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Abstract
Computer-aided diagnosis have stumbled rapidly in the last few years. One of foremost step
in computer-aided diagnosis is organ classification and segmentation. Among various organ
segmentation techniques, the segmentation of abdominal organs like liver, stomach, kidney,
pancreas and bladder from different modality of images has gotten keen interest in past few
years. Mostly the interpretations of abdominal images are being done by medical experts or
radiologists. Image interpretation by human experts is quite limited due to its subjectivity,
complexity of the image, extensive variations exist across different interpreters, and fatigue.
After the success of deep learning in real world applications, it is also providing exciting
solutions with good accuracy for medical imaging and is seen as a key method for future
applications in medical field. Emergence of deep Convolutional Neural Networks (CNN)
tends to provide better classification in abdominal imaging analysis as compared to tradi-
tional models. This paper presents the state of the art of abdominal images for classifying
abdominal organs based on deep learning and is a useful for computer-aided diagnosis appli-
cations. First this paper describe background of abdominal organs as well as modalities of
imaging system. Then, we reviewed the techniques of deep learning for image segmenta-
tion, object detection, classification and other related tasks for multiorgan and single organ
abdominal images. For single organ, different organs of abdomen such as liver, kidney, pan-
creas, and stomach are discussed seprately. In the last section, we have discussed current
market challenges and the future recommendations.

Keywords Computer-aided diagnosis · Organ segmentation · Abdominal organs · Liver ·
Stomach · Kidney · Pancreas · Convolutional neural networks

1 Introduction

The primary cognitive task of a diagnostic radiologist is medical imaging analysis and inter-
pretation. With the rapid development in medical imaging, an enormous amount of data is
produced due to the different image modalities such as magnetic resonance imaging (MRI),
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computed tomography (CT) and positron emission tomography (PET). Computer-aided
diagnosis systems improved the healthcare by analyzing the image modalities (especially
CT images). This computerized analysis has several advantages over human interpretation,
such as accuracy, speed, non-sensitivity to exhaustion, and bulky knowledge base for diag-
nostic information. One of foremost step in computer-aided diagnosis is organ classification
and segmentation. Among the various organ segmentation techniques, the segmentation of
abdominal organs like liver, stomach, kidney, pancreas and bladder from CT images has
gotten keen interest since last few years.

In radiology, the procedures of endoscopic pancreatobiliary is deployed for imaging and
intervention of organs. For this aid, an endoscope is orally injected and navigated over the
gastrointestinal region to particular locations on the stomach or duodenal wall to permit
the pancreatobiliary organ imaging. This navigation procedure is often challenging, partic-
ularly for novice endoscopists due to the small field view of endoscopic, and lack of visual
location alignment. To overcome this challenge, segmentation of multiple organs is intro-
duced to support the navigation and targeting procedure. Segmentation of multiple organ
includes: gastrointestinal organs (stomach, duodenum, and esophagus), adjacent organs
used as navigational landmarks (kidney, liver, gallbladder and spleen) and the pancreas.

Organ segmentation from abdominal images can aid scientific work flow in multiple
clinical domains like computer-assisted diagnostic intervention, treatment planning, and
delivery, surgical planning and delivery, intra-operatablity, planning radiation therapies and
so on [1, 2]. These potential benefits recently encouraged the interest in the development
of more comprehensive computational anatomical models. Deep learning (DL) techniques
has got the revolutional breakthrough in computer vision and pattern recognition tasks.
The deep learning encompasses several machine learning algorithms for modelling high
level abstractions in data by deploying deep architectures comprised of multiple non-linear
transformations [3]. Deep learning techniques are used to learn the discriminative visual fea-
tures from raw images directly at multiple level of abstractions. Recently, the deep learning
techniques have been employed in different domains especially in medical imaging classifi-
cation and automated disease diagnostic systems. This recent development of deep learning
serves as a motivation to exploit convolutional neural network (CNN) for abdominal organ
segmentation and classification.

This paper presents a detailed review on the deep leaning based techniques for multi-organ as
well as single organ abdominal images classification/segmentation. The background of basic
terminologies of multi-organ abdominal images as well as medical imaging modalities are
explained in Section 2. Section 3 explain the state of art of multi-organ and single organ
abdominal images according to the traditional standard steps: image acquisition, prepro-
cessing, feature extraction, segmentation, and classification. Section 4 presents the existing
and suggested recent performance evaluation matrices. The main findings of the survey is
elaborated in Section 5. Section 6 presents the challenges offering in the domain along with
the future perspectives. Finally the conclusion is draw in Section 7.

2 Background of basic terminologies

The background of the abdominal diagnostic is quite an old concept. The information that a
tense abdomen is a dangerous and life-threatening condition is extremely old. In 1948, the
pediatric specialist Gross perceived the clinical significance of a tense abdomen as a com-
plication of the fix of huge omphaloceles [4]. Kron et al. [5] suggested the term “abdominal
compartment syndrome” (ACS) in 1984. World Society of the Abdominal Compartment
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Syndrome (WSACS) refined the definitions of ACS [6] and provide guidelines management
in the recent publications of 2006 and 2007 [7] and updated in 2013 [8].

The conventional methods of diagnosis and intervention of abdominal images relay on
the human expertise. Thus these methods were time consuming and tiresome. This difficulty
is overcome by the automated computerized systems that work on the abdominal images and
provide faster and accurate diagnosis and intervention on abdominal images. The automated
systems either classify or segment the multi-organ of abdomen or either work on single
organ of abdomen. Here multi-organ means that more than one organ of abdomen whereas
single-organ means only one organ of abdomen is used for classification or segmentation
task respectively. On the basis of these classification, we provide the literature review of
multi-organ and single-organ in Section 3 and illustrate the taxonomy in Figure 3.

Before presenting the state of art, we provides comprehensive detail according to the
biological point of view as well as different types of images from different types of imaging
systems that will present the ease for the IT researcher to work on it. Basically abdominal
images are the image of the abdomen. The abdomen is the part of body that space between
the thorax (chest) and pelvis. The abdomen is the combination of three main categories on
the basis of organs: gastrointestinal organs (stomach, duodenum, and esophagus), adjacent
organs used as navigational landmarks (kidney, liver, small and large intestines, gallbladder
and spleen) and the pancreas. These organs are connected together loosely with the aid of
connecting tissues known as mesentery that permit them to expand and to slide against each
other. Abdomen have many important blood vessels including the venacava and their small
branches, aorta etc. Abdomen is protected in the front by the fascia that is thin and tough
tissue layer. In the rear of the abdomen are the back muscles and spine. The overall organs
of abdomen are graphically illustrated in the Figure. 1.

Fig. 1 Internal and External Structure of Abdomen with organs (Available at: https://www.webmd.com/
digestive-disorders/picture-of-the-abdomen)

30323Multimedia Tools and Applications (2021) 80:30321–30352

https://www.webmd.com/digestive-disorders/picture-of-the-abdomen
https://www.webmd.com/digestive-disorders/picture-of-the-abdomen


The major organ of abdomen is stomach that is located on the left upper side. It is the
muscular organ of the abdomen that receives the food from the esophagus through the valve
known as esophageal sphincter. To the left of stomach, the organ at the upper far left part of
the abdomen is known as spleen. The spleen is almost 4 inches long, purple in color, fist-
shaped organ. It is one of supporting organ abdomen that play a significant role in blood
filtering as part of the immune system. Another important organ of abdomen is kidney that
is a bean shaped organ located either the side of the spine, behind the abdomen and below
the ribs. The kidney’s pelvis is responsible to collect the waste into the urine and drains
down towards a tube called the ureter to the bladder. The next foremost organ of abdomen
is liver, large reddish brown meaty organ of abdomen that lies on the right side protected by
the rib cage with a weight of 3 pounds. The bladder could be a tiny pouch that sits slightly
below the liver. The bladder stores digestive fluid (bile) created by the liver. The pancreas
lies across the back of abdomen behind the stomach. The head of the pancreas is attached
to the first section of small intestine known as duodenum through the small tube known as
pancreatic duct.The tail of the pancreas is shrink and extends to the left side of the body.
The intestines is the amalgamation of large intestine, small intestine and rectum. The small
intestine is also known as small bowel that is one inch in diameter and 20 feet long in height.

Automated imaging analysis tool based on machine learning and deep learning algorithms
are the key enablers to improve the quality of image diagnosis and interpretation by facilitating
through efficient identification of finding. Medical imaging is the process of creating visual rep-
resentations of the interior of a body for medical analysis and clinical intervention, as well as
visual representation of organs or tissues. Medical imaging is also called radiology. There are
different types of imaging, such as X-rays, ultrasound, CT (computed tomography) scans, and
MRI (magnetic resonance imaging). Each imaging type uses a different technology to create an
image. One of the oldest and most commonly used imaging technique is X-rays discovered
in 1895 and used in 1896 to capture image of human tissue first time. X-rays use ionizing
radiation to generate images of a person’s internal structure by sending beams through the
body. These are absorbed at different levels depending on the density of the tissue. X-ray
radiation produce three kinds of medical images; conventional X-ray imaging, angiography,
and fluoroscopy. X-rays are used to evaluate the digestive system.

Ultrasound is introduced in 1952, used for therapy and muscle stimulation or as a diag-
nostic tool in medical imaging using an ultrasonographer. It uses high frequency sound
waves to produce images of interior of body. It is broadly used in abdominal images such as
scanning organs in the pelvis and abdomen and diagnosing symptoms of pain, swelling and
infection. Another important medical imaging is CT (computed tomography) scans used
from 1972. CT combines multiple X-ray images taken from different angles, thus generate
images with greater information. CT scans are widely used in abdominal images such as
scanning organs in the pelvis, chest and abdomen as well as in abdominal aortic aneurysms
(CT angiography). Magnetic Resonance Imaging (MRI) was developed in 1977, uses radio
waves and a magnetic field to provide detailed images of organs and tissues. MRI is used to
evaluate the major organs of abdomens. The advantages and disadvantages of these medical
imaging are illustrated from Table 1.

3 State of the art

The work on abdominal images started back to 1983 when Liu et al. [9] investigated digital
processing in order to improve ultrasonic abdominal images. With the advent of machine
learning and deep learning approaches, researchers focus on the development of automated
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Table 1 Different Types of Imaging Systems

Imaging Systems Advantages Disadvantages

X-Rays Quick, Non-invasive, and Painless Very small increased risk of cancer
in future from exposure to ionising
radiation (X-rays), not suitable for
chlidern

Ultrasound No Ionising Radiation, Non-invasive,
Safe and Painless

Image Quality is affected by fac-
tors like including the presence of
air and calcified areas in the body
(e.g, bones, plaques and hardened
arteries), and a person body size.

Computed tomography
(CT scans)

Diagnose and guide treatment for a
wider range of conditions than plain
X-ray, Quick, and Painless

Uses higher doses of radiation than
plain X-ray, so the risks (while still
small) are generally greater than for
other imaging types

Magnetic Resonance
Imaging (MRI)

Provide similar information to CT
in some types of investigations, No
Ionising Radiation, Non-invasive,
and Painless

People feel claustrophobic, lengthy
and noisy procedure

system for the diagnosis, prediction, classification, detection, and segmentation of abdomi-
nal images. A lot of survey papers had been published on liver images for segmentation tech-
niques [10–12] , liver diseases prediction [13–15], and monitoring liver disorder [16, 17].
However, there is no comprehensive review on multiorgan abdominal images, stomach
images, pancreas images, and stomach images using machine learning or deep learning
models. In contrast to several reviews on this subject, our review paper provides additional
information which is lacking in other review articles, such as provide comprehensive state
of art on multiorgan and single organ like liver, kidney, pancreas, and stomach.

Early work of abdominal organ segmentation relied on atlas-based methods [18–20],
statistical models [21, 22], patch-based methods [23], multi-atlas methods [18], multi-atlas
label fusion methods [22, 24–27], probabilistic atlas [19, 28] and registration-free meth-
ods [29–31]. These techniques attain remarkable results for abdominal organs but a lot of
challenges were offered in these techniques like large anatomical variability, reliability on
handcrafted features, organ-diagnostic image features [31, 32] etc. Recently deep learning
techniques had been employed for multi-organ and single-organ abdominal images. This
motivate us to provide a comprehensive review on abdominal images including multiorgan
and single organ images using deep learning techniques.

Before presenting the related work, we first elaborate the standard workflow of the sys-
tem. The standard workflow of automated abdominal images classification/segmentation
system consists of four major phases: Image Acquisition, Preprocessing, Image Segmen-
tation, Feature Extraction and Classification. These phases are graphically illustrated in
Fig. 2 and elaborated comprehensively in the coming subsections along with the literature
review. We present the literature of the abdominal images with respect to standard workflow
according to the taxonomy of multi-organ and single organ as illustrated from Fig. 3.

3.1 Image acquisition

The process of capturing or acquiring the images is called image acquisition. It is one of the
foremost and fundamental task in any computer vision or image processing domain. Due
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Fig. 2 Standard Workflow of Abdominal Images Classification

to the medical imaging nature, the abdominal images belongs to different modalities like
Computed Tomography (CT), Ultrasound-imaging, Magnetic Resonance (MR) imaging,
Positron Emission Tomography (PET), Digital Subtraction Angiography, Single-Photon
Emission Computed Tomography (SPECT) etc. These modalities play an important role in
disease detection and diagnosis. Another important aspect is that optimal acquisition device
will be select on the basis of the investigation objective, in order to highlight the particular
areas of the human body. Dataset is the cornerstone of any research work. The availability
of dataset is one of the essential prerequisite for development and evaluation in any research
domain and same is the case with abdominal images based systems. Some of the publicly
available datasets are detailed followed and tabulated in Table 2.

Fig. 3 Taxonomy of Abdominal Images Classification
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3.1.1 Multi-organ abdominal ct reference standard segmentations

This dataset consists of 90 abdominal CT images including liver, left kidney, stomach,
pancreas, spleen, gallbladder, esophagus, and duodenum for reference segmentation. The
dataset is released with conjunction with the paper [33] published in IEEE Transactions on
Medical Imaging paper. The abdominal images and reference segmentation was taken from
two publicly available datasets: The Cancer Image Archive (TCIA) Pancreas-CT data set
[34, 35] and the Beyond the Cranial Vault (BTCV) Abdomen data set [36].

3.1.2 Cancer imaging archive pancreas-ct dataset

The Pancreas-CT data set encompasses 82 3D abdominal CT scans acquired at the National
Institutes of Health Clinical Center. CT scans were acquired from 53 male and 27 female
subjects. 17 subjects are pre-nephrectomy healthy kidney donors while 65 subjects have nei-
ther major abdominal pathologies nor pancreatic cancer. The images were acquainted from
Philips and Siemens MDCT scanners (120 kVp tube voltage) with resolutions of 512×512
pixels and slice thickness between 1.5 to 2.5 mm.

3.1.3 Beyond the Cranial Vault (BTCV) abdomen dataset

The BTCV data set contains abdominal CT scans acquired at the Vanderbilt University Med-
ical Center from metastatic liver cancer patients or post-operative ventral hernia patients.
The voxel sizes of images are from 0.6 to 0.9 mm in the left-right axis and anterior-posterior,
0.5 to 5.0 mm in the inferior-superior axis. The fields of view is from 172–318 mm for
anterior-posterior, 246–367 mm for left-right axis and 138–283 mm for inferior-superior
axis that achieved from the manual cropping of rib-cage.

3.1.4 LiTS - Liver Tumor Segmentation dataset

The LiTS dataset comprises of 200 3D liver CT scans from different clinics. The dataset
contains images of varying spatial resolution and fields-of-view. The axial slices have iden-
tical size of 512×512, with slice spacing from 0.45-5.0 mm, in-plane resolution of 0.60-0.98
mm. The dataset splits into 130 CT scans in training and 30 CT scans in testing respectively.

3.1.5 3D-IRCADb-01 database

The 3DIRCADb dataset contains 20 venous phase enhanced CT scans of 10 men and 10
women, where 15 volumes have hepatic tumors in the liver (75% of cases). The analyzed
CT volumes differ substantially in the level of size and number of tumor lesions and contrast
enhancement.

3.1.6 NIH pancreas segmentation dataset

NIH pancreas segmentation dataset [34] contains 82 contrast-enhanced abdominal CT
scans. The size of CT volumes is 512×512×D, where D belongs to 181 and 466. The spatial
resolutions height and weight ranges from 0.5-1.0 mm with the depth of 1.0 mm.
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3.1.7 BOT gastric slice dataset

The gastric dataset encompases 560 gastric cancer images and 140 normal images. The
images were acquired by hematoxylin-eosin (H&E) staining with 20 times magnification
factor. The resolution of images is 2048×2048. The tumor area in images are annotated by
data provider.

3.2 Image pre-processing

Pre-processing is elementary step to enhance the input data or to sort raw data samples
in a standard form that is appropriate for feature extraction phase. In medical imaging,
the acquired images are mostly affected by low contrast, noise, blurriness, poor sharp-
ness that leads to the false diagnosis. Therefore several image processing and computer
vision algorithms are deployed to enhance the images like contrast enhancement, histogram
equalization, filtering, de-noising, gray level transformation etc.

The primary task of medical imaging analysis is correct image annotation. Image anno-
tation is the task of radiologists to annotate an image with label. The next step is to clean
the images and to enhance the contrast. The medical images were obtained from different
modalities that cause artifacts and false intensity levels. Thus, different machine leaning
and image processing algorithms were deployed to enhance the contrast of images. Noise
removal algorithms are used to remove the unnecessary information and artifacts from
images. Thresholding is used to segment the images into regions by creating binary image.
Furthermore, data augmentation is a new emerging image processing technique used to
increase the training samples artificially for deep learning models. Different types of data
augmentation are scaling, translation, rotation, flipping, sharpening, zooming, brightness,
and high frequency images generation. We present the preprocessing techniques deployed
in the domain of abdominal images using multiorgan and single organ in the following
subsections.

3.2.1 MultiOrgan preprocessing

Different types of preprocessing techniques are employed to enhance the multiorgan abdom-
inal images. The foremost preprocessing technique used for multiorgan abdominal images
is image annotation. Image annotation is perform by radiologist that assign label to abdom-
inal organs. Along with image annotation, different image processing and machine learning
techniques are used as preprocessing technique in the domain of multiorgan abdominal
image processing. We here present some of the notable techniques of preprocessing.

Zhou et al. [37] performed multi-organ segmentation using 210 CT images dataset. The
images were annotated by four radiologists and preprocessed using contrast enhanced tech-
nique. They represented the CT images into coronal, axial, and sagittal planes. In [38], 240
3D CT scans from Computational Anatomy dataset were collected. They performed 3D to
2D image sampling and 2D to 3D label voting in preprocessing.

González et al.[39] gathered the CT scan images from retrospective COPD observa-
tional study [40]. They split the dataset on the basis of annotation structure. In complete
dataset, 2000 cases were annotated into six abdominal structures by an expert while in
partial dataset, 3000 cases were annotated in such a way one structure per case.

Cheng and Malhi [41] conducted experiment on 185 studies of consecutive clinical
abdominal ultrasound with the total gray scale images of 9298. They performed text
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annotation for categorization of ultrasound images into 11 categories. In preprocessing,
images were resample into 256 × 256 resolution.

Roth et al. [42] used 150 cases, 281 contrast enhanced CT images for training set and
50 images for validation set. Gibson et al. [33] experimented on two publicly available
dataset: 43 subjects of Cancer Imaging Archive Pancreas-CT dataset and 47 subjects of
Beyond the Cranial Vault (BTCV) dataset for the segmentation challenge. They performed
manual cropping in preprocessing. Larsson et al. [43] performed thresholding and removal
of positive small samples in post processing.

3.2.2 Single organ preprocessing

After discussing the multiorgan preprocessing techniques, we present the single organ pre-
processing techniques. We start with the preprocessing techniques of liver proceeding with
kidney, pancreas, and stomach in the following paragraphs.

Gruber et al. [44] conducted experiment on different type of liver lesions using the
subset of LiTS (Liver Tumor Segmentation) challenge dataset. They used 756 axial slices
in training, 50 slices in validation and 50 for testing in their experiment respectively.
Adar et al. [45] conducted experiment on 182 CT images of liver lesions (53 cysts,
64 metastases and 65 hemangiomas). In order to increase the training data and reduce
over-fitting, they performed data augmentation techniques like rotation, scaling, flip-
ping and translation in preprocessing. Li et al. [46] performed liver lesion segmentation
on 26 portal of enhanced CT images acquired from Zhujiang Hospital. They generated
1 million patches of size 17 × 17 in training. Cohen et al. [47] worked on 333 CT
images of 40 patients annotated by radiologist. They split the dataset in such a way that
255 images for training and 108 for testing. They applied two data augmentation tech-
niques i.e. scaling and translation in preprocessing. Schmauch et al. [48] investigated the
focal liver lesion with the aid of deep learning techniques for the detection and classi-
fication of liver lesion into two classes (malignant and benign). They experimented on
367 ultrasound images. ResNet50 was deployed to extract the feature vector of 2048.
Doğantekin et al. [49] used perceptual hash function in preprocessing. They conducted
experiment on 200 augmented CT images. Ben-Cohen [50] experimented on 333 annotated
CT images.

Kline et al. [51] diagnosed polycystic kidney disease (PKD) using MRI images of 2000
cases in training and 400 cases in testing. Yin et al. [52] collected 185 ultrasound images
of kidney from Children’s Hospital of Philadelphia (CHOP). Kuo et al. [53] conducted
experiment on 4,505 ultrasound images. They labeled the images using eGFRs with the
aid of serum creatinine concentrations. Al Imran et al. [54] diagnosed the Chronic Kidney
Disease by retrieving from the UCI machine learning repository. They performed imputation
of missing value and feature scaling in preprocessing and then partition and balance the
dataset. Salehinejad [55] annotated images by sampling with cylindrical transform in 3D
space. They conducted experiment on 20 contrast enhanced CT images of abdomen. Marsh
et al. [56] used deep learning model for the classification of non-sclerosed and sclerosed
glomeruli from the 48 whole slide images of donor kidney biopsies. Pedraza et al. [57]
conducted experiment on 10,600 region of interests (ROIs) images from 40 whole slide
images.

Roth et al. [58] performed experiment on the contrast enhanced CT images of 82 patients
for pancreas segmentation. Sekaran et al. [59] classified the pancreatic cancer from 1900
images of the dataset obtained from the Cancer Imaging Archive (TCIA). Oktay et al. [60]
conducted experiment on 150 abdominal 3D CT scans of TCIA CT Pancreas dataset.
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Table 3 Qualitative Analysis of Preprocessing Techniques of Abdominal Images based Systems from 2017
to 2019

Preprocessing Techniques Description Related Studies

Image Annotation Image annotation is the task of radi-
ologists to annotate an image with
label. Manual annotation by radi-
ologist is the most accurate anno-
tation. Automatic annotation is the
most efficient, least time anno-
tation. Semi-automatic annotation
improves the quality in interactive
manner.

[37, 39, 41, 47, 50, 52]

Contrast Enhancement Contrast enhancement is the pro-
cess of increasing the contrast qual-
ity of the intensity variations in the
considered image.

[37, 46, 55, 58]

Image Resampling Image resampling is the process of
geometrically transforming digital
images.

[38, 41]

Thresholding Image thresholding is a simple form
of image segmentation. It is used
to create a binary image from a
grayscale or full-color image.

[43]

Data Augmentation Data augmentation is a strategy that
enables researchers to significantly
increase the diversity of data avail-
able for training models, without
actually collecting new data. Data
augmentation techniques such as
cropping, padding, rotation, reflec-
tion, and flipping are commonly
used to train deep learning models.

[33, 45–47, 49, 62, 64–66]

Shichijo et al. [61] conducted experiment on 32,208 esophagogastroduodenoscopy
(EGD) images of 1750 patients. Garcia et al. [62] detected the lymphocyte gastric cancer
using Immunohistochemistry (IHC) images. They performed data augmentation techniques
like rotation and reflection on 3,257 images and generated 10868 image patches. Horie
et al. [63] gathered 8428 training images and 1118 test images from Cancer Institute Hospi-
tal of Japan for the detection of esophageal cancer. Itoh et al. [64] conducted experiment on
179 upper gastrointestinal endoscopy images from 139 patients. The dataset was increased
with the rotation data augmentation technique. Li et al. [65] experimented on BOT gastric
slice dataset that is available publicly. They performed rotation as a data augmentation tech-
nique in preprocessing. Zhu et al. [66] experimented on 790 images and 203 test images.
Rotation was performed as a data augmentation technique to increase the data samples. The
qualitative analysis of preprocessing techniques of abdominal images from 2017 to 2019
are presented in Table 3.

3.3 Feature extraction

Feature extraction is the method of extracting the representative characteristics of abdom-
inal organs that are used for the discrimination of several organs. The optimal selection
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Table 4 Qualitative Analysis of Feature Extraction Techniques of Abdominal Images based Systems from
2017 to 2019

Features Description Related Studies

Handcrafted Features Handcrafted features are specific
measurable attributes in the image
that can be utilized to correctly
identify the structures.

[51, 69–76]

Automated Features Automated features are extracted
by deep learning based models
automatically from the raw data of
images directly

[33, 37–39, 41–66, 77–94]

of a dominant set of feature is the key for an effective system. Broadly speaking, feature
extraction techniques can be categorized into three broad categories: statistical features,
structural features, model based features or automatic features [67, 68]. Statistical features
are the mathematical or statistical measurements for classification of relevant information
for reducing the gap among difference classes. Another broad categorization of statistical
features are between Global and Local features. The global features are extracted from the
entire image. On contrary, in local features extraction, image is divided into number of units
or sections and the features are extracted from particular section of image. The structural
features are the local structure of the abdominal images like Local Binary Patterns (LBP),
pixel density within abdominal organ grids, Scale-Invariant Feature Transform (SIFT) and
Speed Up Robust Features (SURF) etc. There has been an increased attention in recent years
on methods that do not rely on hand-crafted features. This interest leads the researchers
towards the model based or automatic features. The model based or automatic features are
learned from raw data (pixels, in the case of images) using specific models like Convolu-
tional Neural Network (CNN) , Extend Learning Model (ELM) , Recurrent Neural Network
(RNN) etc. The qualitative analysis of feature extraction techniques used in the abdominal
imaging systems from 2017 to 2019 are reported in Table 4.

3.4 Image segmentation and classification

One of the important and crucial task in medical imaging is image segmentation in which
image is divided into the regions that are significant for a particular task such as the detection
or segmentation of organs or the metrics computation. Image segmentation can be catego-
rized into three categories on the basis of the extracted features: region-based, edge-based,
or classification techniques [95]. The region-based and edge-based techniques depends
on the inter-region differences and intra-region similarities between features. On contrary,
classification techniques assigns the unique class labels to the individual voxels or pixels
depending on the values of the features. Some of the notable segmentation techniques are
thresholding (global or local, point-based or region-based) [96], atlas based methods [20]
and deep learning based segmentation [97].

Classification is the process of predicting the class labels or categories of images or
data points. A number of classification techniques have been proposed in the recent years.
These techniques rely on supervised or unsupervised learning. Supervised learning is the
classification technique in which targets are provided with the input data. The classification
techniques based on supervised learning are Artificial Neural Networks (ANNs), Swarm
Intelligence (SI), Support Vector Machines (SVMs), Linear Discriminant Analysis (LDA)
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etc. On the other hand, unsupervised learning does not require target classes with the train-
ing data. Examples of unsupervised learning are K-means clustering, hierarchical clustering,
mixture models, OPTICS algorithm etc. Regarding different classification strategies, the
success of deep neural networks are revealed tremendously due to the large spread of Con-
volutional Neural Networks (CNNs). Deep Convolutional Neural Networks works on the
model based or automatic features are learned from raw data (pixels, in the case of images)
using specific models. Deep Convolutional Neural Networks had been deployed in many
medical applications for image classification and segmentation with more than 100 publi-
cations. Deep Convolutional Neural Network architectures can be used in three scenarios:
training from scratch, fine-tuning and fixed feature extractor or freeze. In first scenario, the
overall architecture of a specific CNN is designed from scratch. This requires an enormous
amount of training samples and large dataset with several classes. In second scenario, pre-
trained CNN architecture is deployed on the target dataset using transfer learning. As the
pretrained CNN is trained on the large base dataset thus it can be employed on the small tar-
get dataset for attaining high accuracy. Different pretrained CNN architecture are AlexNet
[98], VGG [99], ResNet [100, 101] , GoogLeNet [102], DenseNet [103], Inception [104],
Xception [105], and MobileNet [106]. In the third scenario, classification layer from the
CNN architecture is removed and freeze the specific layer of the CNN. The freeze layers
act as the features that can be classified using linear classifier [107, 108].

Pre-invasive segmentation gives more difficult classification than the binary classifica-
tion task of invasive segmentation. Thus semantic segmentation is used to assign each pixel
of image to appropriate target label using region of interest image as a ground truth [109].
Different CNN models are used for semantic segmentation like FCN [110], UNet [111],
Fully Connected DenseNet [112], DeepLab [113], and Gated-SCNN [114]

3.4.1 Multiorgan segmentation and classification

Zhou et al. [37] performed multi-organ segmentation using 210 CT images dataset. They
segmented 16 abdominal organs by deploying their deep learning model named as Deep
Multi-Planar CoTraining (DMPCT). They achieved the mean Dice-Sørensen Coefficient
(DSC) of 77.94%. In [38], FCN was deployed with the aid of voting technique on 240
3D CT scans. They attained 89% accuracy using the proposed voting scheme. González
et al. [39] employed UNet and its modification on the axial slice to perform seman-
tic segmentation. An average mean dice score of 0.909 using UNet, 0.908 using
6xUNets, 0.910 using PUNet and 0.916 using CUNet was achieved respectively. Cheng
and Malhi [41] deployed VGGNet and CaffeNet for feature extraction and classifica-
tion. They achieved highest accuracy of 90.4% in Top-2. Roth et al. [42] employed
3D FCN (UNet) for segmentation of seven abdominal organs. Their experiment com-
posed of two stages. In first stage, 3D FCN was trained on candidate region while
in second stage, organs were segmented in more detail. An overall mean dice score
from 68.5 to 82.2% was reported. Gibson et al. [33] segmented eight abdominal organs
by deploying DenseVNet architecture. The experiment was conducted on two pub-
licly available dataset: 43 subjects of Cancer Imaging Archive Pancreas-CT dataset
and 47 subjects of Beyond the Cranial Vault (BTCV) dataset for the segmenta-
tion challenge. They achieved the dice score of 0.95 on spleen, 0.93 on left kidney, 0.95 on
liver, 0.87 on stomach, 0.75 on pancreas, 0.73 on gall bladder and 0.63 on duodenum respec-
tively. Larsson et al. [43] employed two CNN architectures: CNN-sw and FCN on MICCAI
2015 dataset by simplifying the computation of training. They used multi-atlas technique
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for the localization of ROI and CNN for the voxal classification. An average dice score of
0.767 using FCN and 0.757 using CNN-sw was attained from their proposed system.

3.4.2 Single organ segmentation and classification

In this section we present the work of abdominal images using single organ of abdomen.
We elaborate the deep learning based segmentation and classification of four major organs
of abdomen: Liver, Kidney, Pancreas, and Stomach.

3.4.3 i. Liver

In this section we present the related work of liver. We explain the feature extraction,
segmentation, and classification techniques along with the performance evaluation. Gru-
ber et al. [44] conducted experiment on different type of liver lesions using the subset of
LiTS (Liver Tumor Segmentation) challenge dataset. They used 756 axial slices in training,
50 slices in validation and 50 for testing in their experiment respectively. They deployed
UNet CNN architecture to segment the tumor region and IoU of 0.93848. Adar et al. [45]
conducted experiment on 182 CT images of liver lesions (53 cysts, 64 metastases and
65 hemangiomas). They employed the CNN architecture to detect the lesions and named
it GAN model. They attained 92.4% specificity and 85.7% sensitivity using augmented
dataset.

Li et al. [46] performed liver lesion segmentation on 26 portal of enhanced CT images
acquired from Zhujiang Hospital. They generated 1 million patches of size 17×17 in training
and deployed CNN. Furthermore they compared the proposed system with the existing machine
learning techniques. The overall mean similarity coefficient of 80.06± 1.63%, precision
of 82.67 ± 1.43%, and recall of 84.34 ± 1.61% respectively. Cohen et al. [47] performed
semantic segmentation using UNet to detect the lesion and a dice of 83 was reported.

Schmauch et al. [48] investigate the focal liver lesion with the aid of deep learning tech-
niques for the detection and classification of liver lesion into two classes (malignant and
benign). They experimented on 367 ultrasound images. ResNet50 was deployed to extract
the feature vector of 2048. The liver lesion was detected using the local prediction technique
in which annotation was provided to the model. However, characterization of liver lesion
was accomplished with 7 neurons of densely connected layer. The proposed system revealed
mean ROC-AUC scores of 0.935 for liver detection and 0.916 for liver characterization.

Doğantekin et al. [49] extracted features 5 layer convolutional neural network and the
extracted features were fed to the SVM, KNN and ELM. The ELM outperformed and
reported 97.3% accuracy. They concluded that proposed system reduced the execution time
of CNN, hard disk space and improved the classification performance. Vorontsov et al. [77]
performed segmentation and detection of liver using fully convolutional network (FCN).
They experimented on Liver Tumor Segmentation (LiTS) challenge dataset that contains CT
images of the patients suffering from colorectal liver metastases. They reported the highest
Dice similarity coefficient of 0.68.

Christ et al. [78] segmented the liver and lesion with the aid of cascaded fully convo-
lutional neural networks (CFCNs) and dense 3D conditional random fields (CRFs) based
on the architecture of UNet. The ROI of liver segment was detected from first FCN and
input to the second FCN for the lesion segmentation. The results were refined using CRFs.
They worked on 3DIRCAD abdomen CT dataset and reported 94% dice score. In 2017,
they deployed same experiment on MRI images for the liver and tumor segmentation
[79]. They experimented on 38 MRI images and achieved over than 94% dice score. In
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the meanwhile, Sun et al. [80] segmented the liver tumors by employing multi-channel
FCN on CT images, where the feature vector was created by the fusion of features from
different channels.

Han [81] proposed deep convolutional neural network (DCNN) for the segmentation of
liver lesion. The proposed system revealed 0.67 dice score on 70 test CT scan images of
LiTS (Liver Tumor Segmentation Challenge) dataset. Li et al. [82] worked on the datasets of
MICCAI 2017 i.e. 3DIRCADb and LiTS Dataset. They designed H-DenseUNet architecture
for the segmentation of liver and tumor. A dice global of 96.5% was achieved on LiTS
Dataset and 0.937 on 3DIRCADb dataset for the tumor segmentation and 0.982 for liver
segmentation.

Ben-Cohen [50] deployed FCN for the detection of liver lesions and segmentation. The
experiment was accompanied on 333 annotated CT images. They proposed a deep learning
model based on UNet framework and attained dice of 83%.

3.4.4 ii. Kidney

We present the feature extraction, segmentation, and classification techniques of abdom-
inal images regarding to kidney in this section. Kline et al. [51] diagnosed polycystic
kidney disease (PKD) using MRI images of 2000 cases in training and 400 cases in test-
ing. They performed semantic segmentation by deploying UNet architecture of CNN. They
reported 0.96 dice score using single network and 0.97 dice score using multi-observer
respectively.

Zheng et al. [83] detected the congenital abnormalities in children due to the kidney and
urinary tract. Graph cuts method were used for the segmentation of kidney. They extracted
conventional features like geometrical features and histogram of oriented gradient (HOG).
Furthermore, they also extracted CNN based features. Linear SVM was used for the clas-
sification. The accuracy of 81%, 84%, and 87% on right, left, and bilateral kidney. In [84],
imagenet-caffe-alex model was deployed to explore the transfer learning techniques. They
extracted handcrafted and automated features. They claimed that integrating handcrafted
and automated features lead to improve the performance of classification and reported the
classification accuracy of 0.87 ± 2.1 on combined features.

Yin et al. [52] extracted features from pretrained VGG-16 and fine-tune through
DeepLab. They extracted the boundary of kidney using distance regression network and
performed semantic segmentation. Their proposed system revealed 98% accuracy. Kuo
et al. [53] performed transfer learning techniques using ResNet model. They achieved
overall accuracy of 85.6%.

Kannan et al. [85] employed CNN model for the classification of normal, nonglomeru-
lar, and globally sclerosed images. They collected 275 trichrome-stained images from 171
chronic kidney disease patients of Boston Medical Center. They attained 92.67% accuracy
on test set.

Al Imran et al. [54] diagnosed the chronic kidney disease using deep learning, logistic
regression, and feed-forward neural networks. They reported f1-score of 0.97 on deep learn-
ing model, 0.95 on logistic regression, and 0.99 on feed-forward neural networks respectively.
Salehinejad [55] performed 3D semantics segmentation using deep convolutional neural
networks (DCNNs). They compared the FCN with DCNN and reported the highest dice
similarity coefficient of 98.40% on cylindrical transform (CLT) using GoogLeNet.

Marsh et al. [56] used deep learning model for the classification of non-sclerosed and
sclerosed glomeruli from the 48 whole slide images of donor kidney biopsies. The pre-
trained VGG16 CNN was used as patch based and fully convolutional model. They attained
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the IOU of 0.9766 on Tubulointerstitial, 0.5949 on Non-sclerosed, and 0.3560 on Sclerosed
using fully convolutional CNN. Furthermore, IOU of 0.9160 on Tubulointerstitial, 0.2017
on Non-sclerosed, and 0.0713 on Sclerosed was reported respectively.

Bevilacqua et al. [86] performed sementic segmentation using deep learning model. They
experimented on 155 MRI images of four patients. They deployed encoder-decoder CNN
on full image and region of interest for the classification. Their architecture revealed 86%
accuracy on full image whereas, 84% accuracy on region of interest. Pedraza et al. [57]
employed pretrained AlexNet for the classification of glomerulus and non-glomerulus. They
conducted experiment on 10,600 region of interests (ROIs) images from 40 whole slide
images. The highest F-score of 0.999 was reported.

Sharma et al. [87] experimented on 244 CT scans of Autosomal Dominant Polycystic
Kidney Disease (ADPKD) patients. They trained fully convolutional network for seg-
mentation on slicewise axial-CT sections. Their system revealed overall Dice Similarity
Coefficient of 0.86 ± 0.07.

3.4.5 iii. Pancreas

Pancreas is one of major organ of abdomen. Computer scientists and machine learning
researchers play a significant work using the images of pancreas. We here present some of
notable work of pancreas.

Roth et al. [58] performed experiment on the contrast enhanced CT images of 82 patients
for pancreas segmentation. ConvNet was deployed and dice of 68% was retrieved on test
set. In [34], they deployed multi-level deep convolution networks (ConvNets) on patches
and regions and reported a Dice Similarity Coefficient of 71.8 ± 10.7% on test set.

Sekaran et al. [59] classified the pancreatic cancer from 1900 images of the dataset
obtained from the Cancer Imaging Archive (TCIA). They combined the Gaussian Mixture
model (GMM) with Expectation Maximization (EM) algorithm for the feature extraction.
The region of interest was detected by CNN and achieved the recognition rate of 99.9%
from the proposed combined system.

Oktay et al. [60] deployed UNet model for pancreas segmentation. They conducted
experiment on 150 abdominal 3D CT scans of TCIA CT Pancreas dataset. They attained
81.48 ± 6.23 DSC for pancreas labels.

Li et al. [88] diagnosed pancreatic cysts using densely-connected convolutional networks
(Dense-Net) without pre-segmenting the lesions. They worked on the images of 206 patients
and retrieved overall accuracy of 72.8%.

Zhu et al.[89] used ResNet for 3D coarse to fine segmentation of pancreas. They con-
ducted experiment on NIH and JHMI Pathological Pancreas dataset and reported DSC
84.59 ± 4.86% on NIH dataset. In [90] identified the pancreatic cancer i.e. pancreatic duc-
tal adenocarcinoma (PDAC) using 439 CT scans. They developed a multi-scale CNN for
tumor segmentation and achieved 56.46% accuracy, 94.1% sensitivity and 98.5% specificity
respectively.

Man et al. [91] proposed Deep Q Network(DQN) for the segmentation of pancreas
using deformable UNet. They worked on NIH dataset and attained 86.93 ± 4.92 mean dice
coefficient.

3.4.6 iv. Stomach

One of foremost organ of abdomen is stomach that play significant role in human body.
Computer vision and machine learning researchers deployed several architectures of CNN
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for feature extraction, segmentation, and classification using images of stomach. We here
present the notable contributions.

Shichijo et al. [61] deployed GoogLeNet CNN for the classification of positive or
negative Helicobacter pylori. Then they also performed the classification of 8 different
anatomical locations of the stomach using GoogLeNet. They reported accuracy, sensitivity
and specificity of 83.1%, 81.9%, 83.4% on first CNN and 87.7%, 88.9%, 87.4% on second
CNN respectively.

Garcia et al. [62] detected the lymphocyte gastric cancer using Immunohistochemistry
(IHC) images. Deep CNN model was trained with ADAM algorithm and accuracy of 94%
was attained.

Horie et al. [63] gathered 8428 training images and 1118 test images from Cancer
Institute Hospital of Japan for the detection of esophageal cancer. They developed a time
efficient CNN model and achieved 98% accuracy.

Itoh et al. [64] employed GoogLenet for the detection of HP infection and reported
sensitivity, specificity, and AUC of 86.7%, 86.7%, and 0.956 respectively.

Zhang [92] constructed an efficient CNN model named as GDPNet for the classification
of Gastric precancerous diseases. 1331 gastroscopy images were collected from Sir Run
Run Shaw Hospital. The GDPNet classified images into three classes: polyp, ulcer, and
erosion. They accomplished 88.90% accuracy on their proposed network.

Lee et al. [93] performed deep learning classification using transfer learning technique
with the aid of VGGNet, ResNet, and inception models. They collected the images from
Gil Hospital and developed dataset of 367 cancer, 200 normal, and 220 ulcer images. They
reported highest accuracy of 0.9649 on ResNet-50 for the classification of normal and
cancer classes.

Li et al. [65] experimented on BOT gastric slice dataset that is available publicly.
They developed CNN based architecture called GastricNet for the identification of gas-
tric cancer. An average accuracy of 97.93% was retrieved on patches and 100% on slices
correspondingly.

Takiyama et al. [94] deployed GoogLeNet architecture for the classification of four
anatomical locations and the sub-classification of stomach images into three regions. They
conducted experiment on 27,335 EGD images in training and 17,081 images in validation.
They achieved AUC of 0.99 for stomach and duodenum images and 1.00 for larynx and
esophagus images respectively.

Zhu et al. [66] used the transfer learning techniques of ResNet50 and developed CNN-
CAD system for the diagnosis of gastric cancer. They experimented on 790 images and 203
test images. Rotation was performed as a data augmentation technique to increase the data
samples. They reported the overall accuracy of 89.16%. The qualitative analysis of deep

Table 5 Qualitative Analysis of Deep Learning Classification Techniques of Abdominal Images based
Systems from 2017 to 2019

Classification Techniques Description Related Studies

Image Classification Image classification refers to a pro-
cess in computer vision that can
classify an image according to its
visual content.

[33, 41, 43, 45, 46, 48, 49, 52–57,
61–66, 83–85, 88–90, 92–94]

Pixelwise Classification/
Semantic Segmentation

Semantic segmentation refers to the
process of linking each pixel in an
image to a class label.

[34, 37–39, 42–44, 47, 50, 51, 55,
58, 60, 77–82, 86, 87]
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learning based classification techniques used in the abdominal imaging systems from 2017
to 2019 are reported in Table 5.

4 Performance evaluationmatrices

The effectiveness of any abdominal images based segmentation or classification system was
evaluated by computing evaluation measures based on four major outcomes; true positives
(tp), false positives (fp), true negatives (tn) and false negatives (fn). The performance of the
proposed system is computed using the following measures:

Accuracy is used to determine the classes of proposed system correctly. To evaluate the
accuracy of a test set, we compute the proportion of true positive and true negative in all
evaluated cases computed as:

Accuracy = tp + f n

tp + tn + fp + f n
(1)

Sensitivity or Recall measure the ability of system to correctly classify the classes and is
calculated from the proportion of true positives. It is calculated as:

Sensitivity = tp

tp + f n
(2)

Specificity is the ability of the model to accurately classify the actual class and is computed
as:

Specif icity = tn

tn + fp
(3)

Precision is the true positive relevant measure and is calculated as:

Precision = tp

tp + fp
(4)

F-score or F1 score or F-measure is used to measure the accuracy of test set. It is the
harmonic mean of precision and recall measured as:

F − score = 2.
Precision.Recall

P recision + Recall
(5)

Dice coefficient also called the overlap index or Sørensen–Dice coefficient, is a met-
ric for validation of medical image segmentation. The pair-wise overlap of the repeated
segmentation is calculated using the Dice, which is defined by:

Dice = 2tp

2tp + fp + f n
(6)

IOU also known as Jaccard index is computed by comparing the number of pixels in each
category in which the predicted and annotated labels agree (intersection) divided by the total
number of predicted and annotated pixels assigned a label for that category (union).

IOU = Areaof Overlap

Areaof Union
(7)
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The existing models were usually based on the aforementioned performance evalua-
tion measures as illustrated in Table 7. However recent researches released three recent
measures to evaluate the similarity region of images i.e. pixel-wise accuracy of the segmen-
tation, region similarity, and structure similarity [115]. We elaborate these recent evaluation
measures for the IT researcher that will work on this domain.

Region Similarity measures the correct similarity of two region maps. It is computed as:

RS = (1 + β2)P recision × Recall

β2)P recision + Recall
(8)

where β2 is the trade off between precision and recall and its suggested value is 0.3 [116]

Pixel-wise Accuracy compute normalized and mean absolute error between predicted map
(M) and ground map (G).

PA = 1

W × H

W∑

x=1

H∑

y=1

‖M(x, y) − G(x, y)‖ (9)

where W is width and H is height of images.

Structure similarity also known as enhanced alignment measures sturctural similarity
between regions and objects of predicted map and ground truth [117].

QFM = 1

W × H

W∑

x=1

H∑

y=1

φFM(x, y)φFM = (f (ξFM) (10)

where is the function of absolute value ξ .

φFM = (f (ξFM) (11)

The overall qualitative state of art is presented in Table 7 that shows the publication year,
abdominal type, dataset, modality of images in the dataset, features, models and perfor-
mance evaluation respectively. The list of abberivations used in the related work and Table 7
is presented in Table 6.

Table 6 List of Abbreviations

CT- Computed Tomography US- Ultrasound CT- Computed Tomography

MRI- Magnetic Resonance Imaging WSI- Whole Slide Images

TS- Trichrome-Stained images CA- Computational Anatomy

CHOP- Children’s Hospital of Philadelphia TCIA- The Cancer Imaging Archive

BTCV-Beyond the Cranial Vault MICCAI- Multi-Atlas Labeling Beyond the Cranial Vault

CNN- Convolutional Neural Network DCNN- Deep Convolutional Neural Network

DMPCT- Deep Multi-Planar CoTraining FCN- Fully Connected Network

GMM-EM- Gaussian Mixture model with
Expectation Maximization

SVM- Support Vector Machine

AC- Accuracy DSC- Dice-Sørensen Coefficient

MDS- Mean Dice Score FS-F1-Score

SP- Specificity SN-Sensitivity
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5 Main findings

This survey presents the emerging landscape of deep learning techniques in the domain of
abdominal imaging system using multiorgan and single organ that is useful for computer-
aided diagnosis applications. We discuss the various feature extraction, segmentation, and
classification techniques using deep learning techniques regarding to multiorgan and four
single organ of abdomen i.e. liver, kidney, pancreas, and stomach. This survey draws an
integrated depiction of how distinct healthcare activities are accomplished in a pipeline
to facilitate individual patients from multiple perspectives. The existing reviews did not
provide the detailed explanation using multiorgan and four single organ using deep learning
models.

We have performed two types of analysis to show the trend of the research direc-
tion: quantitative analysis and qualitative analysis. In quantitative analysis, we use Google
Scholar search engine to evaluate the most cited paper between 2017 to 2019 regarding to
multiorgan and single organ. There are 983 publications found at Google Scholar on the
query ”MultiOrgan abdominal images segmentation/classification using deep learning mod-
els. The most cited paper was presented by Gibson et al. [33] with 108 citations. Similarly,
we used the same query is used for single organ by replacing multiorgan with liver, kidney,
pancreas, and stomach respectively. We found 8000 publications on liver, 5400 on kidney,
2000 on pancreas, and 4300 on stomach correspondingly. On deep insight, mostly publica-
tions are duplicated in the search query. The most cited paper of liver was presented by Li
et al. [82] with 186 citation. The publication by Hu et al. [118] in 2017 got 86 citation and
become the most cited paper of kidney. Oktay et al. [60] presented attention UNet model
for pancreas segmentation and become the most popular publication of pancreas with 169
citations. Sharma et al. [119] presented CNN model for classification of gastric carcinoma
and become most cited paper of stomach with 87 citations. Finally we analyze that there are
more than 500 publications on abdominal images either multiorgan or single organ. This
seems that a lot of work is presented in this domain thus we present some of most notable
contributions in our survey specially the deep learning based techniques.

In qualitative analysis, we have presented the online available dataset, preprocessing
techniques, feature extraction, segmentation and classification techniques of multiorgan and
single organ in Section 3 comprehensively. The online publicly available datasets are pre-
sented in Table 2 along with the web URL. The qualitative techniques of preprocessing,
feature extraction, and classification from 2017 to 2019 are reported in Table 3, 4, 5. Further-
more, we present the notable contributions in Table 7. The table 7 illustrate the publication
year, dataset type (multiorgan or single organ), modalaity type of images, dataset, CNN
model, and performance measure respectively.

6 Current Trends, Limitations and Challenges

This review provides the detail on the deep learning techniques deployed for the abdominal
images either in multi-organ or single-organ. The review discussed the deep learning based
literature of five abdominal organs (liver, kidney, stomach, pancreas and intestines). Deep
learning models provides the tremendous results and improvement in the research domain
however, there is still room for improvement. We highlight some of the notable challenges
of the domain in this section that pave the path for future research in this domain graphically
illustrated in Fig. 4.
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Fig. 4 Challenges of Abdominal Images Classification

Starting from the image acquisition, the most facing challenge is whole-body organ
scans. In the analysis of multiorgan, several organs and their structures are need to be cap-
tured simultaneously. The appearance, shape and size of abdominal organs vary among the
patients that is a challenging task in scanning. It is also noted that small organs of abdomen
are less often investigated than major organs. However, in clinical applications, small organs
play a significant role in diagnosis like cancer screening is diagnosis form the small organs.
There is a need of optimal acquisition device that overcome these challenges. Another
important challenge regarding to the CT scans of abdominal image is the artifacts that can
arise in images. Different types of artifacts that arise in the abdominal images are beam-
hardening, partial-volume and streak artifacts. The beam-hardening artifacts are resulting
as focal regions of low attenuation contiguous to bones. The partial-volume artifacts arises
in blurred edges results from the spatial averaging of distinct abdominal tissues in close
proximity. The streak artifacts arises due to the motion of patient results from the respira-
tory, cardiac and peristalsis motion etc. Another important aspect is that several abdominal
organs have similar gray levels, homogeneity of image slices and similar visual appearance
which consigns thresholding to limited utility.
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One of the notable challenge is availability of the public datasets. The researchers worked
on the private datasets collected from different hospitals. The patients in the hospitals feels
insecure to provide their data, thus only a small amount of data samples were experimented.
Similarly, annotated dataset is also limited that leads to the recurrent challenge in medical
imaging. This challenge mostly arises when modeling the anatomical structures of multi-
organ in which large datasets are required not only to locate each organ at particular location
but also to find the relations of the complex inter-organ of abdominal images. Similarly,
the deep learning models requires enormous amount of training data in order to provide
the best performance. In case of abdominal images, only a few data repositories like VIS-
CERAL[120], NIH Cancer Imaging Archive [35] and UK Bio Bank Imaging Study [121]
exists. These repositories does not contains the data of all the abdominal organs, anyhow,
combining the organs data was performed. Another limitation of these repositories data is
that annotations are not provides with most of the images. This leads to the critical chal-
lenge in anatomy and computer aided systems. Therefore, there is need to develop the large
datasets with the proper annotations for the multiorgan analysis.

Moving towards the multiorgan segmentation of the abdominal images, annotation is
one of the hot challenge. There is a large variation exists in the size, shape, location and
appearance of the organs, thus the challenge exist in locating the anatomical structures in the
target image. Another important factor is to define the fuzzy boundaries of adjacent organs
and soft tissues of abdomen. This become challenging due to the similar visual appearance
and the gray level intensities of the organs. One more challenge is to ensure the consistency
of global spatial in labeling or annotating of the patches.

Another common challenge facing by the researcher is high inter-subject variability that
occurs in abdominal organs due to the differences in disease status, age, physique, gender
and intricate relations of inter-organ. Some challenges are persuaded by respiratory cycle,
body pose status of digestive system, edema etc. Another important challenge is the inherent
inter-organ and intra-organ variability with the development of age and body. It is one of
the hot challenge in the future computer aided and computational anatomy systems because
it needs the development of more comprehensive multiorgan system that characterize the
organs with the diversity of age [122] and fetal stage[123].

7 Conclusion and future recommendations

In this survey paper, we provided the deep learning techniques for the abdominal images
classification. The effective implementation of organs segmentation from abdominal images
can aid scientific workflows in multiple clinical domains like computer-assisted diagnostic
intervention, treatment planning and delivery, surgical planning and delivery, intraoperat-
ablity, planning radiation therapies and so on. These potential benefits recently encouraged
the interest in the development of more comprehensive computational anatomical mod-
els. Therefore, despite of multi-organ systems, we also surveyed the five single organs
of abdomen i.e. liver, kidney, stomach, pancreas and intestines. We highlight some of the
notable challenges of the domain in the previous section that pave the path for future
research in this domain. Here we present some of the directions that will be helpful for the
future researchers of the domain.

There is a need of optimal acquisition device that will investigate the small organs for
cancer screening as well as minimize the artifacts in the images. Next, we are suggesting
to explore the improved image enhancement and preprocessing algorithms that consigns
thresholding to vast utility because several abdominal organs have similar gray levels,
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homogeneity of image slices and similar visual appearance that become a hurdle of the
domain. With the advancement in image processing, there are many thresholding algorithms
that tackle this challenge. There is a critical need to develop the publicly available datasets
for the researchers as it is one of foremost requirement to perform any machine learning
or computer vision task. It can also be noted that the available datasets contain less data
samples that is a obstacle in the deployment of deep learning models. Similarly, annotated
dataset is also limited that leads to the recurrent challenge in medical imaging. Therefore,

Fig. 5 Future Recommendations for Researchers
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there is need to develop the large datasets with the proper annotations for the multiorgan
analysis.

With the rise of technological innovation and personalised medicine, big data analytics
has the potential to make a huge impact on our life i.e. how it helps to predict, prevent,
manage, treat and cure disease. Big data is the name given to the larger and enormous data-
sets that are usually complex so that traditional information processing techniques are not
enough to deal with them. It helps, government agencies, policy maker and hospital to man-
age resources, improving medical research, planning preventative methods and managing
epidemic [124]. we are suggesting to explore and investigate the implementation of big data
in the domain of abdominal imaging based system.

Furthermore, there is need to explore recent CNN architectures like Local Estimation and
Global Search (LEGS) [125], Multi-Context (MC) deep learning [126], Multiscale Deep
Features (MDF) [127], Deep Contrast Learning (DCL) for salient object detection [128],
Encoded LowLevel Distance map (ELD) [129], Deep Hierarchical Saliency (DHS) net-
work for salient object detection [130], Recurrent Fully Convolutional Networks (RFCN)
[131], Deep Image Saliency Computing (DISC) [132], Integrating Multi-level Cues (IMC)
[133], Non-Local Deep Features (NLDF) for salient object detection [134], Aggregating
Multi-level Convolutional Features for Salient Object Detection (AmuletNet) [135] , Deep
Saliency (DS) [136], WSS [137], and MSR [138]. Another important technique in medical
images is attention mechanism that need to be explore in abdominal imaging systems.

At the end of the article, we graphically represent the future directions in Fig. 5. Having a
glance on Fig. 5 it can be concluded that large researches has been conducted but much more
is necessary until the problem of the abdominal images classification and segmentation can
be considered largely solved.
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75. Korkmaz SA, Bı́nol H, Akçiçek A, Korkmaz MF (2017) A expert system for stomach cancer images
with artificial neural network by using hog features and linear discriminant analysis: Hog lda ann.
In: 2017 IEEE 15th International Symposium on Intelligent Systems and Informatics (SISY), IEEE,
pp 000327–000332

30349Multimedia Tools and Applications (2021) 80:30321–30352

http://arxiv.org/abs/1804.03999
https://doi.org/10.1155/2017/1413297


76. Korkmaz SA, Binol H (2018) Classification of molecular structure images by using ann, rf, lbp, hog,
and size reduction methods for early stomach cancer detection. J Mol Struct 1156:255–263
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