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Abstract
Deep learning has achieved impressive results in many machine learning tasks such as
image recognition and computer vision. Its applicability to supervised problems is how-
ever constrained by the availability of high-quality training data consisting of large numbers
of humans annotated examples (e.g. millions). To overcome this problem, recently, the AI
world is increasingly exploiting artificially generated images or video sequences using real-
istic photo rendering engines such as those used in entertainment applications. In this way,
large sets of training images can be easily created to train deep learning algorithms. In this
paper, we generated photo-realistic synthetic image sets to train deep learning models to
recognize the correct use of personal safety equipment (e.g., worker safety helmets, high
visibility vests, ear protection devices) during at-risk work activities. Then, we performed
the adaptation of the domain to real-world images using a very small set of real-world
images. We demonstrated that training with the synthetic training set generated and the use
of the domain adaptation phase is an effective solution for applications where no training
set is available.
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1 Introduction

It is estimated that every day around six thousand people die in the world due to accidents at
work or occupational diseases, causing more than 2.3 million deaths a year. Many of these
accidents could be prevented by the simple use of personal safety equipment, such as hel-
mets or reflective vests. However, it is not always possible to effectively control whether
such equipment is actually used. Artificial Intelligence (AI) can be of great help by con-
stantly analyzing the working environment with a camera and warning workers who do not
comply with the rules.

To this end, the AI sector known as supervised machine learning has achieved significant
success in a variety of application domains. These achievements have been so impressive
that they have attracted increasing attention from the scientific community to the production
of annotated datasets with which to train learning algorithms. In the era of big data, the
availability of examples such as images or videos is not considered a problem. However,
these data must be annotated by humans before they can be used, e.g. by adding class labels
or visual masks, and in many specific application domains, this can be very expensive or
even impossible.

Indeed, although a large amount of annotated data is already available and successfully
used to produce important academic results and commercially viable products, there is still
a huge amount of scenarios where laborious human intervention is required to produce high-
quality training sets. These scenarios include, but are not limited to, the detection of safety
equipment, self-driving cars, the detection of firearms.

To address this problem and make up for the lack of annotated examples in a variety
of scenarios, the research community has begun to increasingly leverage the use of pro-
grammable virtual scenarios to generate synthetic visual data sets as well as associated
annotations. For example, in image-based deep learning techniques, the use of a modern
rendering engine (i.e. capable of producing photo-realistic images) has proven to be a valu-
able tool for the automatic generation of large data sets (see Section 2). The advantages of
this approach are remarkable. In addition to making up for the lack of data sets in some par-
ticular application domains, these synthetic datasets do not create problems with existing
laws about the privacy of individuals related to facial detection, such as the European of the
General Data Protection Regulation (GDPR).

In this paper, we investigate the effectiveness of rendering engines in generating realistic
image sequences to train machine learning algorithms to address the problem of detection
and recognition in scenarios where no or insufficient annotated data is available. In particu-
lar, the study focuses on the context of visual detection of safety equipment (see Fig. 1), for
which, to the best of our knowledge, no public dataset exists.

To this end, we show how a known deep neural network exploiting the transfer learning
approach can achieve cutting-edge results in object detection tasks when trained with virtu-
ally generated images containing people equipped with safety items (such as high visibility
jackets and helmets) and then adapted to the real world domain using some training exam-
ples retrieved from the Internet. More in detail, we contribute to this field with the following
results:

– automatic generation of a virtual training set for the recognition of personal security
equipment, with different scene conditions,
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Fig. 1 Examples of safety equipment: a real photograph of worker wearing helmets and high-visibility vests,
and b virtual rendering with people with helmets, welding mask, ear protections, and high-visibility vests

– provide an annotated test set of real-world images, and
– competitive results with state of the art detectors tested for such scenarios.

We will see that, on the very few real-world examples available, the use of virtual images
dramatically increases system performance in terms of accuracy.

The dataset that we created is made publicly available to the research community [20].
This work extends the paper we presented at CBMI 2019 that received the best paper

award [6]. The main extension is on experimenting our approach not only on the YOLO
architecture but also on Faster-RCNN, another commonly used object detection method.
By doing this, we did not only achieved better performance, bu we demonstrated that the
overall approach was not specific to the YOLO architecture.

The rest of the paper is organized as follow: Section 2 gives an overview of existing
methods based on virtual environments; Section 3 describes how we used an existing ren-
dering engine and the policy to create the dataset and the test set; Section 4 discusses our
detection method; Section 5 shows our experimental results; finally Section 6 concludes.

2 Related work

With the advent of deep learning, object detection technologies have achieved accuracies
that were unimaginable only a few years ago. YOLO architectures [23, 24] and Faster-
RCNN [25] are today de facto-standard architectures for the object detection task. They are
trained on huge generic annotated datasets, such as ImageNet [5], MS COCO [14], Pascal
[7] or OpenImages v4 [12]. These datasets collect an enormous amount of pictures usually
taken from the web and they are manually annotated.

With the need for huge amounts of labeled data, virtually generated datasets have recently
gained great interest. The possibility of learning features from virtual data and validating
them on real scenarios was explored in [18]. Unlike our work, however, they did not explore
deep learning approaches. In [1], computer-generated imagery was used to study trained
CNNs to qualitatively and quantitatively analyze deep features by varying the network stim-
uli according to factors of interest, such as to object style, viewpoint, and color. The works
[13, 21] exploit the popular Unreal Engine 4 (UE4) to build virtual worlds and use them to
train and test deep learning algorithms.

The problem of transferring deep neural network models trained in simulated virtual
worlds to the real world for vision-based robotic control was explored in [10]. In a similar
scenario, [17] developed an end-to-end active tracker trained in a virtual environment that
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can adapt to real-world robot settings. To handle the variability in real-world data, [28] relied
upon the technique of domain randomization, in which the parameters of the simulator—
such as lighting, pose, object textures were randomized in non-realistic ways to force the
neural network to learn the essential features of the object of interest. A deep learning model
was trained in [2] to drive in a simulated environment and adapted it for the visual variation
experienced in the real world.

Vásquez et al. [29, 30] focused their attention on the possibility to perform domain adap-
tation in order to map virtual features onto real ones. Richter et al. [26] explored the use of
the video game Grand Theft Auto V (GTA-V) [27] for creating large-scale pixel-accurate
ground truth data for training semantic segmentation systems. In [19], they used GTA-V
for training a self-driving car and generated around 480,000 images for training. This work
evidenced how GTA-V can indeed be used to automatically generate a large dataset. The
use of GTA-V to train a self-driving car was explored also in [9], where images from the
game were used to train a classifier for recognizing the presence of stop signs in an image
and estimate their distance. In [4] a different game was used for training a self-driving car:
TORCS, an open-source racing simulator with a graphics engine less focused on realism
than GTA-V.

Authors in [8] created a dataset taking images from GTA-V and demonstrated that it is
possible to reach excellent results on tasks such as real people tracking and pose estimation.

[11] also used GTA-V as the virtual world but, unlike our method, they used Faster-
RCNN and they concentrated on vehicle detection validating their results on the KITTI
dataset. Instead, [3] used a synthetically generated virtual dataset to train a simple
convolutional network to detect objects belonging to various classes in a video.

3 Training set from virtual worlds

In this paper, we show that a low cost and off-the-shelf virtual rendering environment repre-
sents a viable solution for generating a high-quality training set for scenarios lacking enough
real training data. This method allows generating a very large amount of annotated images,
with the possibility of scenery changes like location, contents, and even weather conditions,
with very little human intervention.

In this work, we used the generated training set to train a You Only Look Once (YOLO)
neural system [23, 24] for its efficiency, and a modification of a Faster-RCNN [25] for its
high detection accuracy (see Section 4).

However, the applied methodology can be used in other machine learning tools.
We used the Rockstar Advanced Game Engine (RAGE) from the GTA-V computer game,

and its scripting ability to deploy a series of pedestrians with and without safety equipment
in different locations of the game map. The RAGE Plugin Hook[22] allowed us to create
and inject our C# scripts into the game.

Our scripts use the plugin API to add pedestrians with chosen equipment in various
locations of the game map, place cameras in places where we want to take pictures, check
that objects are in the field of view and not occluded, recover 3D meshes bounding boxes
from the rendering engine, and save game screenshots (i.e., our dataset images) and their
associated annotations (bounding boxes and classes).

Personal safety equipment that we consider includes, for example, high-visibility vests,
helmets, welding masks, and others. In addition to persons wearing these types of equip-
ment, we also generate pedestrians without protections, where we annotate, person, bare
head, bare chest (see Fig. 2 images as an example).
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Fig. 2 Detected objects in a working scenario. The real scene depicted in each column is analyzed using three
different version of the trained networks: YOLO trained with COCO and fine-tuned with real images (YCR,
first row), YOLO trained with COCO and fine tuned with virtual renderings and real images (YCVR, second
row), and Faster RCNN trained with COCO and fine-tuned with virtual renderings and real images (YCVR,
third row). Note that difference upon networks and datasets pays in both detection accuracy (rightmost more
precise), and run-time resources (see end of Section 5.2)

The generation of the virtual dataset required first to configure the RAGE engine to create
various types of scenarios (Section 3.1). Then, the RAGE engine was used to capture images
along with annotations. For every image, the annotations (coordinates of the bounding boxes
and identities of relevant elements) were retrieved from the RAGE engine through our script
(Section 3.2). We used this approach both for creating the virtual world training set and the
virtual world validation set. The dataset was eventually completed by adding a real-world
test set, composed of real-world images, to test the accuracy of the trained neural network
on real scenes (Section 3.3).

3.1 Scenario creation

To generate the training scenario we used the plugin API to customize the following game
features:

– Camera: used to set up the viewpoints from which the scenario must be recorded.
– Pedestrians: used to set up the number of people in the scene and their behavior, chosen

from the set offered by the game engine, such as wandering around an area, chatting
between themselves, fighting, and so on.
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– Place: used to set up the place where the pedestrians will be generated; there is a series
of game map preset places, plus user-defined locations identified by map coordinates.

– Time: used to set up the time of day during which the scene takes place.
– Weather: used to set up the weather conditions during the animation.

We used nine different game map locations with three different weather conditions each
to create the virtual training set. From these, we acquired a total of 126,900 images with
an average of 12 persons per shot. The virtual validation set spans one location with three
weather conditions, and consists of 350 images with an average of 12 persons each. There-
fore, in the end, we have 30 different scenarios where virtual world images were extracted
from.

3.2 Dataset annotation

Dataset annotation is the process which creates the annotated images for the dataset. In our
case, we annotate the following elements (see Fig. 3):

– Head: a bare head (without protection devices)
– Helmet: a head wearing a helmet
– Welding Mask: a head wearing a welding mask
– Ear Protection: a head wearing hearing protection
– Person: a full-body person
– Chest: the bare chest (without protection vests)
– High-Visibility Vest: a chest with a high visibility vest (HVV)

For each viewpoint setup in the scenario, we process every object to extract its position
on the 2D image. This is done by first calculating the geometry of its transformed 3D bound-
ing box, then approximately testing the box visibility, and finally extracting the image 2D
bounding box by contouring the 3D box vertices (see Fig. 4). The visibility is checked by
testing the occlusion of line-of-sight rays from the camera to a certain fixed amount of point
in the box volume, and the object is considered visible if at least one ray is not occluded.

3.3 Real world test set

The motivation of this work is to prove that it is possible to train a system with a virtual
world even when it is supposed to be used in the real-world. To test the performance of the

Fig. 3 Examples of safety equipment objects detected by our system
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Fig. 4 Bounding box estimation: oversized approximation with respect to on-screen projections. With the
available API, the hooked virtual engine can provide the bounding boxes of individual 3D meshes, overes-
timated due to collision proxy expansion for animations. Not being able to access the original 3D geometry
and the current animation frame, a working strategy is to project on-screen the eight corners of the 3D bound-
ing box, and then take their containing minimum rectangle as an approximate annotation. In the image, the
green 3D box is annotated with the yellow 2D rectangle

trained neural network in the real-world, we created a real-world test set using copyright-
free photographs of people wearing safety equipment. The set is composed of 180 images
(see Fig. 5) showing persons with and without the items listed in Section 3.2, each associated
with manually created annotations of bounding boxes and element identities.

4 Method

The backbone of our detection algorithm is based on deep convolutional neural networks
able to detect, in a single image, the objects which they have been trained for. The detec-
tion ends with a list of 2D bounding boxes, each associated with a class label referring to
the recognized object. In our implementation, we experimented with two different detection
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Fig. 5 Real-World Validation Set: composed of 180 copyright-free images, our validation set is available at
the project website

networks, i.e. the YOLO v3 [24] (hereafter abbreviated with YOLO) network with the
Darknet-53 in its core, and the improved version of Faster-RCNN [25] network that includes
a Feature Pyramid Network [15] and the ResNet-50 as backbone. The chosen models are
representative of the two major architectures in object detection: the former belongs to the
family of single-stage detectors that are fast and produce dense detections, while the latter
belongs to two-stage detectors, usually slower but more accurate systems that first locate
candidate regions and then provide predictions for them. We trained both to recognize
personal safety equipment components, as shown in the following.

4.1 Transfer Learning

As anticipated, we use the generated virtual world training set to train the detection networks
to detect and recognize our elements of interest in images. In particular, we adapt the detec-
tion networks to our scenario using transfer learning. Our hypothesis is that a pre-trained
network already embeds enough knowledge that allows us to specialize it in a new scenario,
leveraging on the transfer learning capability of deep neural networks and on training sets
generated from a virtual world.

The purpose of transfer learning is to exploit the knowledge stored in the network as a
starting point to extend the detection capability to the new set of objects.

With a trained deep convolutional neural network, its first layers have learned to identify
features that are more and more complex according to layer depth; for example, the first
layer will be able to detect straight borders, the second layer smooth contours, the third
some kind of color gradients, and so on while arriving at last layers capable of identifying
entire objects.

In our case, we used a detection network pre-trained on the COCO dataset. Concerning
YOLO, we fine-tuned it by blocking the learning parameters update of the first part of
the network, and allowing updates only in the last sections. Specifically, we kept the first
81 (i.e., the feature extractors) of the total 106 layers, and froze the weights of the first
74. The network was trained for 24,000 iterations, that is 11 epochs with the following
parameters: batch size 64, decay 0.0005, learning rate 0.001, momentum 0.9, IoU threshold:
0.5, confidence threshold: 0.25.

For the Faster-RCNN network, we fine-tuned the entire network on the new objects
allowing updates in every trainable part of the detector. Being a significantly bigger network
with respect to YOLO, we trained with a smaller batch size of two and kept the same values
for the other parameters. Interestingly, only two epochs were sufficient for Faster-RCNN to
converge on our virtual dataset.
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As explained in Section 3, our virtual dataset is composed of 30 scenarios, 27 of which
were used as the training set and three were left for validation. The three scenarios of the
validation set contain 13,500 images. From these, 350 images were randomly selected to
form the virtual validation dataset. In this way, a new set of objects are recognized by the
network.

4.2 EvaluationMetrics

To evaluate the performance of our implementation, we applied the standard measures used
in the object detection literature, i.e., Intersection over Union (IoU ) based on the area of
the detected (D) and real (V ) bounding boxes, and Precision (Pr) and Recall (Rc) based
on true (T ) / false (F ) positive (P ) / negative (N ) detections:

– IoU = (D ∩ V )/(D ∪ V )

– Pr = T P/(T P + FP)

– Rc = T P/(T P + FN)

Detected bounding boxes are associated with a confidence score, ranging from 0 to 1, and
are considered in the output if and only if their confidence score is greater than a con-
figurable threshold. Given the above definitions, we calculate the mean Average Precision
(mAP ) as the average of the maximum precision at different recall values.

5 Experiments and results

We conducted a series of experiments with the two neural networks on the virtual and real
datasets, as explained hereafter.

5.1 Experimental setups

We trained and evaluated three variations of the two networks on both virtual and real
images: YCV, which is YOLO base trained on COCO and fine-tuned with Virtual data;
YCVR, which is YCV additionally fine-tuned with Real data; YCR, which is YOLO base
trained on COCO and fine-tuned with Real data. Following the same rationale, we obtain
the same configurations for Faster-RCNN, that are FCV, FCVR, FCR.

To obtain YCVR and FCVR, we split the real-world dataset in to two parts with 100
images each: a training part and a testing part. We used the training part to apply domain
adaptation from virtual to real on the YCV and FCV networks by performing fine-tuning.
To choose the set of weights from which to start, we validated each of them on the training
part, choosing the one with the highest mAP.

To better evaluate the benefit contributed by the virtual world training set, we also fine-
tuned the base networks , pre-trained on COCO, with the same 100 real images used for
obtaining YCR and FCR.

5.2 Results

Results are reported in Table 1. YCV and FCV obtain respectively 87.2% and 95.0%
mAP when tested on virtual images , and when tested on real-world images, they obtain
respectively 55.1% mAP and 42.6%. Most of the AP loss is caused by the classes
Head, Welding Mask, Ear Protection, and Chest. We believe that this is because in real
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Table 1 mAP comparison of our networks on Virtual validation or Real testing

Network Test Head Helmet Weld. Mask Ear Prot. Chest HVV Person mAP

YCV V 89.7% 86.7% 75.5% 89.0% 89.7% 90.0% 89.7% 87.2%

YCV R 36.3% 74.1% 27.3% 55.6% 45.7% 69.9% 76.9% 55.1%

YCR R 44.1% 52.2% 42.3% 62.0% 59.1% 60.7% 80.6% 57.3%

YCVR R 78.8% 73.3% 66.3% 74.0% 74.7% 78.6% 87.1% 76.1%

FCV V 95.2% 98.1% 84.7% 97.9% 95.6% 98.1% 95.2% 95.0%

FCV R 33.7% 64.9% 5.1% 26.9% 38.1% 63.3% 66.2% 42.6%

FCR R 68.8% 76.5% 66.5% 65.7% 72.6% 74.3% 92.1% 73.8%

FCVR R 73.6% 79.2% 69.6% 72.7% 76.5% 81.5% 86.6% 77.1%

life there are many more variations of these object classes than those the game can
render.

We want to note that, on virtual world testing, both YCV and FCV obtain better mAP
after more iterations, while on real-world testing better performance is reached before in
the training phase. This implies that the best performing set of weights for the virtual world
test is not the best also for real-world validation, as further training seems to induce a bias
in the network towards unique peculiarities of the source domain.

YCVR obtains a significant boost and reaches 76.1 mAP. This means that fine-tuning
with only 100 real images is very effective on a network that was previously fine-tuned
with several similar virtual images. We also note that testing YCVR on the virtual world
yields a lower mAP with respect to YCV. The main drop of AP, in this case, is seen on
Head and Welding Mask, which are the classes with most differences between real and
virtual.

YCR obtain 57.3 mAP when tested on the real-world test set. This result is just slightly
better than that obtained by YCV, and by far worse than YCVR. This means that, to train
the network for the new scenario, the contribution given by the virtual world training set is
very relevant, and just a fine-tuning with a few images is enough to adapt the network back
to the real-world domain.

Concerning Faster-RCNN, we observe the same trend even if the effects are smaller.
Its architectural details enable the network to learn more effectively even in small data
regimes, as suggested by FCV tested on the virtual test set (95.0% mAP) and FCR
tested on the real set (73.8% mAP). However, this network shows a lower transferabil-
ity with respect to domain change, as pointed out by FCV tested on the real dataset
that obtains at peak 42.6% mAP. When domain adaptation by fine-tuning is applied
(FCVR), we still obtain an improvement with respect to FCR, even if the boost is smaller
than the one obtained by YOLO. We deem the inertia of Faster-RCNN to transferabil-
ity of representations and its tendency to overfit are to believe the main causes for
this effect, and we think this could be mitigated using more clever domain adaptation
techniques.

By inspecting the fine-tuned weights, we observed that lower-level filters do not change
that much between models trained with virtual and real data, while mostly the higher-level
network heads were responsible for the improved performance. This is somewhat expected,
as we fine-tune models pretrained on COCO that already show good configurations of
weights for low- and mid-level layers. We leave for future work a more in-depth analysis
concerning feature attribution and visualization to pinpoint more precisely the differences
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on a representation level. On a practical standpoint, we observe two main positive effects
brought by virtual data, that are: a) tighter box predictions, due to accurate annotations pro-
vided by the engine, and b) improvements on high-variability classes (e.g. head, chest),
occluded objects, and corner cases (e.g. crouched people) for which the network can pro-
vide better higher-level representations leveraging all the variability that the engine can
provide. Figure 2 shows some examples of these effects on samples from the real-world
test set.

From a run-time perspective, we obtained a forward pass speed of 2.6 FPS with Faster
RCNN and 6.4 FPS with YOLO, including the whole process (e.g., disk fetch, data submis-
sion to the GPU, and result read-back): given the measured performances and the application
requirements, we can conclude that both implementations are ready to be implemented in
real-time detection on real video systems without modifications.

6 Conclusions

Training deep neural networks in virtual environments has been recently proven to be of
help when the number of available training examples for the specific task is low. In this
work, we considered the task of learning to detect proper equipment in risky human activity
scenarios.

We created and made available two datasets: the first one has been generated using a
virtual reality engine (RAGE from GTA-V); the second one is composed of real photos.

In our experiments, we trained object detectors based on deep convolutional networks
on the virtual dataset and tested on the real images as well as using just a small number
of real photos to fine-tune the deep neural network we trained in the virtual environment.
The experiments we conducted demonstrated that training on virtual world images, and
executing a step of domain adaptation with a limited number of real images, is effective.
Obtained performance when training with virtual world images and adapting to the domain
with a few real images is higher than just fine-tuning an existing network with a few real
images for the scenario at hand. We plan to use the same virtual environment to train to
detect people using weapons (see Fig. 4), and adopt state-of-the-art domain adaptation tech-
niques (e.g., using transferable features as in [16]) to better close the gap between virtual a
real worlds.
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