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Abstract
Chaos maps are widely used in image encryption systems due to their intrinsic advantages
such as extreme sensitivity to initial values., ergodicity and pseudo-randomness. 1D
Logistic map has attracted the attention of researchers due to its simple structure and easy
implementation, but also because of this, the map is easy to be affected by finite precision,
resulting in dynamic degradation, at low precision, the sequence generated by this map not
only enters a period quickly, but also has a shorter period. Thus, taking 1D Logistic map as
an example, we proposed a method to suppress the dynamic degradation of digital chaotic
systems by using parameter variables and state variables to influence each other, and using
sine function as feedback function to destroy the state space. The simulation results show
that the improved logistic mapping with the proposed method has better randomness and
higher complexity than the original logistic mapping. To prove the practicability and
applicability of the improved chaotic map, we design a new image encryption algorithm,
which is suitable for both color image and grayscale image. The numerical results indicate
that the proposed algorithm has high encryption efficiency, good resistance to various
attacks and certain competitiveness with other encryption algorithms.

Keywords Chaos . Digital chaotic map . Image encryption

1 Introduction

With the development of information technology, a lot of information is being generated all
the time. Senders and receivers of information do not want information to be accessed by
unauthorized others. Thus, they encrypt information in ciphertext forms that are difficult for
third parties to understand. Among all forms of information, image information is widely used
because of its intuitive, visual and information-rich characteristics. It is regrettable that the
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traditional encryption methods, such as Advanced Encryption Standard (AES) and Rivest-
Shamir-Adleman (RSA), are not suitable for image encryption. Such methods are character-
ized by poor encryption effect, slow speed, and poor practicability when used for encrypting
information with a large amount of data or strong correlation between adjacent pixels, such as
images or videos. Fields such as medicine [28], aerospace, education, the military, and others
all need to encrypt images. Therefore, an encryption algorithm suitable for images is needed to
achieve good encryption effect, high efficiency, effectively reduce the correlation of adjacent
pixels, and have the ability to resist various attacks. And numerous encryption algorithms have
been proposed, including the DNA code [5, 23, 29, 33], cellular automata encryption [11, 20,
24, 32], wavelet transform encryption [4, 37], chaos encryption [2, 25] and True Random
Number Generator (TRNG) [30]. Among these schemes, the chaos encryption algorithm has
been widely used for encryption owing to its advantages of satisfactory randomness, high
sensitivity to initial values, high complexity, ergodicity, and the encryption time is shorter than
others which used DNA or cellular automata, etc.

In terms of an encryption algorithm based on a digital chaotic map, its security not only
depends on the performance of the chaotic map and superiority of the encryption algorithm but
also on calculation accuracy. Theoretically, chaos map has the characteristics of aperiodic,
unpredictability, aperiodic and pseudo-random. It is regrettable that owing to the influence of
truncation and round-off errors, the trajectory of chaotic map will eventually fall into a period
when running on finite-precision equipment. Numerous studies have shown that when map
enters a cycle, the dynamic characteristics of digital chaotic map will degrade, and the security
of the encryption algorithm based on chaotic map will be reduced and become vulnerable to
attacks. To solve this problem, various methods have been proposed, which can be divided
into the following. 1) Expand the precision [9, 34]. In the methods, chaotic map will fall into a
period owing to the limitation of the precision. Expanding precision can prolong the time of
chaotic map entering a period. However, this effect is limited, as precision cannot be magnified
indefinitely. Thus, chaotic map will eventually fall into a period. 2) A different method
involves combining multiple maps [7, 17, 21, 40]. There are two types of combination:
cascading and switching. Cascading and switching both ignore the possible interactions of
multiple maps, which would not be reflected in a small number of experiments. Moreover, the
problem of each map itself cannot be solved, and the effect of its combination depends on the
superiority of the strategy. 3) Another method is perturbing map [14–16, 18], including
perturbing parameters and perturbing states, in which constants, variables, functions, or a
chaotic map can be selected as the perturbation source. An appropriate disturbance object and
source are selected according to cost and effect. The main difficulty lies in how to select the
appropriate disturbance source and disturbance object, whether it will cause excessive extra
cost. 4) The feedback control method [10, 12, 38]. Utilizing the state function to control the
state variables of digital chaotic map, thereby destroying the original state space. However,
digital chaotic map performance cannot be improved significantly using only this method,
working better when combined with other methods. Based on the above methods, we propose
a new method based on perturbation and feedback control. We choose the parameter and the
state variable of the map itself as the disturbance source, resulting in no additional cost. The
parameter and the state variable of the current map perturb with each other, update the
parameter according to the current state variable, update the current state variable with the
updated parameters, and finally use a nonlinear function to carry out feedback control on the
state variables, thus destroying the state space and increasing the randomness and complexity
of the generated chaotic sequence.
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Among the various chaotic maps, the 1D logistic map is a classical type that is widely used
owing to its simple structure, small number of parameters, easy implementation, and low cost.
However, because it has few parameters and a simple structure, this chaotic map has low
security and can be cracked easily; moreover, its period is short under low computing
precision. Hence, in this study, we propose a method based on double perturbation and
feedback control to improve the 1D logistic map to suppress dynamic degradation. The state
variable and system parameter perturb each other and introduce a nonlinear function as a
feedback function to destroy the state space. The experimental results show that the improved
logistic map can achieve better statistical and cryptographic properties, including ergodicity,
ideal autocorrelation, high approximate entropy (ApEn) and permutation entropy (PE), and
satisfactory randomness, compared with the original logistic map. Furthermore, we design a
new image encryption algorithm as a simple application based on the improved map. The
simulation results show that the encryption algorithm based on the improved map demon-
strates high security and can resist different types of attacks.

Overall, the significant advantages of the improved method include the following. 1) The
method uses the parameter and the state variable of the map itself as the perturbation source,
does not introduce an external system or a high-dimensional analog chaotic system as a
perturbation source, thereby reducing implementation costs. 2) This novel hybrid method
can considerably reduce the dynamical degradation of a digital Logistic map. (3) This method
is universal to all digital chaotic maps.

The rest of the paper is organized as follows. In Section 2, we take Logistic map
and Baker map as examples to prove the model we proposed is universal, and the effect
is good. A simple image encryption algorithm based the improved Logistic map is
proposed in Section 3. The security analysis results are presented in Section 4, and
Section 5 concludes the paper.

2 Improved model

2.1 Models of original and improved logistic maps

The 1D Logistic map is one of the most widely used chaotic maps in chaos-based encryption
algorithm. The mathematical model of Logistic map can be described as

xiþ1 ¼ axi 1−xið Þ ð1Þ
Where a is the system parameter and a ∈ (3.56,4], xi is the state variable of the i-th iteration.
Theoretically, the 1D Logistic map has pseudorandom trajectories and satisfactory ergodicity
in the phase space [0, 1]. However, if the map is simulated on a computer or other finite
precision devices, dynamical degradation emerges. The output trajectory will fall into a cycle,
and the phase space will not traverse the entire space.

To reduce the dynamical degradation in the digital logistic map, we propose a perturbation
and feedback hybrid control method. Utilizing the current state variable to update parameters,
and then using the updated parameters to perturb the current state variable. By perturbing the
state variable and the parameter of the current map with each other and using the state
feedback function to destroy the state space, the original chaos map can be improved and
the dynamic degradation of the original chaos map can be suppressed.
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First, system parameter a is perturbed by current state variable xi as

p ið Þ ¼
aþ 4−að Þx ið Þ i ¼ 1

aþ 4−að Þ x ið Þ þ x i−1ð Þð Þ
2

i > 1

(
ð2Þ

where p(i) is the perturbed parameter, x(i − 1) and x(i) are the state variables. The value 4 of the
equation represents the maximum value within the value range of system parameters. In the
parameter perturbation, p(i) is always changed with the current and the last state variables,
which demonstrate satisfactory randomness.

And then the current state variable x(i) is perturbed by the updated parameter p(i):

h ið Þ ¼ 103 � p ið Þ � x ið Þ mod 1 ð3Þ
where p(i) is the previously perturbed parameter, and h(i) is the perturbed state variable. mod 1
means to produce a value between the range [0, 1). The following mod 1 is the same, no more
tautology.

Finally, an improved Logistic map is constructed by the perturbed parameter, the perturbed
state variable and a nonlinear function. Here, we select the sine function as the feedback
function owing to its simple structure and low cost. The mathematical model of the improved
Logistic map can be described as follows:

x iþ 1ð Þ ¼ p ið Þ*h ið Þ* 1−h ið Þð Þ þ sin π*h ið Þð Þmod 1 ð4Þ
Where p(i) is determined by Eq. (2), h(i) is determined by Eq. (3). Not only can sine function
be used as feedback function, but any nonlinear function can be used as well. There is no
obvious difference in improvement effect. If use the cosine function as a feedback function, the
equation can be described as

x iþ 1ð Þ ¼ p ið Þ*h ið Þ* 1−h ið Þð Þ þ cos π*h ið Þð Þmod 1 ð5Þ
And under the same parameters, the trajectory of the chaotic sequence generated by this
equation does not enter a loop after more than 4000 iterations, the point distribution in the
phase diagram is random and dense, the graph of the autocorrelation function is close to δ
function. This indicates that the correlation of values at different times in the sequence is very
low. The original 1D Logistic map will enter into a period even after the accuracy reaches 230.
The improved method using cosine function as feedback function cannot detect the period
after the accuracy reaches 222, while the improved method using sine function as feedback
function cannot detect the period after the accuracy reaches 220. And after stabilization, the
ApEn and the PE are 1 and 2.1, respectively, with little difference from the improved method
with sine function as feedback function. Therefore, the nonlinear function here can be selected
according to the situation. Just for security reasons, we can choose a more complex nonlinear
function, such as more complex exponential functions, etc. The nonlinear function is selected
according to the user’s needs, here only take sine and cosine as examples.

The idea of this perturbation method is universal to all digital chaotic maps, and the general
model can be described as follows:

x iþ 1ð Þ ¼ F p ið Þ; h p ið Þ; x ið Þð Þ; m h p ið Þ; x ið Þð Þð Þð Þ ð6Þ
Where function F represents an any chaotic map, p(i) is the parameter perturbed by the state
variable, h(p(i), x(i)) is the new state variable combining the perturbed parameter and the

Multimedia Tools and Applications (2020) 79:30329–3035530332



current state variable. m(h(p(i), x(i))) is the non-linear feedback function which uses the new
state variable h as the input parameter.

2.2 Models of original and improved baker maps

For example, 2D Baker map is improved using the method we proposed. The original 2D
Baker map can be described as:

x iþ 1ð Þ; y iþ 1ð Þð Þ ¼
x ið Þ
a

; ay ið Þ
� �

0 < x ið Þ≤a
x ið Þ−að Þ
1−að Þ ; 1−að Þy ið Þ þ a

� �
a < x ið Þ≤1

8>><
>>: ð7Þ

Where a ∈ (0, 1) is the chaotic control parameter. The perturbed parameter is:

p ið Þ ¼
aþ 1−að Þx ið Þ i ¼ 1

aþ 1−að Þ x ið Þ þ x i−1ð Þð Þ
2

i > 1

(
ð8Þ

And then update the state variable x(i) and y(i) by the perturbed parameter to obtain h1(i) and
h2(i):

h1 ið Þ ¼ 103 � p ið Þ � x ið Þ mod 1 ð9Þ

h2 ið Þ ¼ 103 � p ið Þ � y ið Þ mod 1 ð10Þ
Finally, the improved 2D Baker map can be described as:

x iþ 1ð Þ; y iþ 1ð Þð Þ ¼
h1 ið Þ
p ið Þ þ sin π*h1 ið Þð Þmod 1; p ið Þh2 ið Þ

� �
0 < x ið Þ≤p ið Þ

h1 ið Þ−p ið Þð Þ
1−p ið Þð Þ ; 1−p ið Þð Þh2 ið Þ þ p ið Þ

� �
p ið Þ < x ið Þ≤1

8>><
>>: ð11Þ

The performance before and after the improvement is shown in Section 2.4. It is proved that
our method is universal to all digital chaotic maps.

2.3 Performance analysis of the improved logistic map

Several properties of the improved and original Logistic map are analyzed to evaluate the
improved version, including the trajectory and phase space, autocorrelation function, sensitiv-
ity to initial value, ApEn, PE and the step size before entering into the period.

2.3.1 Trajectory and phase diagram

An ideal chaotic map should have a random-like trajectory and satisfactory ergodicity in the
phase space. Precision is set to p = 12, control parameter and initial value are set to a = 3.99, x0
= 0.3215, respectively. Figure 1a and b show the trajectories of the original and improved
Logistic maps, respectively. From the figure, the original logistic map iterates less than 200
times before entering a cycle. However, though the improved map iterates more than 4000
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times, it does not enter a cycle. Figure 2a and b present the phase diagrams of the original and
improved logistic maps with a precision of 2−16, respectively. The phase diagram of the
original map is a fixed shape similar to a U shape, and its density is also relatively low.
However, the phase diagram of the improved map has a discrete distribution with no fixed
shape, and its density is higher than that of the original map. The improved map destroys the
original state space through the interaction perturbation of parameters and states, thereby
resulting in increased security.

2.3.2 Autocorrelation analysis

Auto-correlation functions describe the correlation between two values in a sequence. In
an ideal chaotic map, autocorrelation will quickly decay along with the interval in one
sequence. Thus, the autocorrelation function will be similar to the δ-function. By gener-
ating two sequences from the original and the improved Logistic map with a precision of
2−18, we plot autocorrelation functions in Fig. 3a and b. Figure 3a shows that the
autocorrelation coefficient will decrease with increased or reduced interval and increase
suddenly in particular intervals. Figure 3b demonstrates that the autocorrelation of the
improved map is similar to the δ function, which will rapidly decrease to 0, except that the
interval is 0. This indicates that the autocorrelation of the sequence generated by the
improved map quickly decay along with the interval. That is to say, the correlation of any
two values in the sequence is very low.

Fig. 1 Trajectory diagrams of the (a) original Logistic map and (b) improved Logistic map

Fig. 2 Phase diagrams of (a) original Logistic map and (b) improved Logistic map
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2.3.3 Period analysis

A digital chaotic map would enter a cycle finally at finite compute precision. The step length
before the map enters a cycle is a key measure for investigating dynamical degradation. Three
group initial values of the original and improved logistic maps are selected, and their step
length before entering the cycle is calculated. The results are shown in Table 1, where the
original map is vulnerable to computing precision, and the improved map is more stable.
Furthermore, the step length of the improved map is longer than that of the original map,
which is more suitable for encryption.

2.3.4 Sensitivity to initial conditions

Sensitivity to initial conditions can be described as follows. If the control parameters are fixed,
then the generated sequences will differ completely by two initial conditions with subtle
differences. An ideal chaotic map should have satisfactory sensitivity to initial conditions. In
other words, the sequences generated by the ideal chaotic map will change dramatically when
the initial values are only slightly changed. In this test, we set the fixed parameter to a = 3.99,
precision p is 12, and the initial values are x0 = 0.3215. We change the parameters a = 3.99 +
2−12 and x0 = 0.3215 + 2−12, respectively. The generated sequences are compared in Fig. 4,
which shows that though we change the size by one bit, the two generated sequences are
completely different, which proves that the improved map demonstrates satisfactory sensitivity
to initial values.

Fig. 3 Autocorrelation function diagrams of (a) original Logistic map and (b) improved Logistic map

Table 1 The step length before enter the cycle

Precision x = 0.1 x = 0.3215 x = 0.8

original improved original improved original improved

2−11 9 5 11 9 14 19
2−13 9 82 19 194 29 136
2−15 136 365 79 1501 122 1662
2−17 11 1082 24 2712 198 4158
2−19 925 17,148 409 42,463 436 15,173
2−21 617 – 245 – 481 –
2−23 213 – 493 713 –
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2.3.5 Complexity analysis

ApEn and PE In general, ApEn and PE are used to evaluate the complexity of chaotic maps.
ApEn measures the probability of the new pattern generated in the sequences with the growing
embedding dimension [26]. The larger the probability, the more complex the sequence. PE is a
complexity measure, which was introduced in [3]. PE compares the size of several consecutive
values in the sequence and sums up different order types. Then Shannon’s entropy is used to
measure the uncertainty of these ordering. This measure can be implemented easily and is
computationally faster than other comparable methods, such as Lyapunov exponents, while
also being robust to noise. The PE of an ideal random sequence should be close to 1. Set a =
3.99 and x0 = 0.3125 and calculate the ApEn and PE of the sequences generated by the original
and improved Logistic map with different compute precisions. The results are shown in Figs. 5
and 6. The figures indicate that for ApEn and PE, the entropy values of the improved sequence
are higher than those of the original. The PE of the improved map is very close to 1, which is
the ideal value. The sequences generated by the improved map are complex.

Fig. 4 Sensitivity analysis of initial condition

Fig. 5 ApEn analysis with different precisions
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Lyapunov exponent and information entropy Lyapunov exponent [22] λ can characterize
the motion of the system, it is also used to attest the chaotic dynamics of the system. A chaotic
map with positive LE will have completely diverged trajectories after a certain number of
iterations, while a larger LE value is an indicator of higher unpredictability and sensitivity.
That is to say, for chaotic systems, there must be a positive Lyapunov exponent, and the bigger
the exponent, the better the chaotic performance. From the Figs. 7 and 8, it’s obvious that the
improved map has wider parameter range, higher Lyapunov exponent and better chaotic
performance, which indicates that our method effectively improves the performance of the
original map and suppress the dynamical degradation.

The concept of information entropy was first proposed by Shannon, who used information
entropy to describe the uncertainty of information source. The higher the entropy is, the more

Fig. 6 PE analysis with different precisions

Fig. 7 Lyapunov exponent diagram of the 1D Logistic map
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uncertain the information is. When a = 3.8 and x0 = 0.3125, the information entropy of the
sequence generated by the improved map is 2.5, and the improved one is 3.2730.

NIST randomness test based on the chaotic sequence Randomness testing of a sequence
determines whether the test sequence is truly random or the difference between the test
sequence and true randomness. Hypothesis testing is the basis of randomness testing tech-
niques. The most common sequence randomness test is the NIST test [31]. We performed
NIST tests on the chaotic sequence {x} generated by the 1D improved Logistic map. In this
experiment, 1,000,000 bits of sequence were selected for NIST test, and the results are shown
in Table 2.

In the NIST random test, p < 0.01 means that the random sequence fails the test item, and
the sequence is not random. Table 1 shows that the p values of the 15 test items are greater than
the significance level (0.01). The p values of 11 items (block-frequency, Cumulative Sums,

Fig. 8 Lyapunov exponent diagram of the improved Logistic map

Table 2 The NIST test results of {x}

Test index P value Result

Frequency 0.426032 SUCCESS
block-frequency 0.912577 SUCCESS
Cumulative Sums 0.783005 SUCCESS
Runs 0.748488 SUCCESS
Longest Run of Ones 0.662892 SUCCESS
Rank 0.277427 SUCCESS
FFT 0.142033 SUCCESS
Non Periodic Template
(m = 9, template = 000000011)

0.931868 SUCCESS

Overlapping Template(m = 9) 0.590068 SUCCESS
Universal 0.335043 SUCCESS
Approximate Entropy 0.874998 SUCCESS
Random Excursions(x = −4) 0.848384 SUCCESS
Random Excursions Variant(x = −5) 0.770399 SUCCESS
Linear Complexity 0.759750 SUCCESS
Serial(m = 16) 0.510013 SUCCESS
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Runs, Longest Run of Ones, Non Periodic Template, Overlapping Template, Approximate
Entropy, Random Excursions, Random Excursions Variant, Linear Complexity, and Serial)
are more than 0.5. These results show that the sequence generated by the improved map is
random, and the security of the algorithm is guaranteed.

2.3.6 Bifurcation analysis

The control parameter of chaotic maps dictates their chaotic behavior. Some maps, such as 1D
Logistic map have a small range of chaotic parameter values that result in chaotic behavior,
whereas the remaining values lead to non-chaos. And the size of parameter directly affects the
size of key space. Therefore, a wider range of chaotic parameters is particularly desirable for

Fig. 9 bifurcation diagram of the 1D Logistic map

Fig. 10 bifurcation diagram of the improved Logistic map
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chaotic cryptographic algorithms. Figures 9 and 10 show the bifurcation diagrams of the
original and the improved 1D Logistic map. According to the two figures, it’s clear that the
improved map has chaotic behavior in a wider range of the chaotic parameters.

2.3.7 State-mapping network

The state-mapping network(SMN) of a digital map in a small-precision digital domain can
work as an efficient tool for classifying its structure and coarsely verify its randomness [13].
The state-mapping network, like the scale index [6], is an evaluation criterion for the
randomness of chaotic maps. In an SMN, every possible value in the digital domain is
considered as a node and the mapping relationship between any pair of nodes is a directed
edge, differing from the traditional approaches treating a digital chaotic map as a black box
with different explanations according to the test results of the output. And Figs. 11 and 12
show the SMN of the original and the improved map under the computing precision of 5,
respectively. From the figures, it’s clear that the average length of the orbit of the improved
map is larger than that of original, which proves the effectiveness of the improved method.

2.4 Performance analysis of the improved baker map

Precision is set to p = 12, control parameter and initial value are set to a = 0.59, x0 = 0.3215, y0
= 0.4215, respectively. From the trajectory diagrams, we can find that the improvement

Fig. 11 SMN of the original Logistic map
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method is effective and extend of the time before entering a cycle. The phase diagram of the
improved Baker map is more random and denser, which indicates that the improvement
method is effective. And the auto-correlation analysis shows that the shape of the improved
map is similar to δ function. That is to say, the correlation of any two values in the sequence is
very low, the sequence is random. Under the precision, the periods of the original and the
improved map are 11 and 260, the step lengths before entering the period are 80 and 2009,
respectively. These two groups of numbers show the effectiveness of the method proposed,
which can restrain the dynamic degradation of chaotic maps and effectively extend the period
of chaos maps. The complexity of the sequence generated by the improved map is better than
the original one, too.

3 Simple cryptosystem based on the improved model

This section mainly introduces a simple image encryption based on the improved Logistic
map. And the algorithm is suitable to color and grayscale image. Bring two different initial
values, x and y, to the improved 1D Logistic map and then obtained two chaotic sequences,
{X} and {Y}. After row and column substitution, use sequence {X} to scramble the pixel
position of the substituted image to enhance the scrambling effect. Then, sequence {Y} is used
to diffuse the image matrix. Finally, a fixed value L is obtained by calculating the pixel sum of
the plaintext image itself, which is used to fold the diffused image to obtain the final cipher text
image.

Fig. 12 SMN of the improved Logistic map
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3.1 Secret key structure

As shown in Fig. 13, the secret key of the proposed cryptosystem comprises five parts, including
system parameter a ∈ (3.56,4), initial values x, y ∈ (0, 1), flip substitution length L ∈ [1,256), and
the average pixel value of the image, b ∈ (0, 1). Where the formulas for calculating L and b are
stated in Section 3.2. If the image is RGB color image, the image is divided into R, G and B
channels, then three b values and three L values will emerge, that is, br, bg, bb, Lr, Lg and Lb,
representing the b value and L value of each channel, as shown in Fig. 14.

3.2 Image encryption algorithm and decryption algorithm

To prove the effectiveness and applicability of our method, we design a simple colored image
encryption algorithm based on the improved logistic map. The encryption algorithm is easy. Thus,
its security is based mainly on the improved logistic map, which implies that the improved logistic
map demonstrates high cryptographic security and can be used in cryptography.

If the plaintext image is in grayscale, it is used directly for encryption. And if the plaintext
image is a colored image, the image only needs to be divided into three channels, R, G and B,
and then each channel is respectively encrypted. Finally, merge the three encrypted results
together to obtain the cipher text image. We take the encryption of a gray image as an example
to introduce the encryption algorithm.

Step 1. Assume P is the plain image with the size of M ×N. Convert the plain image P into
image A with a size of 256 × 256. Set the secret keys, a, x, y.

Step 2. Update initial values x and y using the average pixel of the image A, b value. This
operation relates the initial value of the chaotic map to the plaintext image. The
function mean(·) represents the average value.

b ¼ mean Að Þ−floor mean Að Þð Þ ð12Þ
x
0 ¼ xþ b mod 1 ð13Þ
y
0 ¼ yþ b mod 1 ð14Þ

Step 3. Compute the fixed length L, which is used to fold image, taking it as a component of
the secret key.

L ¼ mean Að Þ mod 255þ 1 ð15Þ

Step 4. Set the row index to i = 1, and the column index to j = 1.
Step 5. In the image A, swap the i-th row with the p-th row and the j-th column with the q-th

column. The generation of p and q is shown below.

Fig. 13 Secret key structure of
gray image
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p ¼ round mean A i; :ð Þð Þ þ bð Þ mod 256þ 1 ð16Þ

q ¼ round mean A :; jð Þð Þ þ bð Þ mod 256þ 1 ð17Þ
where A(i,:) represents the i-th row of the image A, A(: j) represents the j-th column. The
function round(·) is a quantization function, rounding off to an integer.

Step 6. Repeat steps 4 and 5 for i = 1 ~ 256, thereby obtaining substituted image B. Scan
permutated image B from top to bottom and left to right to generate sequence {B}.

Step 7. Bring the updated initial value, x′ and y′, into the improved Logistic map to generate
two sequences, that is, {X} and {Y}. Sequence {B} is shuffled using the sort index of
sequence {X}, obtaining the permutated sequence {C}.

X s1;X s2;X s3;X s4;…f g ¼ sort Xf gð Þ ð18Þ

Cf g ¼ Bs1;Bs2;Bs3;Bs4;…f g ð19Þ
where sort(·) is the sort function, which takes the sequence value from small to large.

Step 8. Transform sequences {C} and {Y} from 1D sequences to 2Dmatrices C andY,whose
sizes are 256 × 256. The two matrices are XORed to obtain cipher text matrix E′.

E
0 ¼ C⊕Y ð20Þ

Step 9. Using the previously calculated L value, flip the cipher text image as shown in
Fig. 15. Next, obtain the final encrypted image E.

The decryption process is the reverse of the encryption process. The values of b and L are
passed to the recipient as part of the secret keys. The flow charts of the entire encryption
process, decryption process, and process for the colored image are shown in the Figs. 16, 17
and 18, respectively.

3.3 Simulation results

The colored Lena image, the grayscale cameraman image, the black image and the white
image are taken as examples. The computing precision is set to n = 2−16 and a = 3.99, x0 =
0.8215, y0 = 0.532. Let the computing precision be 2−16 in the subsequent numerical experi-
ments unless an additional description exists. Figures 19, 20, 21 and 22 show the simulation
results of the color image, grayscale image, black image and white image, respectively. The

Fig. 14 Secret key structure of colored image
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encrypted image no longer provides information on the plain image, and the decrypted image
is the same as the plain image, thereby indicating that the algorithm is effective.

4 Performance analysis and comparison

4.1 Key space

The key space of a secure encryption algorithm should be larger than 2128 [7]. As shown in
Section 3.1, for the gray image, when the computing precision is 10−16, the key space is 0.44 ×
1016 × 1 ∗ 1016 × 1 × 1016 × 1 × 1016 × 255 × 1016 = 1.112 × 1082 ≈ 2259 ≫ 2128, which is larger
than ones in Ref. [1] (2156) and Ref. [39] (2256). For the colored image, 0.44 × 1016 × 1 ∗

Fig. 15 Encrypted image E′

Fig. 16 Flowchart of the encryption process for grayscale image
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1016 × 1 × 1016 × (1 × 1016)3 × (255 × 1016)3 = 0.44 × 2553 × 10144 ≫ 2128, which is larger than
ones in Ref. [2] (1070) and Ref. [36] (1088). Therefore, we can conclude that whether the
image is grayscale or colored, the key space is sufficiently large to resist different types of
brute-force attacks.

4.2 Histogram analysis

The histogram shows the distribution of the pixel intensity values for the images. Figure 23
shows the pixel intensity distribution of the plain and encrypted images of the colored Lena
image and the grayscale cameraman image. The figures show that the distribution of the
original image is not uniform, but the cipher image is nearly uniform. Figures 23c and 24c
illustrate that the decrypted image completely preserves the information of the plain image.
And the Fig. 25a and b shows the histogram diagrams of the encrypted black and the white
image, respectively. Therefore, the algorithm has high resistance to statistical analysis attacks.

4.3 Correlation analysis

Pixel correlation is a common method for evaluating the performance of the image
encryption algorithm. In the image, the reduction of the correlation of adjacent pixels is

Fig. 17 Flowchart of decryption process for the grayscale image

Fig. 18 Flowchart of encryption/decryption process for the colored image
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a requirement for a secure encryption algorithm. The correlation of two adjacent pixels is
measured as follows:

ρxy ¼
∑N

i¼1 xi−E xð Þð Þ yi−E yð Þð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i¼1 xi−E xð Þð Þ2∑N
i¼1 yi−E yð Þð Þ2

q ð21Þ

where x and y are two adjacent pixels, and N is the sample counts, and E xð Þ ¼ 1
N ∑N

i¼1xi,

E yð Þ ¼ 1
N ∑N

i¼1yi. The distribution of adjacent pixels in different directions is shown in

Fig. 26. In Figs. 26a-c, the Lena image has a strong correlation between adjacent pixels in
the horizontal, vertical and diagonal directions. Figure 26d-f show that the points of the
encrypted image are full of space and distribute randomly, with no obvious distribution
characteristics. Furthermore, Table 3 presents the value of ρxy for the different algorithms.
For both algorithms, the values between two adjacent pixels are substantially reduced, but
our method is relatively satisfactory.

4.4 Key sensitivity

Key sensitivity is the degree of result changes when the key is only slightly changed during the
encryption process and the decryption process. A satisfactory image encryption algorithm
should demonstrate outstanding key sensitivity. Figure 27 shows that during the encryption

Fig. 19 Colored Lena image; a plain image; b encrypted image; and (c) decrypted image

Fig. 20 Grayscale cameraman image; a plain image; b encrypted image; and (c) decrypted image
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process, the encrypted images differ considerably if one secret key is changed only by 2−16.
The proposed cryptosystem remains extremely sensitive to minimum step size 2−16 in the
encryption and decryption processes and thus reliable in practical applications.

In addition to the direct experiments mentioned above, a numerical experiment is conducted
to detect key sensitivity by calculating the mean square error (MSE) to evaluate the sensitivity.

MSE ¼ 1

M
∑M

i¼1 yi−xið Þ2 ð22Þ

where yi represents the pixel of the changed image, and xi represents the pixel of the original
image. The initial values and parameters of the encryption system are changed in a small range
to calculate their MSE values and compare them. The results are showed in Fig. 28. From the
figure, it’s obvious that regardless of the parameter, their MSE values are large and 0 only
when the change is 0. That is to say, only the correct key can be successfully decrypted or
encrypted. Minor changes in the key will lead to large errors during the encryption process or
decryption process.

4.5 Information entropy analysis

Information entropy is used to evaluate the randomness of images, and the entropy of an
information source is

H mð Þ ¼ ∑M
i¼1p mið Þlog 1

p mið Þ ð23Þ

Fig. 21 Black image; a plain image; b encrypted image; and (c) decrypted image

Fig. 22 White image; a plain image; b encrypted image; and (c) decrypted image
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where m represents a message source, M is the total number of symbols, and p(mi) is the
probability of symbol mi [8]. For a 256 × 256 grayscale image, the maximum information
entropy is 8. The results of the different algorithms are listed in Table 4. As we use a colored
image as the sample, three channels exist. Thus, we list information entropy values at three
different channels. Table 3 shows that regardless of the channel, the information entropy is
close to the ideal value of 8. Therefore, obtaining visual information from an encrypted image
is nearly impossible, even with relatively low precision.

4.6 Analysis of resistance to differential attacks

A differential attack is an effective method and the most common mode of attack. Thus,
resistance to differential attacks is important. The number of pixel changing rate (NPCR) and
unified average changed intensity (UACI) are two common methods for measuring ability to
resist differential attacks. Our cryptosystem is evaluated by the mathematical model
established in [35]. The NPCR and UACI are as follows:

Fig. 23 Histogram results of colored Lena image; a plain image; b encrypted image; and (c) decrypted image

Fig. 24 Histogram results of grayscale cameraman image; a plain image; b encrypted image; and (c) decrypted
image
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NPCR C1;C2ð Þ ¼ ∑M
i¼1∑

N
j¼1

sign
�
C1 i; jð Þ−C2

�
i; j

����� ���
MN

ð24Þ

UACI C1;C2ð Þ ¼ ∑M
i¼1∑

N
j¼1

C1 i; jð Þ−C2
�
i; j

���� ���
MNF

ð25Þ

Fig. 25 Histogram results of encrypted (a) the black image; b the white image

Fig. 26 Distribution of adjacent pixels; a horizontal direction of plain image; b vertical direction of plain image;
c diagonal direction of plain image; d horizontal direction of encrypted image; e vertical direction of encrypted
image; f diagonal direction of encrypted image
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where M ×N is the size of the plain image, C1 and C2 represent two different images of the
same size, F is the largest allowed pixel value in the images, and sign(·) is the symbol function.
If C1(i, j) =C2(i, j), then |sign(·)| =0, otherwise, |sign(·)| =1. M =N = 256, and F = 255 are set.
The ideal value of the NPCR is 0.9961, and the ideal value of the UACI is 0.3346. Table 5
shows the NPCR and the UACI of the different algorithms for the colored Lena image. The
values of our method are close to ideal values and competitive with those of other algorithms.

Table 3 Correlation coefficients of different algorithm

Algorithm Horizontal Vertical Diagonal

Plain image 0.9470 0.9612 0.7088
Encrypted image(Lena) −0.0084 0.0003 −0.0089
Ref. [32] 0.0265 0.0792 0.0625
Ref. [39] 0.0051 0.0038 0.0092
Ref. [27] −0.0156 −0.0022 −0.0028
Ref. [36] −0.0082 −0.0128 −0.0012
grayscale cameraman image 0.9333 0.9565 0.9059
Encrypted image(cameraman) 0.0026 −0.0004 −0.0004
Encrypted image(Black) −0.0455 −0.0090 −0.0816
Encrypted image(white) −0.0472 −0.0105 −0.0874

Fig. 27 Key sensitivity tests results; a plain image; b encrypted image; c encrypted image with a + 2−16; d
subtraction of (b) and (c); e encrypted image with x + 2−16; f subtraction of (b) and (e); g encrypted image with
y + 2−16; h subtraction of (b) and (g); i decrypted image; j decrypted image with a + 2−16; k decrypted image with
x + 2−16; and (j) decrypted image with y + 2−16
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4.7 Robustness analysis against noise and occlusion attacks

To further analyze the security of the proposed algorithm based on the improved Logistic map,
robustness to noise and occlusion attacks is detected. In a satisfactory image encryption
algorithm, the pixel changes of the encrypted image should have less impact on the decryption
process. The tests results are shown in Figs. 29 and 30. Figure 29 indicates that though three
different noises are added to the ciphertext image, it can still decrypt the correct original image.
To prove the ability of the algorithm to resist data loss attacks, we process the ciphertext
images and obtain images with loss ratios of 0.1, 0.2, and 0.3 with different directions. The
images are decrypted separately, and the result is shown in Fig. 30 The two figures illustrate
that the proposed method based on the improved logistic map exhibits strong robustness to
noise and occlusion attacks.

Fig. 28 MSE tests results; the encryption process: a MSE of x; b MSE of y; and (c) MSE of a; the decryption
process: d MSE of x; e MSE of y; and (f) MSE of a

Table 4 Information entropy of different algorithms

Algorithm Information entropy

Color image R G B

Plain image 7.6658 7.4786 7.2847
encrypted image(ours) 7.9974 7.9969 7.9968
Ref. [24] 7.9972 7.9973 7.9972
Ref. [36] 7.9892 7.9898 7.9899
Ref. [19] 7.9972 7.9972 7.9976
Ref. [25] 7.9970 7.9972 7.9970
Grayscale image Original Encrypted
Cameraman image 7.0097 7.9963
Black image 0 7.8863
White image 0 7.8854
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5 Conclusion

In this study, a new and improved method is proposed to improve the original 1D Logistic map
to suppress the dynamical degradation of the digital chaotic map. The method includes the
interaction perturbation of system parameters and state variables as well as a nonlinear
feedback function. We use the original Logistic map as the sample. This improved method
is also applicable to other maps. We evaluate the performance of the improved Logistic map,
and the results show that the map has a wide distribution, high complexity and randomness,
and a sufficiently large length before entering a cycle under low computing precision. Thus,
the improved logistic map demonstrates satisfactory dynamic performance and a wide appli-
cation prospect. To prove practicability and applicability, we design a new, simple colored

Table 5 NPCR and UACI of different algorithms

Lena image(256 × 256 × 3) NPCR UACI

Algorithm R G B R G B

ideal value 0.9961 0.9961 0.9961 0.3346 0.3346 0.3346
encrypted image(ours) 0.9958 0.9962 0.9961 0.3370 0.3335 0.3345
Ref. [2] 0.9961 0.9961 0.9959 0.3349 0.3346 0.3350
Ref. [25] 0.9961 0.9961 0.9960 0.3345 0.3356 0.3352
Grayscale image(256 × 256)
Cameraman image 0.9959 0.3344
Black image 0.9970 0.3383
White image 0.9977 0.3397

Fig. 29 Robustness against noise attack; encrypted image with (a) 0.2 salt and pepper noise; b 0.02 speckle
noise; and (c) 0.02 gaussian noise; decrypted image with (d) 0.2 salt and pepper noise; e 0.02 speckle noise; and
(f) 0.02 gaussian noise
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image encryption algorithm based on the improved map. We utilize the colored Lena image as
the sample image. When the computing precision is 2−16, the simulation results demonstrate
that the performance of this encryption algorithm is excellent in all aspects and highly resistant
to different attacks. Therefore, the proposed algorithm is applicable to devices with finite
computing precision. In the future, we will propose a better encryption algorithm based on this
improved method. Reduce costs as much as possible while ensuring safe performance.
Achievements notwithstanding, more properties and applications of various chaotic maps
and encryption algorithm call for further exploration in the near future.
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