information
of the system in hand. Owing to the fact that user-generated data is largely unstructured
and dissimilar, it is necessary to represent the data in a standard and comprehensible man-
ner, which can be well-understood by a system for further analysis. Data pre-processing
thus becomes an essential step in order to analyze this information [11]. There exists num-
ber of techniques to address this, such as bag-of-words, tf-idf, co-occurrence matrix, etc.
These methods generate numeric vectors that represent specific features of the text, and
these numeric vectors enable mathematical operations on them. Recently, the Word2Vec and
GloVe techniques have become popular as word-vector generating algorithms. They create
word embeddings, i.e. numerical vectors for individual words using neural networks. These
embedding techniques can be applied to any text mining-based method, including sentiment
analysis.

Researchers have attempted enhancements on word embeddings by adding sentiment
information to them. Cano and Maurisio [3] performed an empirical study on the impact

32391



Multimedia Tools and Applications (2020) 79:32389–32413

of factors like training technique, size and thematic content of training corpus on word
embeddings, and tested them on sentiment analysis on multiple domains. Their research
suggests that the impact varies across domains, and by integrating extra information through
post-processing, the sentiment analysis results is enhanced. Rudkowsky et al. [27] prove
the strength of using language dependent word embeddings for sentiment analysis in the
field of social sciences by applying them on estimating negativity levels in parliamentary
speeches. Maas et al. [18] have used a model combining supervised and unsupervised tech-
niques that captures semantic and sentiment information, and used it for document level
sentiment analysis to provide greater accuracy for movie reviews. Tang et al. [31] have
designed three neural network architectures to generate improved word embeddings which
are sentiment-specific, and experimented on Twitter data. Zhang and Lan [37] have also pro-
duced sentiment integrated word embeddings using two models which are extensions of the
continuous skip-gram model. They have tested these embeddings on English and Chinese
data, to achieve improvement over the use of standard word embeddings. Rezaeinia et al.
[26] have created improved word vectors that include Part-of-Speech (POS) information and
sentiment scores as additional vectors to the existing word vectors, thereby enhancing their
usage in sentiment analysis tasks. Yu et al. [36] have proposed an effective refinement model
for word vectors by shifting the vectors to be closer to sentimentally similar and farther from
sentimentally dissimilar words. Dragoni and Petrucci [7] have used neural word embeddings
that are generated based on overlap between domains to facilitate cross-domain sentiment
analysis. Fu et al. [10] have developed an architecture for sentiment-specific word embed-
ding which is applicable to both sentence-level and document-level sentiment analysis, by
utilizing both local and global sentiment context. Their technique shows improvements over
generalized word embedding techniques.

In order to address the word embedding task, the objective for the present work is
to improve the accuracy of sentiment analysis process, by enhancing the performance of
conventional word embeddings obtained by Word2Vec and GloVe. For this purpose, the
enhancement is made based on sentiment-based scores of individual words. By modifying
the generalized word vectors to include sentiment scores, the vectors become more suitable
for sentiment analysis. The present study has in fact drawn inspiration from the techniques
put forth by [26] and [36], for developing an efficient method of creating modified word
embeddings that are suitable for sentiment analysis. In this work, the authors attempt to rep-
resent input data as reflective of sentiment information, where the data is preprocessed to
form word vectors or embeddings based on sentiment scores of the respective words. First,
words are clustered using a Self-Organizing Map (SOM) according to their sentiment rat-
ings. Based on the closeness of the word to other words, the original word representation is
modified to get a new word representation using Particle Swarm Optimization (PSO). This
new word representation is thus more suitable for the sentiment analysis task.

3 Motivation

Sentiment analysis is a classification problem, which takes a portion of text as input, and
classifies it into one of the specified categories of sentiment. There are a number of efficient
classifiers that are popularly used for such classification problems. Recently, classifiers
based on neural networks have been effectively applied to a variety of domains, giving high
accuracy on complex data. Neural network-based classifiers work on a specific mathemat-
ical model and provide a fixed number of outputs, wherein each output represents a target
class, as defined by the problem. The input layer takes a fixed number of inputs, where each

32392



Multimedia Tools and Applications (2020) 79:32389–32413

input is a feature of the data. Thus, the input data has to be represented in an appropriate
manner, so that it can be fed to the input layer. Sentiment analysis is a text processing prob-
lem, where the input data is usually a set of sentences, paragraphs or documents containing
the opinion of the writer. This data is unstructured and needs to be preprocessed for the
input layer. A common preprocessing technique is to represent the sentences as vectors of
a fixed size. Word embeddings are one such kind of vector representations for textual data,
which represent words as numeric vectors [18].

In the initial approaches to word embeddings, the vector size was equal to the number
of words in the vocabulary. In the current scenario of large data size, this technique has
become infeasible due to memory requirements. Subsequent methods like count vector, co-
occurrence matrix and TF-IDF vector were more efficient and useful, as they considered
word frequency in the text to determine their relevance to the subject. Despite their useful-
ness, these vectors represent limited information [29]. The application of neural networks in
the field of word embeddings has generated prediction-based embeddings, which are based
on probability and contain useful information like similarity, oddity, analogies, etc. These
techniques are useful to classifiers for performing text analytics. Currently, Word2Vec and
GloVe are the most popular techniques for word embeddings, and have proven useful for
multiple natural language processing tasks. A brief description of both the word embedding
techniques is made as follows.

Word2VecWord Embeddings Word2Vec is a technique of word embedding introduced by
Mikolov [19] in 2013. It uses a combination of two neural network models: the Continuous
Bag of Words (CBOW) and the Skip-gram model, which use context information to generate
word vectors according to the weights of neurons [29]. The generated vectors are based
on the weightage of the word in the entire text corpus and hence hold extremely useful
and versatile information, which can be used for various applications like finding word
similarities, odd one out among a set of words, etc. In situations where there is less training
data available, Word2Vec does not get enough information for proper training. Here, instead
of training the model on the limited dataset, pre-trained word vectors can be used for better
performance [35]. Google provides one such set of pre-trained word vectors, containing
approximately 3 million words from its news dataset [6].

GloVe Word Embeddings GloVe, referring to Global Vectors, is another method for mod-
eling words into vectors. Designed by Pennington [23] in 2014, it creates a word vector
space by training on word-word co-occurrence counts. The models are trained on Wikipedia
dumps, Gigaword 5 and Common Crawl texts, and apply unsupervised learning to create
300-dimensional vectors. The vectors represent semantic similarity between words. Their
usage is similar to Word2Vec embeddings [24]. Both Word2Vec and GloVe are extremely
useful when the dataset is small, and provide a better option of representing word features.
The performances of both methods are comparable, and either can be better depending on
the application areas.

Need for improving word embeddings for Sentiment Analysis Most of the time, gen-
erating word embeddings by applying Word2Vec or GloVe on the dataset in hand is the
best way to discover proper relativity between the words. This gives higher accuracy when
tested on the same domain. But this method has two major problems. Firstly, overfitting of
the model takes place. This renders the model extremely suitable for the current domain
but leads to lower accuracy on other datasets and domains. An ideal model should be

32393



Multimedia Tools and Applications (2020) 79:32389–32413

general enough to provide considerable accuracy on multiple datasets and domains. Sec-
ondly, as already mentioned, many situations do not have sufficient labeled data which
can be used to properly train a model. Considering both these issues, it is advisable to use
word embeddings which have been pre-trained on larger corpuses, and are more univer-
sal. Being generic in nature, these pre-trained Word2Vec or GloVe word embeddings have
certain drawbacks when applied to specific purposes. They do not consider context of the
text being trained. As a result, the word “Apple” will have the same vector representation,
whether it is used as a brand name or a fruit name. In terms of sentiment analysis, the
disadvantage is that there is no sentiment information being considered, and hence words
like “good”, “bad”, “awesome”, and “terrible” have similar vectors close to each other,
all of them being adjectives. This leads to a drop in accuracy for the machine learning
model [26].

In order to address these issues, the authors have proposed an efficient method that is
incorporated in the process of sentiment analysis. The objective in the present study is to
effectively perform the word embedding task so that the efficiency of the sentiment analysis
model can be enhanced.

4 Proposed word embeddingmethod for sentiment analysis

The schematic flow diagram of the proposed sentiment analysis model using an effective
word embedding approach is shown in Fig. 1. The operational steps of the proposed model
are similar to the generic sentiment analysis model, except the operation performed in the
word embedding step. This paper aims to provide an improved method of informative word
vector representation (the third step in Fig. 1). A brief description of the operational steps
of the proposed sentiment analysis model is made in the following subsection.

The different steps of the workflow are detailed as follows.

4.1 Preprocessing

The input text is generally in the form of a review, tweet, or blog post. The purpose is to
categorize it to a class (positive/negative etc.), or to a rating (1 star/5 stars etc.). The input
text is unstructured and noisy. The first step is to clean the text by considering the individual
tokens of the text, such as words, numbers or symbols, and removing symbols, hypertext,
etc. which are not relevant to the sentiment presented by the text. Stopwords like a, the, of,

Fig. 1 Semantic representation of the workflow

32394



Multimedia Tools and Applications (2020) 79:32389–32413

is, etc. are also removed to provide better understandability. Finally the words are stemmed,
i.e. reduced to their base form, by removing tense and converting them to singular. In this
way, the general preprocessing is done.

4.2 Parsing

This step deals with specific preprocessing required by the model used in this work. Once
cleaned, the reviews are parsed sentence-wise, representing each sentence as a group of
words. A corpus is created out of all the sentences split in this manner. This is done because
the method considers reviews as an aggregate of words. These words can combinedly
represent the sentiment of the entire review.

4.3 Generating word embeddings to represent words

This step deals with feature representation, i.e. preparing the text in the form of numerical
inputs, to make them ready to be fed into a classifier for analysis. In this step, a word embed-
ding model is taken, which represents each word as a numeric vector of fixed dimensions.
Various techniques exist for this, and the authors take neural network based embedding
methods, namely Word2Vec and GloVe, which are previously explained.

Instead of using generalized pre-defined word embeddings, the authors modify the word
vectors to include the sentiment of the word, based on the part of speech the word belongs to.
The modification enhances the performance of sentiment classification of the model which
is trained on the modified word embeddings. This modification is done based on how close
the word is to other words that share similar sentiment with it.

In this work, the authors have modified word embeddings generated by Word2Vec
and GloVe using sentiment information based on a neural network algorithm known as
self-organizing map (SOM). The modification takes place based on sentiments, i.e. senti-
mentally similar words (e.g. good and awesome) are clustered together, while sentimentally
dissimilar words (e.g. good and bad) are moved farther from each other. The modified
word embeddings are then used for sentiment analysis, and tested on different datasets and
classifiers.

The technique proposed in this paper for modification of word embeddings can be
described according to the following algorithm.

4.3.1 Proposed algorithm – adjusting word embeddings

1. Take a set of generalized pre-trained word embeddings, created by Word2Vec or
GloVe.

2. Use a sentiment lexicon which contains words and their sentiment ratings.
3. Identify the affect words using Part-of-Speech (PoS) tagging.
4. Create a two-dimensional (2-D) mapping of affect words in the sentiment lexicon,

using a Self-Organizing Map (SOM).
5. For an affect word A, find its pre-trained word embedding W.
6. Find its grid location G(x,y) from the 2-D mapping.
7. Find all other words present in G, which is the set of sentimentally similar words for

A.
8. Adjust the word embedding W to W’, using Particle Swarm Optimization (PSO)

algorithm, and Eqn. 4 as its fitness function.
9. Replace the pre-trained word embedding W with the modified word embedding W’.

32395



Multimedia Tools and Applications (2020) 79:32389–32413

10. Repeat steps 5 to 9, for all affect words in the vocabulary.

The algorithm steps are detailed as follows.

4.3.2 Initial preparation (Steps 1-3)

Initially a sentiment lexicon is taken which contains sentiment scores of various words. For
this work, the authors take E-ANEW [2] as the sentiment lexicon which contains words and
their valence scores in a range of 0 to 10, 0 being the most negative and 10 being the most
positive. A Part-of-Speech tagging is done to identify the affect words (words that convey
feeling or emotion) in the lexicon.

4.3.3 Finding sentimentally alike words (Steps 4-7)

The identified affect words are considered and a self-organizing map is created to clus-
ter these words based on their sentiment scores. The concept of a self-organizing map is
explained as follows.

4.3.4 Self-organizing maps

Kohonen, in 1982, described a method of dimensionality reduction and clustering using
neural networks, known as a Self-Organizing Map (SOM) [15, 16]. The concept behind
SOM is to create a mapping that projects multi-dimensional data into a simple lower dimen-
sional grid, generally two-dimensional, especially suitable for visualization. It works as a
clustering method, since it preserves the proximity of data points in the generated 2-D map.
Experiments show that the clustering performance is comparable with the most popular
clustering techniques like k-means [8, 34].

SOM is an unsupervised neural network having only an input and an output layer. It
follows a competitive learning approach to adjust the weights of the neurons in the output
layer. It preserves topological connections between the input data, which means data points
which are closer to each other in the multi-dimensional space, are also closer to each other
in the output two-dimensional grid [30]. Figure 2 shows the concept of a SOM.

Every neuron in the output grid has a weight vector. The points in the input space are
mapped onto one of the points in the output grid, whose weight vector is the nearest to the
input point. Most of the time this leads to multiple input data points being mapped to the

Fig. 2 Task performed by a SOM [30]

32396



Multimedia Tools and Applications (2020) 79:32389–32413

same output data point. This helps in simplification of visualization of the data, as well as
clustering of the data. A simple algorithmic approach to implement a SOM is described as
follows [29, 30].

4.3.5 Algorithm – implementing a SOM

1. Let the input data be a set of points I = {i1, i2, . . . , ip} ε �m, where m is the number of
dimensions. Let the output grid consist of nodes O = {oxy; x ε [0, p] and y ε [0, q] },
where p × q is the output grid size. Let α be the learning rate. r is the initial neighbor
radius.

2. Initialize each node’s weight randomly. W = {wxy; x ε [0, p] and y ε [0, q]}
3. For input data point ik , find its distance from all output nodes, i.e. dxy = dist (ik, wxy),

where dist() is the Euclidean distance.
4. Find the node which gives the minimum distance, denoted by owin, and its associated

weight as wwin.
5. Locate all neighbouring nodes of owin, using a neighbouring function N(wwin, wxy, r),

which is a function of the iteration number and an initial neighbor radius, for the two
nodes wwin and wxy .

6. Update the weights of all neighbouring nodes to become closer to owin. Mathematically,

wxy = wxy + α ∗ dist (ik, wxy) ∗ N(wwin, wxy, r) (1)

7. Decrease values of α and r.
8. Repeat steps 2-6 till α approaches 0.

The neighbourhood function N() is designed such that the nodes closer to the winner node
owin will be updated by an amount larger than the farther nodes, which will be updated by a
smaller amount. As the number of iterations progresses, the neighbor radius also decreases,
which isolates the winner node more and more from the effect of its neighbours. On the
other hand, the learning rate decreases over time, which eventually leads to convergence of
the algorithm.

In this work, the authors have used a SOM for clustering of words. The clustering is
done taking the sentiment ratings of the words as input vectors. The words in the same
output grid are considered similar to each other sentimentally, while words in distant grids
are considered sentimentally dissimilar. The SOM also maps this clustering into a two-
dimensional vector, which makes it easy and less time-consuming to access the closest
words. Thus, the words which have similar sentiment scores tend to get allotted to the same
or nearby grid points in the map, whereas the words with dissimilar scores get allotted to
grid points which are farther apart, as shown in Fig. 3. After this map is created, it is used
for the next step, which is the modification of word embeddings of affect words.

4.3.6 Modifying words according to the SOM (Step 8)

For a given affect word, first all the words in the same grid point are identified. Then the
vector of the word is modified, to move it closer to the vectors of all other affect words in the
same grid point. This modification is done, keeping in mind that the word maintains almost
equal distances from all similar words, while not moving too far from its original vector, so
that its identity is preserved. By performing this modification, it is ensured that the affect
words are closer to sentimentally alike words, and are farther from sentimentally different
words. This is because the SOM makes sure that words with similar sentiment are clustered

32397



Multimedia Tools and Applications (2020) 79:32389–32413

Fig. 3 An example of word vectors in a lower dimensional space generated by SOM

closer to each other and words with different sentiments are clustered separately. Thus,
words like “good” and “awesome” will be closer to each other, being sentimentally positive.
Similarly, words like “bad” and “terrible” will be closer to each other, being sentimentally
negative. At the same time, both these groups of words will be farther from each other, due
to the modification technique applied. Figure 4 shows an example, where the word “good” is
progressively moved towards similar words like “great”, “beautiful” and “fantastic”, while
simultaneously moving away from the dissimilar word “bad”.

Fig. 4 An example of adjusting a word vector in the grid space generated by SOM

32398



Multimedia Tools and Applications (2020) 79:32389–32413

Let W be a word embedding for a random affect word, generated by a word embedding
algorithm (Word2Vec or GloVe). The modified vector W’ can be generated by shifting W
closer to sentimentally similar words, but not too far from its original position W. Hence,
this modification can be represented as a mathematical equation having two parts.

Let distance of W’ from W = D(W’,W)
Let total distance of W’ from sentimentally alike words =

∑n
k=1D(W ′,Wk)

where, Wk is the kth sentimentally alike word to W, and n is the total number of
sentimentally alike words.

There are various ways to calculate distances between two vectors. The authors have
used one of the most widely used methods, i.e. Euclidean distance. ED(x,y) represents the
Euclidean distance between two vectors x and y, given by

ED(x, y) =
√
√
√
√

m∑

d=1

(xd − yd)2 (2)

where m is the number of dimensions of the vectors. D(x,y) represents the square of
Euclidean distance.

D(x, y) = ED2(x, y) (3)

To find the optimal value of W’, the sum of both distances mentioned above need to be
minimized. Depending on how much distance it is desirable for the embedding to be shifted
from its original position, the corresponding weightage can be assigned to each distance
component. Thus, the shifting process can be expressed as

Minimize{σ ∗ D(W ′, W) + (1 − σ) ∗
n∑

k=1

D(W ′,Wk)} (4)

Here, σ ε {0, 1} is the weightage parameter assigned to control the movement of the word
embedding. This helps maintain proportion between the two parts of the equation. A greater
value of σ keeps W’ closer to the original embedding W, whereas a smaller value of σ moves
W’ closer to the sentimentally alike words.

Equation 4 is the objective function for this problem, which is solved using an optimiza-
tion algorithm, i.e. Particle Swarm Optimization (PSO). The concept of PSO is explained
as follows.

4.3.7 Particle swarm optimization

Kennedy and Eberhart [9] in 1995 introduced the concept of PSO, which follows the
behavior of birds searching for food. It is a swift and efficient technique that performs opti-
mization on large search spaces, which is a NP-Complete problem. It uses a population of
birds/particles starting at random locations, which search their neighborhood for food, i.e.
solutions. Depending on their proximity to the solutions, they decide whether to proceed in
that direction or change the search direction. Each bird retains its own best position (local
best), and uses it to direct its search. This best data is also shared with other birds, to find
out the best position among all birds (global best). Together, the local best and global best
combine to direct the new velocity, and consequently position, so that the birds converge at
the best solution after a certain number of iterations. This makes the method work in paral-
lel, thereby achieving optimal results in a feasible amount of time [25, 33]. Figure 5 shows
the working steps of a basic PSO algorithm.

32399



Multimedia Tools and Applications (2020) 79:32389–32413

Fig. 5 Steps of the PSO algorithm

Here, the position and velocity of the particles is determined as follows.

V new
i = V old

i + a1 ∗ r1 ∗ (pbestold
i − P old

i ) + a2 ∗ r2 ∗ (gbestold − P old
i ) (5)

P new
i = P old

i + V new
i (6)

In these equations, V old
i is the velocity of ith particle in the previous generation,V new

i is the
velocity of ith particle in the current generation, P old

i is the position of ith particle in the
previous generation,P new

i is the position of ith particle in the current generation, a1 and a2
are accelerating factors of local and global information respectively, r1 and r2 are random

32400



Multimedia Tools and Applications (2020) 79:32389–32413

values between 0 and 1. pbesti is the personal best of the ith particle and gbest is the global
best among all particles [33].

In this work, PSO is employed to minimize the fitness function as mentioned in Equation
4.There are numerous swarm-based methods available for optimization. The authors chose
PSO because of its simplicity and fast convergence in lesser time and iterations, which
is beneficial for the task in hand. For the given affect word, a population of particles is
taken, where each particle represents a solution, i.e. a possible modified word embedding
for a word. The fitness of each particle is assessed, and the local and global best are found
out. New velocity and positions are calculated. This process goes on iteratively till the best
solution is found, which is the best possible modified word embedding for the affect word.
For all the affect words, the PSO algorithm is re-executed with a fresh set of population
particles. At the end, the set of modified word embeddings is obtained for the vocabulary of
the pre-trained word embeddings.

4.3.8 Final steps (Steps 9-10)

The obtained word embedding is used to replace the original word embedding of the pre-
trained Word2Vec or GloVe set. This is done for all affect words in the vocabulary. The
remaining word embeddings stay as they are. Now the further steps of training the classifier
can go on, using the modified set of word embeddings.

4.4 Averaged word vector generation

After obtaining the modified word embeddings, sentence vectors are generated by taking
the average of the vectors of all words contained in a sentence. This is extended to obtain
vectors for the entire input text. Now the input is ready in a numeric form to be passed to a
classifier. The set of input vectors are then split into training and testing sets.

4.5 Classification

The training set feature vectors are used to train a classifier, against their class or rating.
The authors experiment with various classifiers to find more suitable ones for sentiment
analysis. The trained classifier is then tested on the testing set vectors to predict their class
or rating. Parameters like accuracy, precision, recall and kappa coefficient are utilized to
quantify the performance.

5 Implementation details

5.1 Datasets used

To demonstrate the effectiveness of the proposed sentiment analysis using a modified word
embedding approach, we have used two different datasets in the present study. One is the
International Movie Database (IMDb) movies reviews dataset, and the other is the Yelp
dataset that contains restaurant reviews and corresponding star ratings.

The IMDb dataset is a collection of movie reviews and their ratings. This dataset contains
25,000 reviews, and their sentiment scores. The scores are scaled as per the ratings, i.e.
ratings less than 5 have a score of 0, and above 7 have a score of 1, in order to make the
dataset suitable for a binary classification problem.

32401



Multimedia Tools and Applications (2020) 79:32389–32413

The Yelp dataset consists of 10,000 restaurant reviews, having the star ratings between 1
and 5. However, the dataset is reduced to include only 1-star and 5-star ratings, in order to
make it a binary classification problem.

5.2 Classifiers used

For a comparative analysis of the proposed sentiment classification model, we have used
different classifiers that are given both the generalized word embedding (Word2Vec and
GloVe) based inputs along with their modified versions. The classifiers considered here
are Gaussian naive bayes, random forest, decision tree, gradient boosting, support vector
machine, multi-layer perceptron, convolutional neural network(CNN), and CNN layered
with long short term memory (LSTM) classifiers.

5.3 Experimental setup

The simulation is performed using Python 3.5 on an Intel i5 desktop with 32 GB RAM and
2.71 GHz frequency. The significant packages used are NLTK for NLP tasks, Keras, Theano
and Tensorflow for implementation of deep architectures, and Scikit-learn and SciPy for
standard machine learning architectures and performance measurements.

For the classification task, the whole dataset is partitioned randomly into two parts. One
part is used for training the model and the other is for testing the performance. Three dif-
ferent ratios (80%, 70%, and 60%) of training and test (20%, 30%, and 40%) are prepared
for the experiment. Each model is trained and tested with 10 rounds of experiments with the
same train-test splits, and the average of 10 readings is depicted in the result section. The
random split, tests the consistency of the model performance over varying sets of training
and testing data during the multiple iterations.

6 Performancemeasurement indices

In the present study, various performance measurement indices are used for comparative
analysis; they are Precision (P), Recall (R), Accuracy (A), Kappa Score (K), and Receiver
Operating Characteristic (ROC) curve.

True Positives is the number of data items predicted to be true, which are actually true
in the dataset. False Positives is the number of data items predicted to be true, which are
actually false in the dataset. True Negatives is the number of data items predicted to be false,
which are actually false in the dataset. False Negatives is the number of data items predicted
to be false, which are actually true in the dataset.

Accuracy(A) signifies the fraction of correct classifications out of the total number of
data items provided. It represents the ability of the model to correctly identify data items
belonging to each of the classes.

Precision(P) represents the fraction of positive data items correctly classified out of the
positive data items provided. It shows the ratio of the relevant cases found correctly, out of
all the cases that are found to be relevant.

Recall(R) is the fraction of positive data items correctly classified out of the total data
items provided. It shows the ratio of the relevant cases found correctly, out of all the cases
that are actually relevant in the entire dataset.

32402



Multimedia Tools and Applications (2020) 79:32389–32413

Kappa score(K) compares the obtained accuracy with the accuracy of a random system.
It controls data items that might have been correctly classified by chance, by measuring
how closely the data items classified by the model match the data items labelled as ground
truth. A kappa value of 1 denotes perfect match, while a kappa value of 0 denotes no match.
Equation 7 gives the formula for Kappa score.

Kappa Score(K) = N (T rue Positives + T rue Negatives) − X

N2 − X
(7)

where,

X = (T rue Positives + False Positives) ∗ (T rue Positives + False Negatives)

+(T rue Negatives + False Negatives) ∗ (T rue Negatives + False Positives) (8)

Here, N denotes the total number of data items in the dataset.
Receiver Operating Characteristic (ROC) curves are used to provide graphical analysis

of the results. ROC curve plots true positive rate and false positive rate for each classifier.
The area under the curve (AUC) provides an aggregate measure of the performance, i.e.
more the area, better the model.

In addition to the above indexes, we have used the standard deviation of accuracy (Astd )
over the ten rounds of each model in order to analyze the statistical consistency in perfor-
mance. This analysis demonstrates the variation of the model performances, and a lower
value of standard deviation signifies higher stability.

7 Results and discussion

The proposed sentiment analysis model along with the different classifiers are applied on
both the datasets. At first, the sentiment analysis for the dataset is performed using the
generalized Word2Vec and GloVe embeddings, and the same process is repeated using the
modified Word2Vec and GloVe embedding approach. Performances of various classifier-
based models on these datasets using both types of embeddings are shown in Tables 1–4.

Table 1 shows the performance of models with different classifiers using the modi-
fied Word2Vec embeddings of the IMDb dataset as input, as compared to the generalized
Word2Vec embeddings. The results provide better accuracy, precision, recall and kappa
score by all classifiers. The MLP, CNN and SVM based models gave the best accuracies
for all train-test split ratios using the modified word embeddings. But these models have
higher standard deviations, showing some inconsistency over different train-test split sets.
The Gradient Boosting and CNN classifiers showed the most consistent results, as seen
by the minimum standard deviation values. In all classifiers, the usage of modified word
embeddings have shown better performance for the parameters than generalized ones.

Figure 6 shows the ROC curves of the top three classifiers,i.e. MLP, CNN and SVM,
that have performed sentiment analysis using modified Word2Vec embeddings on the IMDb
dataset in comparison to the generalized Word2Vec embeddings. The ROC curves reiterate
similar results as seen in the table. The area under the curve is higher in all cases for the
modified Word2Vec embeddings.

Table 2 shows the performance of models with different classifiers by taking the modified
GloVe embeddings of the IMDb dataset as input, as compared to the generalized GloVe
embeddings. Here too, the results provide better accuracy, precision, recall and kappa score
by all classifiers. The CNN, MLP and SVM based models gave the best accuracies for
all train-test split ratios using the modified word embeddings. The accuracies of GloVe

32403



Multimedia Tools and Applications (2020) 79:32389–32413

Table 1 Performance comparison of generalized and modified Word2Vec embeddings on IMDb dataset
using various classifiers

Classifier Word2Vec embeddings Modified Word2Vec embeddings

P R A K Astd P R A K Astd

Train-Test split ratio – 80:20

Random forest 0.81 0.81 0.811 0.624 0.0042 0.83 0.83 0.832 0.665 0.0040

Gaussian naı̈ve bayes 0.73 0.73 0.728 0.493 0.0030 0.76 0.76 0.755 0.511 0.0027

Decision tree 0.70 0.70 0.692 0.408 0.0109 0.72 0.72 0.719 0.439 0.0100

SVM 0.82 0.82 0.819 0.681 0.0083 0.85 0.85 0.854 0.709 0.0077

MLP 0.84 0.84 0.837 0.702 0.0078 0.87 0.87 0.869 0.738 0.0075

Gradient boosting 0.82 0.82 0.817 0.636 0.0022 0.84 0.84 0.838 0.677 0.0021

CNN 0.85 0.85 0.844 0.712 0.0078 0.87 0.87 0.866 0.732 0.0071

CNN-LSTM 0.76 0.75 0.762 0.533 0.0136 0.79 0.79 0.788 0.577 0.0123

Train-Test split ratio – 70:30

Random forest 0.82 0.82 0.828 0.634 0.0068 0.84 0.84 0.841 0.676 0.0051

Gaussian naı̈ve bayes 0.76 0.76 0.760 0.528 0.0055 0.78 0.78 0.779 0.564 0.0032

Decision tree 0.70 0.70 0.698 0.409 0.0104 0.73 0.72 0.725 0.441 0.0088

SVM 0.84 0.84 0.837 0.695 0.0078 0.86 0.86 0.858 0.728 0.0063

MLP 0.85 0.85 0.852 0.714 0.0096 0.88 0.88 0.880 0.762 0.0087

Gradient boosting 0.82 0.81 0.815 0.707 0.0045 0.84 0.84 0.842 0.740 0.0026

CNN 0.87 0.87 0.869 0.743 0.0065 0.89 0.89 0.890 0.788 0.0050

CNN-LSTM 0.78 0.78 0.780 0.565 0.0104 0.80 0.80 0.798 0.582 0.0096

Train-Test split ratio – 60:40

Random forest 0.83 0.83 0.833 0.645 0.0077 0.85 0.84 0.848 0.688 0.0052

Gaussian naı̈ve bayes 0.78 0.78 0.780 0.556 0.0040 0.80 0.80 0.802 0.592 0.0022

Decision tree 0.72 0.72 0.719 0.474 0.0089 0.74 0.74 0.738 0.503 0.0078

SVM 0.84 0.84 0.843 0.708 0.0069 0.86 0.86 0.861 0.734 0.0063

MLP 0.85 0.84 0.846 0.692 0.0077 0.87 0.87 0.870 0.743 0.0068

Gradient boosting 0.81 0.81 0.811 0.699 0.0030 0.83 0.83 0.832 0.727 0.0021

CNN 0.88 0.88 0.876 0.762 0.0068 0.90 0.90 0.901 0.808 0.0059

CNN-LSTM 0.78 0.77 0.770 0.558 0.0104 0.81 0.80 0.804 0.597 0.0100

embeddings are slightly lower than Word2Vec embeddings for the IMDb dataset. But the
variation shown by the classifiers over different train-test split sets using GloVe embeddings
is lower, as seen in the standard deviation column. Hence, GloVe embeddings are more
stable than Word2Vec embeddings for most classifiers. The CNN classifier showed the most
consistent results, as seen by the minimum standard deviation values. In all classifiers, the
usage of modified word embeddings have shown better performance for the parameters than
generalized ones.

Figure 7 shows the ROC curves of the top three classifiers,i.e. MLP, CNN and SVM, that
have performed sentiment analysis using modified GloVe embeddings on the IMDb dataset
in comparison to the generalized GloVe embeddings. The ROC curves graphically provide
the results seen in the table. The area under the curve is higher in all cases for the modified
Word2Vec embeddings.

32404



Multimedia Tools and Applications (2020) 79:32389–32413

Table 2 Performance comparison of generalized and modified GloVe embeddings on IMDb dataset using
various classifiers

Classifier GloVe embeddings Modified GloVe embeddings

P R A K Astd P R A K Astd

Train-Test split ratio – 80:20

Random forest 0.76 0.75 0.752 0.528 0.0082 0.78 0.78 0.778 0.557 0.0079

Gaussian naı̈ve bayes 0.70 0.70 0.701 0.431 0.0145 0.73 0.73 0.732 0.464 0.0121

Decision tree 0.63 0.63 0.627 0.289 0.0082 0.65 0.65 0.652 0.304 0.0082

SVM 0.80 0.80 0.791 0.625 0.0066 0.82 0.82 0.820 0.640 0.0065

MLP 0.80 0.79 0.788 0.612 0.0073 0.82 0.82 0.823 0.646 0.0067

Gradient boosting 0.76 0.76 0.755 0.541 0.0105 0.79 0.79 0.788 0.577 0.0100

CNN 0.81 0.80 0.798 0.637 0.0060 0.83 0.83 0.828 0.656 0.0058

CNN-LSTM 0.72 0.72 0.711 0.459 0.0084 0.74 0.74 0.742 0.485 0.0081

Train-Test split ratio – 70:30

Random forest 0.78 0.78 0.778 0.572 0.0077 0.80 0.80 0.799 0.599 0.0070

Gaussian naı̈ve bayes 0.62 0.63 0.626 0.251 0.0110 0.65 0.65 0.645 0.289 0.0092

Decision tree 0.65 0.65 0.644 0.321 0.0075 0.68 0.68 0.676 0.352 0.0071

SVM 0.79 0.79 0.788 0.779 0.0054 0.82 0.82 0.818 0.636 0.0050

MLP 0.82 0.82 0.820 0.643 0.0068 0.84 0.84 0.838 0.676 0.0065

Gradient boosting 0.78 0.78 0.779 0.588 0.0099 0.80 0.80 0.800 0.601 0.0099

CNN 0.80 0.80 0.798 0.622 0.0050 0.83 0.83 0.827 0.655 0.0048

CNN-LSTM 0.74 0.73 0.732 0.505 0.0078 0.76 0.76 0.764 0.528 0.0075

Train-Test split ratio – 60:40

Random forest 0.78 0.78 0.777 0.591 0.0083 0.80 0.80 0.803 0.606 0.0075

Gaussian naı̈ve bayes 0.65 0.65 0.646 0.292 0.0122 0.66 0.66 0.655 0.310 0.0102

Decision tree 0.66 0.66 0.657 0.334 0.0075 0.68 0.68 0.678 0.357 0.0071

SVM 0.80 0.80 0.800 0.611 0.0068 0.82 0.82 0.819 0.639 0.0063

MLP 0.81 0.81 0.809 0.652 0.0073 0.84 0.84 0.839 0.678 0.0071

Gradient boosting 0.79 0.78 0.785 0.589 0.0090 0.81 0.81 0.806 0.613 0.0081

CNN 0.80 0.80 0.798 0.622 0.0058 0.82 0.82 0.822 0.645 0.0056

CNN-LSTM 0.76 0.76 0.757 0.538 0.0081 0.79 0.78 0.784 0.569 0.0076

Table 3 shows the performance of models with different classifiers by taking the mod-
ified Word2Vec embeddings of the Yelp dataset as input, as compared to the generalized
Word2Vec embeddings. Like the IMDb dataset, here also the results provide better accu-
racy, precision, recall and kappa score by all classifiers. The MLP, CNN, SVM and
CNN-LSTM based models gave the best accuracies for all train-test split ratios using the
modified word embeddings. The variation shown by these classifiers over different train-
test split sets is quite considerable, due to the smaller size of the dataset, as seen in the
standard deviation column. More entries in the dataset can help stabilize the variations.
The Decision Tree classifier showed the most consistent results, as seen by the minimum
standard deviation values, although its accuracy is average. In all classifiers, the usage
of modified word embeddings have shown better performance for the parameters than
generalized ones.

32405



Multimedia Tools and Applications (2020) 79:32389–32413

Table 3 Performance comparison of generalized and modified Word2Vec embeddings on Yelp dataset using
various classifiers

Classifier Word2Vec embeddings Modified Word2Vec embeddings

P R A K Astd P R A K Astd

Train-Test split ratio – 80:20

Random forest 0.85 0.85 0.851 0.452 0.0144 0.87 0.87 0.874 0.478 0.0127

Gaussian naı̈ve bayes 0.80 0.64 0.611 0.202 0.0289 0.82 0.65 0.625 0.229 0.0267

Decision tree 0.79 0.79 0.788 0.321 0.0053 0.82 0.82 0.809 0.349 0.0047

SVM 0.86 0.86 0.860 0.519 0.0122 0.88 0.89 0.887 0.547 0.0118

MLP 0.88 0.87 0.868 0.604 0.0156 0.90 0.90 0.902 0.637 0.0154

Gradient boosting 0.85 0.85 0.847 0.509 0.0119 0.87 0.88 0.875 0.538 0.0113

CNN 0.86 0.86 0.862 0.568 0.0171 0.89 0.90 0.897 0.594 0.0164

CNN-LSTM 0.85 0.86 0.857 0.533 0.0228 0.88 0.88 0.882 0.565 0.0219

Train-Test split ratio – 70:30

Random forest 0.86 0.86 0.858 0.447 0.0138 0.88 0.88 0.876 0.489 0.0115

Gaussian naive bayes 0.79 0.68 0.685 0.283 0.0292 0.82 0.70 0.695 0.321 0.0276

Decision tree 0.80 0.80 0.799 0.412 0.0050 0.82 0.82 0.819 0.421 0.0046

SVM 0.89 0.89 0.892 0.676 0.0156 0.92 0.92 0.917 0.705 0.0121

MLP 0.90 0.90 0.900 0.732 0.0188 0.93 0.92 0.923 0.761 0.0171

Gradient boosting 0.89 0.89 0.887 0.681 0.0101 0.91 0.91 0.911 0.709 0.0097

CNN 0.91 0.91 0.913 0.738 0.0132 0.94 0.93 0.931 0.783 0.0116

CNN-LSTM 0.88 0.88 0.877 0.656 0.0237 0.90 0.90 0.898 0.684 0.0214

Train-Test split ratio – 60:40

Random forest 0.86 0.86 0.857 0.424 0.0166 0.89 0.88 0.878 0.469 0.0136

Gaussian naı̈ve bayes 0.82 0.71 0.716 0.341 0.0266 0.84 0.74 0.740 0.383 0.0243

Decision tree 0.80 0.79 0.794 0.386 0.0042 0.83 0.82 0.821 0.418 0.0029

SVM 0.91 0.91 0.911 0.708 0.0176 0.93 0.93 0.927 0.735 0.0154

MLP 0.90 0.90 0.898 0.699 0.0118 0.92 0.92 0.919 0.733 0.0096

Gradient boosting 0.88 0.88 0.877 0.624 0.0093 0.90 0.90 0.899 0.656 0.0076

CNN 0.91 0.91 0.914 0.710 0.0122 0.93 0.93 0.931 0.746 0.0118

CNN-LSTM 0.87 0.87 0.869 0.603 0.0236 0.89 0.89 0.890 0.628 0.0202

Figure 8 shows the ROC curves of the top three classifiers,i.e. MLP, CNN and SVM,
that have performed sentiment analysis using modified Word2Vec embeddings on the Yelp
dataset in comparison to the generalized Word2Vec embeddings. The ROC curves graphi-
cally provide the results seen in the table. The area under the curve is higher in all cases for
the modified Word2Vec embeddings.

Table 4 shows the performance of with models different classifiers by taking the modified
GloVe embeddings of the Yelp dataset as input, as compared to taking the generalized GloVe
embeddings. In this case also the results provide better accuracy, precision, recall and kappa
score by all classifiers. The CNN, SVM, MLP and Gradient Boosting models gave the best
accuracies for all train-test split ratios using the modified word embeddings. The variation
shown by these classifiers over different train-test split sets is moderate, as seen in the
standard deviation column. It is observed from this that the performance of GloVe vectors is

32406



Multimedia Tools and Applications (2020) 79:32389–32413

Table 4 Performance comparison of generalized and modified GloVe embeddings on Yelp dataset using
various classifiers

Classifier GloVe embeddings Modified GloVe embeddings

P R A K Astd P R A K Astd

Train-Test split ratio – 80:20

Random forest 0.86 0.86 0.859 0.432 0.0075 0.89 0.88 0.878 0.468 0.0072

Gaussian naı̈ve bayes 0.81 0.71 0.710 0.337 0.0340 0.83 0.74 0.735 0.368 0.0300

Decision tree 0.80 0.80 0.801 0.363 0.0152 0.82 0.82 0.812 0.380 0.0134

SVM 0.90 0.90 0.899 0.729 0.0058 0.93 0.93 0.931 0.757 0.0049

MLP 0.90 0.90 0.901 0.703 0.0096 0.92 0.92 0.918 0.728 0.0089

Gradient boosting 0.89 0.88 0.882 0.674 0.0178 0.91 0.91 0.910 0.698 0.0160

CNN 0.91 0.91 0.911 0.773 0.0066 0.94 0.93 0.941 0.793 0.0064

CNN-LSTM 0.85 0.85 0.850 0.538 0.0183 0.87 0.88 0.882 0.562 0.0164

Train-Test split ratio – 70:30

Random forest 0.83 0.83 0.828 0.316 0.0082 0.85 0.85 0.849 0.341 0.0079

Gaussian naı̈ve bayes 0.75 0.51 0.504 0.158 0.0398 0.79 0.54 0.539 0.161 0.0364

Decision tree 0.76 0.76 0.758 0.292 0.0144 0.79 0.79 0.787 0.315 0.0142

SVM 0.87 0.87 0.871 0.579 0.0046 0.89 0.90 0.895 0.608 0.0040

MLP 0.87 0.87 0.866 0.618 0.0108 0.89 0.89 0.893 0.647 0.0104

Gradient boosting 0.83 0.82 0.828 0.487 0.0192 0.85 0.85 0.854 0.512 0.0181

CNN 0.87 0.87 0.871 0.624 0.0058 0.90 0.90 0.898 0.662 0.0046

CNN-LSTM 0.78 0.79 0.792 0.290 0.0204 0.80 0.82 0.820 0.317 0.0186

Train-Test split ratio – 60:40

Random forest 0.83 0.83 0.822 0.284 0.0078 0.86 0.85 0.854 0.316 0.0074

Gaussian naı̈ve bayes 0.80 0.52 0.556 0.163 0.0387 0.82 0.57 0.571 0.199 0.0328

Decision tree 0.75 0.75 0.752 0.226 0.0168 0.77 0.77 0.768 0.240 0.0151

SVM 0.86 0.86 0.864 0.559 0.0044 0.89 0.89 0.892 0.578 0.0034

MLP 0.86 0.86 0.857 0.589 0.0088 0.88 0.89 0.886 0.612 0.0076

Gradient boosting 0.84 0.84 0.840 0.474 0.0181 0.86 0.86 0.862 0.509 0.0174

CNN 0.86 0.86 0.859 0.601 0.0057 0.89 0.90 0.898 0.630 0.0040

CNN-LSTM 0.79 0.80 0.801 0.298 0.0157 0.81 0.83 0.832 0.319 0.0139

more stable than Word2Vec vectors. The SVM classifier showed the most consistent results,
as seen by the minimum standard deviation value. In all classifiers, the usage of modified
word embeddings have shown better performance for the parameters than generalized ones.

Figure 9 shows the ROC curves of the top three classifiers,i.e. MLP, CNN and SVM, that
have performed sentiment analysis using modified GloVe embeddings on the Yelp dataset
in comparison to the generalized GloVe embeddings. The ROC curves graphically reiterate
the results seen in the table. The area under the curve is higher in all cases for the modified
Word2Vec embeddings.

Word vectors are representative of linguistic properties of words. They can be applied for
most natural language processing tasks, to give acceptable results. By focusing specifically
on the sentiment aspect of words, the proposed method tries to make the word embeddings
more suitable and sentiment-representative, and hence achieves better results for sentiment
analysis.

32407



Multimedia Tools and Applications (2020) 79:32389–32413

Fig. 6 ROC curve comparison of top 3 classifiers on IMDb dataset using generalized and modified Word2Vec

Some additional comparative analysis shows that the performance of different classifiers
is closer to one another on the IMDb dataset than the Yelp dataset. This can be because
of the fact that the Yelp dataset is smaller in size, and hence enough training data is not
provided. The larger size of the IMDb dataset trains the classifiers well and makes them
more accurate. The Word2Vec embeddings perform better on the IMDb dataset, whereas the
GloVe embeddings work better on the Yelp dataset. This goes to show that different datasets

32408



Multimedia Tools and Applications (2020) 79:32389–32413

Fig. 7 ROC curve comparison of top 3 classifiers on IMDb dataset using generalized and modified GloVe

are characteristically different, and the suitability of a particular type of embedding can
vary over different datasets. So there is no clear superiority of either of the embeddings. An
additional observation of our work is the assessment of classifier suitability for sentiment
analysis. In all cases, the SVM, MLP and CNN classifiers perform well and have relatively
better accuracies. The better performance of these classifiers is because they are suitable for
high-dimensional feature spaces. Since we use 300-dimensional word embeddings, SVM

32409



Multimedia Tools and Applications (2020) 79:32389–32413

Fig. 8 ROC curve comparison of top 3 classifiers on Yelp dataset using generalized and modified Word2Vec

is able to deal with such high dimensionality using appropriate kernel functions. MLP has
higher approximation quality within a single hidden layer, and can efficiently work on var-
ious feature combinations. CNN, because of its ability to identify features at higher levels
of abstraction, is also effective on text processing, since it can identify word conections
and sentence structures. Thus, it is observed that these classifiers are quite suitable for text
processing, especially sentiment analysis.

32410



Multimedia Tools and Applications (2020) 79:32389–32413

Fig. 9 ROC curve comparison of top 3 classifiers on Yelp dataset using generalized and modified GloVe

8 Conclusion and future work

The proposed method is a supporting step in the automatic analysis of sentiments and rat-
ings, which reduces manual effort and time. The technique captures sentiment at the word
level, in correlation to its neighboring and similar words. It improves the performance
of sentiment analysis, as opposed to using generalized pre-trained word embeddings. The

32411



Multimedia Tools and Applications (2020) 79:32389–32413

method can work on smaller as well as larger datasets and provide a reasonably good per-
formance. It works well on both Word2Vec and GloVe embeddings and enhances their
performance, which demonstrates that it is generalized enough to work on different embed-
ding methods. The experiment highlights the suitability of CNN, SVM and MLP classifiers
towards text processing in general and sentiment analysis in particular.

This work shows an attempt to achieve more accurate results in sentiment classifica-
tion, using a mechanism to modify pre-trained word embeddings, namely Word2Vec and
GloVe. These embeddings are modified based on the word’s sentiment values, which have
been referred from an existing sentiment corpus. Words which are sentimentally similar
are brought closer to one another, using PSO algorithm. This helps the classifier learn
their inter-relationships better, and in turn, provide a higher accuracy. The mechanism is
tested on various datasets and classifiers, and improvement in accuracy is observed. Future
work can involve speeding up the process of minimizing the distances between word vec-
tors. Besides PSO, other optimization methods can also be used, and tested for faster or
better results.

References

1. Aydoğan E, Akcayol MA (2016) A comprehensive survey for sentiment analysis tasks using machine
learning techniques. In: 2016 International symposium on INnovations in intelligent systems and
applications, INISTA, IEEE, pp 1–7

2. Bradley MM, Lang PJ (1999) Affective norms for english words (anew): Instruction manual and affective
ratings. Tech. rep., Technical report C-1, the center for research in psychophysiology

3. Çano E, Morisio M (2019) Word embeddings for sentiment analysis: a comprehensive empirical survey.
arXiv:190200753

4. Caschera MC, Ferri F, Grifoni P (2016) Sentiment analysis from textual to multimodal features in
digital environments. In: Proceedings of the 8th International Conference on Management of Digital
EcoSystems, pp 137–144

5. Chaturvedi I, Cambria E, Welsch RE, Herrera F (2018) Distinguishing between facts and opinions for
sentiment analysis: Survey and challenges. Information Fusion 44:65–77

6. Code G (2013) [dataset]. https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit?
usp=sharing

7. Dragoni M, Petrucci G (2017) A neural word embeddings approach for multi-domain sentiment analysis.
IEEE Trans Affect Comput 8(4):457–470

8. D’Urso P, De Giovanni L, Massari R (2020) Smoothed self-organizing map for robust clustering. Inf Sci
512:381–401

9. Eberhart R, Kennedy J (1995) Particle swarm optimization. In: Proceedings of the IEEE international
conference on neural networks, Citeseer, vol 4, pp 1942–1948

10. Fu P, Lin Z, Yuan F, Wang W, Meng D (2018) Learning sentiment-specific word embedding via global
sentiment representation. In: Thirty-second AAAI conference on artificial intelligence

11. Haddi E, Liu X, Shi Y (2013) The role of text pre-processing in sentiment analysis. Procedia Computer
Science 17:26–32

12. Hussein DMEDM (2018) A survey on sentiment analysis challenges. Journal of King Saud University-
Engineering Sciences 30(4):330–338

13. Ju S, Li S, Su Y, Zhou G, Hong Y, Li X (2012) Dual word and document seed selection for semi-
supervised sentiment classification. In: Proceedings of the 21st ACM international conference on
Information and knowledge management, ACM, pp 2295–2298

14. Kaur A, Gupta V (2013) A survey on sentiment analysis and opinion mining techniques. Journal of
Emerging Technologies in Web Intelligence 5(4):367–371

15. Kohonen T (1982) Self-organized formation of topologically correct feature maps. Biological Cybernet-
ics 43(1):59–69

16. Kohonen T (1990) The self-organizing map. Proc IEEE 78(9):1464–1480
17. Liu B (2012) Sentiment analysis and opinion mining. Synthesis Lectures on Human Language

Technologies 5(1):1–167

32412

http://arxiv.org/abs/190200753
https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit?usp=s haring
https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit?usp=s haring


Multimedia Tools and Applications (2020) 79:32389–32413

18. Maas AL, Daly RE, Pham PT, Huang D, Ng AY, Potts C (2011) Learning word vectors for sentiment
analysis. In: Proceedings of the 49th annual meeting of the association for computational linguistics:
Human language technologies-volume 1, Association for Computational Linguistics, pp 142–150

19. Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient estimation of word representations in vector
space. arXiv:13013781

20. Ortigosa-Hernández J, JD Rodrı́guez, Alzate L, Lucania M, Inza I, Lozano JA (2012) Approaching
sentiment analysis by using semi-supervised learning of multi-dimensional classifiers. Neurocomputing
92:98–115

21. Pang B, Lee L (2005) Seeing stars: Exploiting class relationships for sentiment categorization with
respect to rating scales. In: Proceedings of the 43rd annual meeting on association for computational
linguistics, Association for Computational Linguistics, pp 115–124

22. Pang B, Lee L, Vaithyanathan S (2002) Thumbs up?: sentiment classification using machine learn-
ing techniques. In: Proceedings of the ACL-02 conference on Empirical methods in natural language
processing-Volume 10, Association for Computational Linguistics, pp 79–86

23. Pennington J, Socher R, Manning C (2014) Glove: Global vectors for word representation. In: Pro-
ceedings of the 2014 conference on empirical methods in natural language processing (EMNLP),
pp 1532–1543

24. Pennington J, Socher R, Manning C (2014) Glove: Global vectors for word representation. https://nlp.
stanford.edu/projects/glove/

25. Poli R, Kennedy J, Blackwell T (2007) Particle swarm optimization. Swarm Intelligence 1(1):33–57
26. Rezaeinia SM, Ghodsi A, Rahmani R (2017) Improving the accuracy of pre-trained word embeddings

for sentiment analysis. arXiv:171108609
27. Rudkowsky E, Haselmayer M, Wastian M, Jenny M, Emrich Š, Sedlmair M (2018) More than bags

of words:, Sentiment analysis with word embeddings. Communication Methods and Measures 12(2-
3):140–157

28. Sagnika S, Pattanaik A, Mishra BSP, Meher SK (2020) A review on multi-lingual sentiment analysis by
machine learning methods. J Eng Sci Technol Rev 13(2):154–166

29. Sarwan NS (2017) Intuitive understanding of word embeddings: From count vectors to word2vec. https://
www.analyticsvidhya.com/blog/2017/06/word-embeddings-count-word2veec/

30. Shaikhha H (2017) Github- hammadshaikhha/math-of-machine-learning-course-by-siraj. https://github.
com/hammadshaikhha/Math-of-Machine-Learning-Course-by-Siraj

31. Tang D, Wei F, Yang N, Zhou M, Liu T, Qin B (2014) Learning sentiment-specific word embedding
for twitter sentiment classification. In: Proceedings of the 52nd annual meeting of the association for
computational linguistics (Volume 1: Long Papers), pp 1555–1565

32. Turney PD (2002) Thumbs up or thumbs down?: semantic orientation applied to unsupervised classifica-
tion of reviews. In: Proceedings of the 40th annual meeting on association for computational linguistics,
Association for Computational Linguistics, pp 417–424

33. Wang D, Tan D, Liu L (2018) Particle swarm optimization algorithm: an overview. Soft Comput
22(2):387–408

34. Yang HC, Lee CH, Wu CY (2018) Sentiment discovery of social messages using self-organizing maps.
Cognitive Computation 10(6):1152–1166

35. Yang X, Macdonald C, Ounis I (2018) Using word embeddings in twitter election classification.
Information Retrieval Journal 21(2-3):183–207

36. Yu LC, Wang J, Lai KR, Zhang X (2017) Refining word embeddings for sentiment analysis. In:
Proceedings of the 2017 conference on empirical methods in natural language processing, pp 534–539

37. Zhang Z, Lan M (2015) Learning sentiment-inherent word embedding for word-level and sentence-level
sentiment analysis. In: 2015 International Conference on Asian Language Processing (IALP), IEEE,
pp 94–97

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

32413

http://arxiv.org/abs/13013781
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
http://arxiv.org/abs/171108609
https://www.analyticsvidhya.com/blog/2017/06/word-embeddings-count-word 2veec/
https://www.analyticsvidhya.com/blog/2017/06/word-embeddings-count-word 2veec/
https://github.com/hammadshaikhha/Math-of-Machine-Learning-Course-by-Si raj
https://github.com/hammadshaikhha/Math-of-Machine-Learning-Course-by-Si raj

	Improved method of word embedding for efficient analysis of human sentiments
	Abstract
	Introduction
	Related work
	Motivation
	Word2Vec Word Embeddings
	GloVe Word Embeddings
	Need for improving word embeddings for Sentiment Analysis



	Proposed word embedding method for sentiment analysis
	Preprocessing 
	Parsing
	Generating word embeddings to represent words
	Proposed algorithm – adjusting word embeddings 
	Initial preparation (Steps 1-3)
	Finding sentimentally alike words (Steps 4-7)
	Self-organizing maps
	Algorithm – implementing a SOM
	Modifying words according to the SOM (Step 8)
	Particle swarm optimization
	Final steps (Steps 9-10)

	Averaged word vector generation
	Classification

	Implementation details
	Datasets used
	Classifiers used
	Experimental setup

	Performance measurement indices
	Results and discussion
	Conclusion and future work
	References




