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Abstract
Reconstructing an original image from its corrupted observation is an important and funda-
mental problem in many image processing applications. Generally, theL1-norm orL2-norm
combined with a regularization term (the total variation (TV), total generalized variation
(TGV) or nuclear norm) is used to fit the impulse noise and Gaussian noise, respectively.
However, these methods can only be used to remove a single type of noise from images,
and traditional regularization terms often have difficulties in capturing some important prior
knowledge of images, such as nonlocal self-similarity, low rank and sparsity. To overcome
the above issues, we propose a mixed noise removal model with L1-L2 fidelity terms and a
popular nonlocal low-rank regularization term, which has been shown to have more effective
image denoising performance than traditional regularization methods. To solve this model,
the split Bregman iteration method (SBIM) is adopted to decompose the difficult minimiza-
tion optimization problem into four simple subproblems. Extensive experiments on natural
images demonstrate that the effectiveness of the proposed method is better than that of other
state-of-the-art methods.

Keywords Mixed denoising model · Inverse problem · Alternative minimization ·
Image processing

1 Introduction

Reconstructing a true image from its poor-quality observation is one of the most important
issues in image processing applications [5, 37, 38, 41]. Generally, we encounter two types of
noise during the image acquisition process: impulse noise (IN) and additive white Gaussian
noise (AWGN). IN is generally produced due to transmission errors and damaged pixels in
camera sensors, and AWGN is generally produced during the image acquisition itself [4].
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Many methods have been developed for removing either AWGN or IN. However, a mixture
of IN and AWGN is normally encountered in real-life applications, which makes image
denoising a challenging problem.

Formally, the aim of the denoising problem is to solve the inverse problem

Au = f (1)

Here, A is an identity operator or blurring operator, and f is the known data (observed
image) from the sensors, which may be of poor quality. u : Ω ⊂ Rd → R denotes the
unknown object (uncorrupted image).

Assume that u is an instance of a random variable U itself, and the corrupted image
follows the conditional probability density p(f ; u) = p(f |U = u) = p(f |u). Given
f , we can obtain the posteriori probability density for u based on the Bayesian formula
p(u|f ) = p(f |u)p(u)

p(f )
.

To resolve u when it is polluted by Gaussian noise only, we can rewrite (1) as follows:
Au+ε = f,whereε ∼ N(0, σ 2). Therefore, we can effectively remove the Gaussian noise
by solving the optimization problem in (2), where we dropped every term that is independent
of u.

û = argmin
u∈L1(Ω)

{
1

2σ 2
‖Au − f ‖2

L2(Ω)
− log (p (u))

}
(2)

Because Ω in (2) is bounded with a finite measure and L∞ (Ω) ⊂ L2 (Ω) ⊂ L1 (Ω),
the L2-norm can fit the Gaussian noise [55]. In the last term − log (p (u)), we can add some
prior information about images u (e.g., piecewise smoothness [46] and the sparsity prior
[14, 15, 35, 40, 41, 62, 64, 65]). We often choose the Gibbs function [25] as the prior, i.e.,
p (u) ∼ e−λR(u). Here, R : L1 (Ω) → [0,∞] is a convex energy function. Therefore, we
can rewrite (2) as follows:

û = argmin
u∈L1(Ω)

{
‖Au − f ‖2

L2(Ω)
+ λR (u)

}
(3)

Here, R (u) is a regularization term.
For images polluted by IN only, which may be random-valued IN and salt-and pepper

noise in real-life applications, we can replace the L2 fidelity term ‖Au − f ‖2
L2(Ω)

with L1

fidelity, which performs well in removing outliers and IN. Then, we can obtain the following
optimization problem for IN removal:

û = argmin
u∈L1(Ω)

{‖Au − f ‖L1(Ω) + λR (u)
}

(4)

The aforementioned approaches mainly concentrate on AWGN or IN denoising. How-
ever, a mixture of AWGN and IN is frequently encountered in practice, which makes the
problem of image noise reduction considerably more challenging due to the very differ-
ent distributions of the two types of noises. Based on the above derivations for the image
affected by either Gaussian noise or IN, we can define a flexible mixed noise removal frame-
work as follows, and many previous mixed AWGN and IN noise removal methods [8, 26,
29, 52, 55] can be expressed under this framework:

argmin
u∈L1(Ω)

⎧⎨
⎩

μ1‖Au − f ‖L1(Ω)

+ μ2 ‖Au − f ‖2
L2(Ω)

+ λR (u)

⎫⎬
⎭ (5)

Here, μ1, μ2 and λ are weight parameters which balance the mixed noise and regular-
ization term. The noise parameters are unknown and need to be estimated in real-world
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denoising applications. The L1 and L2 data fidelity terms in (5) restrain the solution of min-
imization problem (5) to preserve the origianl image information as much as possible by
fitting the noise distribution. The L1 data fidelity has been proved to be more appropriate
for fitting the impulse noise, while L2 data fidelity is offten used to modeling the Gaussian
noise distribution. The regularization term R(u) places limits on u and forces the solution
of (5) to show the supposed properties of our prior knowledge.

Inspired by the different prior knowledge studied over the past decades, we proposed a
variational model that combines various popular image denoising techniques. Specifically,
L1 [57] and L2 [25] norms are used to capture the IN and the GN noise, respectively.
The TV norm [46] is employed to preserve the edge information of the image with sharp
discontinuity. In addition, to maintain the nonlocal similarity and sparsity of natural images,
a nonlocal low-rank regularization (NLR) [17] term is introduced.

In the experiments, we compare our method with other state-of-the-art methods on nat-
ural images. The extensive experimental results have verified that the proposed method
performs better than all compared methods.

The main contributions of this work are as follows: (1) A mixed noise removal model
is proposed, which combines multifidelity terms, TV norm and NLR. (2) SBIM is used
to solve the proposed model by decomposing the minimization problem of the model into
multiple simple subproblems and obtains a solution to a large global optimization problem
by coordinating the solutions of the subproblems. (3) The performance of visual quantitative
indicators is improved compared with other state-of-the-art mixed noise removal methods.

The remainder of this paper is organized as follows. Section 2 describes some related
works. The details of the proposed method are given in Section 3. Section 4 presents the con-
vergence analysis of the proposed model. In Section 5, we present the experimental results
that demonstrate our model’s performance using a variety of real-world images. Finally, the
conclusions are drawn in Section 6.

2 Related work

Numerous previous methods have been developed for image denoising over the past
decades, and they can be roughly divided into three categories: filtering methods, variational
optimization methods and machine learning methods.

(1). Filtering methods modify the noisy image such that the denoised image can maintain
several characteristics in the spatial domain or dictionary domain. In the spatial domain,
clean images normally maintain local similarity, nonlocal self-similarity (NSS) and low-
rank properties. Local similarity refers to the fact that the pixel value is closely related to its
surrounding neighbors, and the local filters estimate the original pixel of the noisy image by
averaging the values of neighbors, such as a linear filter (Gaussian filter, mean filter) and
a nonlinear filter (bilateral filter, median filter) [43]. NSS refers to the fact that for a given
local patch in a natural image, one can find many patches that are similar to it across the
image. To capture the NSS of images, nonlocal filters must first collect similar patches into
groups and then remove noise according to the features of similar patches. For example, the
nonlocal means filter (NLM) [5] takes the mean of all pixels in the image, weighted by how
similar these pixels are to the target pixel. To remove AWGN and IN simultaneously, [54]
introduced the robust outlyingness ratio (ROR) to NLM as an IN detection mechanism. [39]
proposed a fast nonlocal means filter (FNLM), which accelerates the NLM algorithm by
eliminating pixels that have small weights. [18] proposed an adaptive NLM that tunes the
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parameters of the NLM-based patch regularity. [21] proposed a parameter-free NLM that
precomputes the optimal parameters of NLM in an image database.

Low rank assumes that the clean image matrix or patch matrices often have a low-rank
property, and we can recover a low-rank matrix approximation (LRMA) as the denois-
ing result from the noise observation. Low-rank matrix factorization (LRMF) and nuclear
norm minimization (NNM) are two popular classes of methods for solving the LRMA
problem. LRMF factorizes the noise image matrix into the product of two low-rank matri-
ces while simultaneously constraining certain fidelity on the noisy image. For example,
according to the Eckart–Young–Mirsky theorem [19], the basic LRMF problem under the
Frobenius norm can be solved by truncating the rank of the singular value matrix to k.
[47] proposed a weighted Frobenius norm to measure the deviation between the recon-
structed image and noisy image and solved the new LRMA problem by an EM algorithm.
Instead, the noisy image is decomposed into different parts, and NNM recovers the under-
lying low-rank matrix u from the corrupted image f by minimizing the nuclear norm of u.
For example, [9] proved that many NNM problems can easily be solved in closed form by
imposing a soft-thresholding operation on the singular values of the observation matrix. [30]
proposed a weighted low-rank model (WLRM) for mixed noise removal, which assigned
the residuals in the objective function different weights. [59] propose a truncated nuclear
norm (TNNR) to approximate the rank function, which minimizes the k smallest singular
values of the low-rank image matrix. [53] proposed a weighted Schatten p-norm minimiza-
tion (WSNM) method that generalizes the NNM to the Schatten p-norm minimization with
weights assigned to different singular values.

In the dictionary domain, noisy images or patches are projected into the dictionary
domain, and the coding of clean images shows a sparse property. The methods mainly dif-
fer in how to choose the dictionary and how to sparsify the encoding. One approach to
choose the dictionary is from a fixed set of transforms (steerable wavelet, curvelet, con-
tourlets, bandlets). When the noisy image is transformed, the denoising method shrinks the
coefficients of coding and reconstructs images through an inverse transform [3]. Another
approach is learning the dictionary from an image database or patches. For example, K-
SVD [41] learns the optimal dictionary by performing a k-means algorithm on the singular
value decomposition of clean images, and once the dictionary is constructed, we can denoise
the image by orthogonal matching pursuit (OMP). PCA filters construct orthogonal dictio-
naries by performing principal component analysis on image patches and then shrinks the
coefficients of the principal components by different functions, such as PB-PCA, PGPCA,
PLPCA and PHPCA [3]. [13] proposed a clustering-based method (K-LLD) that bridged
dictionary-based approaches with regression-based frameworks.

The above methods mainly exploit single image characteristics to remove noise; how-
ever, some works are combine NSS, low rank and sparse coding. For example, BM3D [35]
exploits NSS by grouping similar patches into a 3D block and collaborative filtering of the
block in the transform domain. [40] proposed a method that extends and combines non-
local means and sparse coding by learned simultaneous sparse coding (LSSC) such that
similar patches share the same dictionary elements in their sparse decomposition. [51] pro-
posed a powerful image model for mixed noise removal that connects low-rank methods
with simultaneous sparse coding by spatially adaptive iterative singular-value threshold-
ing (SAIST). The weighted encoding and sparse nonlocal regularization are unified in
the weighted encoding model for mixed noise removal (WESNR) [29] by weighting the
encoding residual to follow a Gaussian distribution. [27] grouped similar patches in the
spatiotemporal domain and formulated the video restoration problem as a joint sparse
and low-rank matrix approximation problem. [16] proposed nonlocally centralized sparse
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representation (NCSR), which exploits NSS to estimate the sparse coding coefficients of
the original image.

(2) Variational optimization-based image denoising methods have been studied for sev-
eral decades. Most of these works use different regularization terms to add prior knowledge
on u. Traditional regularizers mainly include Tikhonov regularization [48], total variation
(TV) regularization [11, 42, 46], total generalized variation (TGV) regularization [6, 34]
and sparsity-based regularization [62, 64, 65]. For example, if we choose the regularization
term in (3) as R (u) = ‖∇u‖L1(Ω), then the resulting model will become the famous ROF
model [46].

The TV-L1 model [57] improved ROF by replacing the squared L2-norm in the data
fidelity term with the robust L1-norm. Although there is only a slight difference between
the ROF and TV-L1, the TV-L1 model has the following advantages: 1) It is shown to be
contrast invariant. 2) The TV-L1 model is considerably more effective at removing noise
containing strong IN (e.g., salt-and-pepper noise). Because of the efficient performance of
the TV-L1 model in removing strong IN, the L1-data fidelity term ‖f − Au‖1 has been
widely used in related studies [31, 33, 45]. In addition, some scholars have improved the
TV-L1 model by introducing a second regularization term, as in the following equation:

û = argmin
u

{γ1

2
‖f − Au‖1 + α

2
‖∇u (x)‖22 + ‖∇u (x)‖1

}
(6)

Since (6) is nonconvex, it is difficult to directly solve the minimization problem. Cai et al.
[10] proposed the following two-stage segmentation method based on the Mumford–Shah
model which replaced the L1 norm with L2 norm.

û = argmin
u

{γ1

2
‖f − Au‖22 + α

2
‖∇u (x)‖22 + ‖∇u (x)‖1

}
(7)

Here, γ1 and α are positive weight parameters. To remove the mixed Gaussian noise and
IN, a combined L1 − L2 data fidelity term was suggested, and Shi et al. [28] proposed the
following model by combining (6) with (7):

û = argmin
u

{ γ1
2 ‖f − Au‖1 + γ2

2 ‖f − Au‖22
+ α

2 ‖∇u (x)‖22 + ‖∇u (x)‖1
}

(8)

Here, α > 0, γ1 ≥ 0, and γ2 ≥ 0 are parameters for balancing the data fidelity terms and
the regularization terms.

The sparse-based regularization models can be expressed as the following problem [26],
where the regularization term enforces the code of result to be sparse in the dictionary
domain. As described in the filtering method, the dictionary can be precomputed in an image
database or built on corrupted patches.

û = argmin
u∈L1(Ω)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

‖Au − f ‖2
L2(Ω)

+η
M∑
i=1

‖Riu − Dαi‖2L2(Ω)

+λ
M∑
i=1

ϕ (αi)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(9)

Here, Ri ∈ Rn×N is the matrix that is extracted from an image patch with size
√

n × √
n

centered at the pixel position i, D ∈ Rn×k denotes the dictionary, and ϕ (αi) denotes the
sparsity penalty on the sparse codes αi ∈ RK .

Since the sparse coding can be connected with a low-rank approximation [51], Dong
et al. [17] proposed an NLR to maintain the low rank and sparsity of the image. Huang
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et al. [26] developed an efficient mixed noise removal model that exploits a Laplacian scale
mixture (LSM) to model mixed noise and NLR to model prior knowledge. In the nonlocal
rank regularization methods, the key is to solve the rank minimization subproblem, and it
can be approximately solved by minimizing the following optimization problem [17]:

E (u, ε) = log det (u + εI) (10)

Here, u ∈ Rn×n is a symmetric positive semidefinite matrix, and ε denotes a small constant
value.

(3) Machine learning methods have been applied to many domains over the past decade,
and such methods can be exploited for image denoising in two different ways. The first
approach employs the learned model to solve a subproblem of other image denoising meth-
ods more quickly and efficiently. For example, Zhang et al. [61] decomposed the AWGN
denoising model into a fidelity-term-related subproblem and a denoising subproblem by half
quadratic splitting (HQS) and then trained a set of CNN denoisers to solve the denoising
subproblem. Wang et al. [50] decomposed the mixed denoising model into four subprob-
lems by the alternating direction method of multipliers (ADMM), and then they used a CNN
as a Gaussian denoiser for the u subproblem.

Another approach removes the noise directly based on the learned model. Such methods
are typical supervised learning methods that train models in a clean-noise paired dataset,
such as the traditional machine learning methods Markov random fields (MRFs) [36], lin-
ear regression [63] and multilayer perceptrons [7]. Recently, many deep learning methods
have been proven to be powerful tools for image denoising. [60] proposed a blind Gaus-
sian denoising convolutional neural network (DnCNN) that predicts the residual image
between the noisy observation and the latent clean image. [2] proposed a block-matching
convolutional neural network (BMCNN) method that contains the denoising and averag-
ing operations on the image patches. [2] proposed a blind denoising method GAN-CNN
that employs a generative adversarial network (GAN) to build paired training datasets for
CNN [2]

3 Proposedmixed noise removal method

Based on (5), we can reformulate our proposed mixed noise removal model as follows:

û = argmin
u∈L1(Ω)

⎧⎨
⎩

μ1‖Au − f ‖L1(Ω) + μ2 ‖Au − f ‖2
L2(Ω)

+λ1‖∇u‖L1(Ω) + λ2
∑
i

rank
(
R̃j u

)
⎫⎬
⎭ (11)

Here, the regularization term R(u) = (‖∇u‖L1(Ω),
∑
i

rank
(
R̃j u

)
) combines the TV

with NLR [17] and λ = (λ1, λ2) denotes the weight parameter of TV and NLR regular-
ization terms. R̃j u = [

Rj0u,Rj1u,Rj2u, ..., Rjm−1u
] ∈ Rn×m denotes the matrix formed

by the similar patch set of the exemplar image patch uj ∈ Rn that is
√

n × √
n in size and

centered at position j , and R̃j is an operator to extract the similar patches.
The rank minimization problem can be approximated using the surrogate function

E (u, ε), which has been proven to be better than the nuclear norm [17]. For a general matrix
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Xi ∈ Cm×n, n ≤ m, which is neither square nor positive semidefinite, Dong et al. [17]
slightly modified (10) into the following:

L (X, ε) = log det

((
XXT

) 1
2 + εI

)

= log det
(
(Σ)

1
2 + εI

)

=
r0∑

r=1
log (σr (X) + ε)

(12)

Here, Σ is a diagonal matrix whose diagonal elements are eigenvalues of the matrix
XXT , i.e., XXT = UΣU−1, Σ1/2 is the diagonal matrix whose diagonal elements are
the singular values of the matrix, and σr (X) denotes the rth singular value of X, r0 =
min (n, m). By combining the above energies, we formulate the nonlocal low-rank-based
mixed noise removal model as follows:

û = argmin
u∈L1(Ω)

⎧⎨
⎩

μ1‖Au − f ‖L1(Ω) + μ2 ‖Au − f ‖2
L2(Ω)

+ λ1‖∇u‖L1(Ω) + λ2
∑
i

L
(
R̃j u, ε

)
⎫⎬
⎭ (13)

Here, L
(
R̃j u, ε

)
refers to

L
(
R̃j u, ε

)
= log det

((
R̃j u

(
R̃j u

)T
) 1

2 + εI

)

= log det
(
(Σ)

1
2 + εI

)

=
r0∑

r=1
log
(
σr

(
R̃j u

)
+ ε
)

(14)

Numerous methods can be used to solve model (13), such as the split Bregman iter-
ation method (SBIM) [22], the primal-dual approach [12, 20], ADMM [23, 24] and the
augmented Lagrange multipliers (ALM) method [32].

ALM transforms constrained optimization problems into unconstrained optimization
problems by combining the Lagrange multiplier term with a quadratic penalty function.
ADMM extends ALM by breaking the ALM optimization problem into several subprob-
lems and obtaining the corresponding solutions alternately. However, in image processing,
because the objective function generally contains L1 and L2 norms, the subproblems must
optimize the L1 and L2 norms simultaneously, which is not an easy task. SBIM introduces
several auxiliary variables and decouples the L1 and L2 norms into different subproblems.
Therefore, the algorithm could solve the L1 subproblem with Bergen iteration and the L2
subproblem with other efficient convex optimization methods separately. In addition, SBIM
uses less memory and is easy to code. Therefore, in this paper, we choose SBIM to solve
(13).

We separate the optimization problem (13) into multiple simple subproblems. Specifi-
cally, we first introduce auxiliary variables h = f − Au, d = ∇u and Lj = R̃j u, and then
we turn (13) into the optimization problem (15).

⎧⎪⎪⎨
⎪⎪⎩

arg min
u∈L1(Ω)

⎧⎨
⎩

μ1‖Au − f ‖L1(Ω) + μ2 ‖Au − f ‖2
L2(Ω)

+λ1‖∇u‖L1(Ω) + λ2
∑
i

L
(
R̃j u, ε

)
⎫⎬
⎭

s.t . h = f − Au, d = ∇u,Lj = R̃j u

(15)

33049



Multimedia Tools and Applications (2020) 79:33043–33069

The augmented Lagrangian equation for (15) is as shown in (16):

L
(
uk+1, hk+1, dk+1, Lk+1

j

)

= μ1‖h‖L1(Ω) + μ2 ‖Au − f ‖2
L2(Ω)

+ λ1‖d‖L1(Ω)

+λ2
∑
j

L
(
Lj

)+ γ1

∥∥∥h − (f − Au) − bk
1

∥∥∥2
L2(Ω)

+γ2

∥∥∥d − ∇u − bk
2

∥∥∥2
L2(Ω)

+ γ3
∑
j

∥∥∥Lj − R̃j u − Uk
j

∥∥∥2
L2(Ω)

(16)

Therefore, we solve the u, h, d, and Lj -subproblems as follows.

3.1 u-subproblem

By applying the variable splitting method to (16), u has the minimization problem (17).

uk+1 = argmin
u∈L1(Ω)

⎛
⎜⎜⎜⎜⎜⎜⎝

μ2 ‖Au − f ‖2
L2(Ω)

+ γ1
∥∥h − (f − Au) − bk

1

∥∥2
L2(Ω)

+ γ2
∥∥d − ∇u − bk

2

∥∥2
L2(Ω)

+ γ3
∑
j

∥∥∥Lj − R̃j u − Uk
j

∥∥∥2
L2(Ω)

⎞
⎟⎟⎟⎟⎟⎟⎠

(17)

The optimal value of uk+1 must satisfy the following Euler-Lagrange equation:

(μ2 − γ1) AT Au − γ2Δu + γ3
∑
j

R̃T
j R̃j u

= μ2A
T f + γ1A

T
(
f − h + bk

1

)
− γ2div

(
dk − bk

2

)+ γ3
∑
j

R̃T
j

(
Lj − Uk

j

) (18)

Here, R̃T
j Lj =

m−1∑
r=0

RT
jr

ujr , R̃
T
j R̃j =

m−1∑
r=0

RT
jr

Rjr , andRjr is a matrix, which is the image

patch in the jr position. We can use the FFT technique or the Gauss-Seidel method to solve
this equation. Therefore, (18) can be efficiently solved in the discrete Fourier domain by
assuming a periodic boundary condition by denoting F (u) as the Fourier transform of u.

3.2 h-subproblem

Similar to the u-subproblem, h has the following minimization problem:

hk+1 = argmin
h∈L1(Ω)

{
μ1‖h‖L1(Ω) + γ1

∥∥∥h − (f − Au) − bk
1

∥∥∥2
L2(Ω)

}
(19)

This convex L1-problem is quite easy to solve, and it has an approximate solution
through the shrinkage operator [49]:

hk+1 = Shrink

(
f + bk

1 − Auk,
μ1

γ1

)
(20)
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Here, shrink (s, t) is the shrinkage operator, and it is defined at each point α ∈ [0, 1]2:

shrink (sα, tα) = sα

|sα| max (|sα| − tα, 0) (21)

3.3 d-subproblem

Because d is also a convex L1-problem, the same procedure may easily be adapted to obtain

dk+1 = arg min
d∈L1(Ω)

{
λ1‖d‖L1(Ω) + γ2

∥∥∥d − ∇uk+1 − bk
2

∥∥∥2
L2(Ω)

}
(22)

As in (20), we can apply the shrinkage operator again and obtain the following closed-
form solution:

dk+1 = Shrink

(
∇uk + bk

2,
λ1

γ2

)
(23)

3.4 Lj -subproblem

As a consequence of the variable splitting technique, Lj has the following minimization
problem:

Lk+1
j = arg min

Lj ∈L1(Ω)

⎧⎪⎪⎨
⎪⎪⎩

λ2
∑
j

L
(
R̃j u, ε

)

+γ3
∑
j

∥∥∥Lj − R̃j u − Uk
j

∥∥∥2
L2(Ω)

⎫⎪⎪⎬
⎪⎪⎭

(24)

In summary, the optimization problem (24) is equivalent to the following minimization
problem (25):

Lk+1
j = argmin

Lj ∈L1(Ω)

⎧⎪⎨
⎪⎩

λ2

r0∑
r=1

log
(
σr

(
Lj

)+ ε
)

+ γ3
∥∥Lj − Yj

∥∥2
L2(Ω)

⎫⎪⎬
⎪⎭ (25)

Here, Yj = R̃j u, r0 = min (n, m), and σr

(
Lj

)
denotes the rth singular value of Lj . Let

g(σ ) =
n∑

j=1
log
(
σj + ε

)
. Then, g(σ ) can be formulated as follows:

g(σ ) = g(σ (k)) +
〈
∇g(σ (k)), σ − σ (k)

〉
(26)

Here, σ (k) is the solution in the kth iteration. Therefore, we can rewrite (25) as follows:

Lk+1
j = argmin

Lj ∈L1(Ω)

{
λ2

r0∑
r=1

σj

σ
(k)
j + ε

+ γ3
∥∥Lj − Yj

∥∥2
L2(Ω)

}
(27)
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For simplicity, we set up θ = λ2
γ3
, ω

(k)
j = 1(

σ
(k)
j +ε

) , and φ
(
Lj , ω

) =
r0∑

j=1
ω

(k)
j σj .

Consequently, we obtain the following formula:

Lk+1
j = argmin

Lj ∈L1(Ω)

{∥∥Lj − Yj

∥∥2
L2(Ω)

+ θφ
(
Lj , ω

)}
(28)

Theorem 1 (Proximal Operator of the Weighted Nuclear Norm) For each Y ∈ Cm×n,
0 ≤ ω1 ≤ ω2 ≤ ... ≤ ωr0 and r0 = min (m, n), the minimization optimization problem is as
follows:

min
L∈L1(Ω)

1

2
‖Y − L‖2

L2(Ω)
+ θφ (L, ω) (29)

It can be changed to the following closed-form solution using the weighted singular value
thresholding method:

Sω,θ (Y )
Δ=U(Σ − θdiag (ω))+V T (30)

Here, UΣV T is the SVD of Y , and (w)+
Δ=max (w, 0). To obtain more details about the

proof of Theorem 1, please reference the Appendix of [17].

Based on Theorem 1, the optimization problem (25) has a closed-form solution:

Lk+1
j = U

(
Σ̃ -

λ2

γ3
diag

(
w(k)

))
+
V T (31)

Here, UΣ̃V T is the SVD of R̃j u, ω
(k)
j = 1(

σ
(k)
j +ε

) , and σr

(
Lj

)
denotes the rth singular

value of Lj .

3.5 Updatemultipliers

After resolving all subproblems, we also need to update the Lagrangian multipliers b1, b2,
and U on the (k + 1)th iteration using the following update equations:

bk+1
1 = bk

1 + (f − Auk+1
)− hk+1

bk+1
2 = bk

2 + ∇uk+1 − dk+1

Uk+1
j = Uk

j + ρ
(
Lk+1

j − R̃j u
k+1
) (32)

In this paper, we decompose the difficult optimization problem (15) into four sub-
problems (the u, h, d and Lj -subproblems) based on SBIM. All the subproblems have
fast and accurate techniques for obtaining solutions. For example, the u-subproblem can
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be efficiently solved using the FFT technique or the Gauss-Seidel iteration method. The
h-subproblem and d-subproblem can be successfully resolved by applying the shrinkage
operator. Furthermore, the Lj -subproblem keeps the closed-form solution by using the
weighted SVD. The optimization procedure is summarized in Algorithm 1.

4 Convergence analysis

In this section, we provide the convergence analysis of the proposed algorithm (Algorithm
1). The following convergence analysis is motivated by the theorem in [58]. We can view
the unconstrained minimization problem (11) as the constrained problem (15).

Based on the operator splitting algorithm, the augmented Lagrangian function of the
problem (15) is as shown in (33):

L
(
uk+1, hk+1, dk+1, Lk+1

j , η, η1, η2

)
= μ1‖h‖L1(Ω) + μ2 ‖Au − f ‖2

L2(Ω)

+ λ1‖d‖L1(Ω) + λ2
∑
j

L
(
Lj

)− 〈η, d − ∇u〉

− 〈η1, h − f + Au〉 −
〈
η2, Lj − R̃j u

〉
+ γ1

∥∥h − (f − Au) − bk
1

∥∥2
L2(Ω)

+ γ2
∥∥d − ∇u − bk

2

∥∥2
L2(Ω)

+ γ3
∑
j

∥∥∥Lj − R̃j u − Uk
j

∥∥∥2
L2(Ω)

(33)
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Here, η, η1, and η2 are dual variables. Set x∗ =
(
u∗, h∗, d∗, L∗

j , η
∗, η∗

1, η
∗
2

)
to be

Karush-Kuhn-Tucker (KKT) conditions as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ∈ μ1∂‖h∗‖1 + η∗
1

0 = μ2A
T (Au∗ − f ) − divη∗

1
0 ∈ λ1∂‖d∗‖1 + η∗

0 ∈ λ1∂

(∑
j

L
(
Lj

))+ η∗
2∫

η∗
1dx = 0∫

η∗
2dx = 0

f − Au∗ = h∗
∇u∗ = d∗
L∗

j = R̃j u
∗

(34)

Theorem 2 Set xk =
(
uk, hk, dk, Lk

j , b
k
1, b

k
2, U

k
j

)
to be the iterates in Algorithm 1 and

x̃k =
(
uk, hk, dk, Lk

j , γ1b
k
1, γ2b

k
2, γ3U

k
j

)
. Suppose that

lim
k→∞

(
xk − xk−1

)
= 0.

Then, any accumulation point of x̃k is a KKT point of (34).

Proof. First, the SBIM subproblem (16) of u is equivalent to (17), which leads to the
optimality condition (18). From the optimality conditions for all variables, we can obtain
equalities

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(μ2 − γ1) AT A
(
uk+1 − uk

)
−γ2Δ

(
uk+1 − uk

)+ γ3
∑
j

R̃T
j R̃j

(
uk+1 − uk

)
= μ2A

T f + γ1A
T
(
f − hk + bk

1

)
− γ2div

(
dk − bk

2

)+ γ3
∑
j

R̃T
j

(
Lk

j − Uk
j

)

− (μ2 − γ1) AT Auk + γ2Δuk − γ3
∑
j

R̃T
j R̃j u

k

hk+1 − hk = Shrink
(
f + bk

1 − Auk,
μ1
γ1

)
− hk

dk+1 − dk = Shrink
(
∇uk + bk

2,
μ1
γ1

)
− dk

Lk+1
j - Lk

j = U
(
Σ̃ - λ2

γ3
diag

(
w(k)

))
+V T - Lk

j

bk+1
1 − bk

1 = (f − Auk+1
)− hk+1

bk+1
2 − bk

2 = ∇uk+1 − dk+1

Uk+1
j − Uk

j = ρ
(
Lk+1

j − R̃j u
k+1
)

(35)

33054



Multimedia Tools and Applications (2020) 79:33043–33069

Because of lim
k→∞

(
xk − xk−1

) = 0, the right-hand side of each equality in (35) goes to

zero as k → ∞. Therefore, all the terms go to zero as → ∞
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(μ2 − γ1) AT Auk − γ2Δu + γ3
∑
j

R̃T
j R̃j u

k−
⎛
⎝ μ2A

T f + γ1A
T
(
f − h + bk

1

)
−γ2div

(
dk − bk

2

)+ γ3
∑
j

R̃T
j

(
Lk

j − Uk
j

)
⎞
⎠→ 0

Shrink
(
f + bk

1 − Auk,
μ1
γ1

)
− hk → 0

Shrink
(
∇uk + bk

2,
μ1
γ1

)
− dk → 0

U
(
Σ̃ - λ2

γ3
diag

(
w(k)

))
+V T - Lk

j → 0(
f − Auk+1

)− hk+1 → 0
∇uk+1 − dk+1 → 0(
Lk+1

j − R̃j u
k+1
)

→ 0

(36)

From (35), we can easily obtain the following equation:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(μ2 − γ1) AT Au∗ − γ2Δu∗ + γ3
∑
j

R̃T
j R̃j u

∗

= μ2A
T f + γ1A

T
(
f − h∗ + b∗

1

)
− γ2div

(
d∗ − b∗

2

)+ γ3
∑
j

R̃T
j

(
L∗

j − U∗
j

)

h∗ = Shrink
(
f + b∗

1 − Au∗, μ1
γ1

)
d∗ = Shrink

(
∇u∗ + b∗

2,
μ1
γ1

)
L∗

j = U
(
Σ̃ - λ2

γ3
diag

(
w(∗)

))
+V T

(37)

Therefore, any accumulation of x̃k satisfies the KKT conditions (34) due to (35). How-
ever, since the minimization problem (15) is nonconvex, the KKT conditions are the only
necessary optimal conditions for (15). Therefore, we cannot ensure that an accumulation
point of xk is an optimal point of (33).

5 Experimental results

In this section, we evaluate the validity of the proposed model. We first introduce the pro-
cess for selecting the model parameters, and then we compare the denoising effects with
other models using different noise levels. We choose four image denoising methods as the
baseline in our experiment: nonlocal filter method NLM [5], sparse coding methodWESNR
[29], nonlocal low regularization method LSM NLR [26] and the recently proposed deep
learning method BdCNN [1] for blind noise whose learned network model is open sourced
on GitHub. Because NLM was originally proposed for AWGN, we only show the result of
NLM in the AWGN noise removal experiment. We choose the following classic images in
the experiments: parrot, monarch, boat, cameraman, house and Lena (Fig. 1).
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Fig. 1 The six classic ground truths (a-f): a is the parrot, b is the monarch, c is the boat, d is the cameraman,
e is the house, f is Lena

We utilize the improvement in the signal-to-noise ratio (ISNR), the peak signal-to-noise
ratio (PSNR) and structural similarity index (SSIM) to evaluate the effectiveness of all
methods for removing the noise, and the three metrics can be defined as follows:

ISNR
(
u∗, û, ũ

) = 10log10

(∑
(u∗ − ũ)2∑(
u∗ − û

)2
)

PSNR
(
u∗, û

) = 10log10

(
2552mn∥∥u∗ − û

∥∥2
2

)

SSIM
(
u∗, û

) = 2μu∗μu + C1

μ2
u∗μ

2
u + C1

∗ 2σu∗σu + C2

σ 2
u∗σ

2
u + C2

∗ 2σu∗σu + C3

σ 2
u∗σ

2
u + C3

where u∗ ∈ Rm×n is the clean image, û ∈ Rm×n is the restored image, ũ ∈ Rm×n is the
contaminated image, μu∗ , μu is the mean of u∗, u, σu∗ , σu is the covariance and C1, C2, C3
are constants. Note that a high value (ISNR, PSNR and SSIM) indicates a better restoration
result.

5.1 Parameter selection

The proposed algorithm needs to choose seven parameters: μ1, μ2, λ1, λ2, γ1, γ2 and γ3.
Generally, there are two methods for parameter selection: 1) the first is that parameters
are chosen based on the experience of the experimenters, and 2) the second method is to
fix the values of some parameters and adjust other parameter values to obtain the optimal
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parameters [20, 22]. In this paper, we choose the second method to select our parameters.
The appendix section shows a demo parameter selection process for GN0.01 noise removal,
and in our real parameter selection process, we tried more values to select the optimal
parameters. It can be found from the appendix that the parameter value of λ2 affects the
denoising result most, and therefore the parameter selection for other noise level can firstly
fixed the value of λ2 and then adjust the value of μ1, μ2, λ1, γ1, γ2 respectively.

Because the proposed algorithm is not guaranteed to converge to the optimal value as the
update operation continues to run, the loop iteration can be determined by the researcher’s
experience. For example, as other algorithms implement [26, 29], we can divide the param-
eter value into several regions and set different loop iteration times for each region. In
addition, we can also collect experimental results on some image databases to determine the
loop iteration. For example, we can first fix the inner loop iteration, record the PSNR value
of every outer iteration step on 100 images and select the iteration times that make most
images finally achieve the optimal performance. As shown in Fig. 2, the best loop iteration
is 3 for the image database. Note that for other image databases, the best loop iteration may
be different.

Both the proposed algorithm and the LSM NLR algorithm have an NLR term and two
layers of a loop structure in their algorithms. For fairness, we set the outer loop and inner
loop iteration times of the two methods to be 3 and 4, respectively, in the successive experi-
ments, and the main parameter of the nonlocal regularization term in the LSM NLR model
and the proposed model are the same at different noise levels. We also set the same patch
size and number of patches as the LSM NLR in [17]. We first select the optimal λ2 value of
the LSM NLR and then iteratively determine the other parameters of the proposed model.

For NLM [5] and WESNR [29], the parameters are setted as in the published papers,
which may lead to a diffrent result when the images in our experiments are not the same as
in the original papers. The parameters of BdCNN [1] are trained on images database and we
employed the network published by [1] in the successive experiments, which may slightly
affects the denoising result due to the training image database. Table 1 shows the parameter
values that are selected in this paper for different types and levels of noise.

Fig. 2 a PSNRs of 10 iteration steps for 100 images b Frequencies of outer loop number which has best
performace on given images
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Table 1 The parameter selection

Parameter

Noise
λ1 λ2 μ1 μ2 γ1 γ2 γ3

GN0.01 0.03 30 0.001 0.8 0.8 0.1 1.2

GN0.04 0.03 30 0.5 2.8 2.8 0.1 1.2

GN0.1 0.03 40 0.8 2.8 2.8 0.1 1.2

IN0.01 0.05 10 0.001 0.5 0.8 0.07 1.2

IN0.1 0.05 10 0.001 0.5 0.8 0.07 1.2

IN0.4 0.05 15 0.0005 0.008 0.008 0.07 1.2

GN0.01+IN0.01 0.03 30 0.001 0.8 0.8 0.1 1.2

GN0.01+IN0.1 0.03 30 0.000001 0.8 0.8 0.1 1.2

GN0.1+IN0.01 0.03 40 0.8 2.8 2.8 0.1 1.2

5.2 Experimental comparison of single noise

In this section, we compared the denoising effects of different models on images with a
single type of noise. The types of noise are impulse noise(IN) and Gaussian noise(GN),
which are added to the image using the MATLAB function imnoise, and the noise levels are
(0.01, 0.04 and 0.1) and (0.01, 0.1 and 0.4), respectively.

The quantitative indicator (ISNR, PSNR and SSIM) results of the four models are shown
in Tables 2 and 3. The GN0.04 denoising visualization effect of parrots, monarch, boats,
cameraman, house and Lena is shown in Fig. 3. The IN0.4 denoising visualization effect
of parrots, monarch, boats, cameraman, house and Lena is shown in Fig. 4.

As shown in Tables 2 and 3, for Gaussian noise, only the three GN0.01 polluted images’
(parrots, cameraman, Lena) ISNR and PSNR values are lower than that of LSM NLR,
and the other 15 noise-added images are better than all the other models in the three indi-
cators. For the IN noise, the denoising effect of the proposed model is significantly better
than the other three models on all images, and the restored local visual quality is also bet-
ter than the other models. Especially when IN noise level is low, the proposed method can
not only preserve the nonlocal self-similarity (NSS) and nonlocal low-rank properties, but
also distinguish and remove IN noises better than other methods. The BdCNN and WESNR
methods remove all types of noise as same way by averaging the noise patches or restrain-
ing the low-rank property of denoising image, therefore the denoising result of these two
methods are lower than that of LSM NLR and the proposed method.

To investigate the algorithm, we count each step’s PSNR value of the images in which
our model’s denoising effect is lower than the LSM NLR (GN0.01 parrot), and we find that
during the processing of these images, the PSNR value will first increase to the peak value
in the first round of the inner loop and then follow an overall downward trend (see Fig. 5b).
We plotted the PSNR values for each step of the two models for the parrot image with the
GN0.01 noise level, and it can be observed that the PSNR values of both the LSM NLR
and our model (not just the proposed model) follow an overall downward trend during the
iterative processing. However, for the situation in which the PSNR value of the proposed
model is better than that of the LSM NLR (e.g., boat image with GN0.01 noise), both
models present an upward trend (see Fig. 5a). Therefore, we attempted several methods

33058



Multimedia Tools and Applications (2020) 79:33043–33069

Table 2 The quantitative indicators for the AWGN

Images Methods GN0.01 ISNR |
PSNR | SSIM

GN0.04
ISNR|PSNR|SSIM

GN0.1
ISNR|PSNR|
SSIM

parrots OURS 9.21| 29.4 |0.8739 6.9|26.59|0.8696 2.99|20.46|0.8321
BdCNN [1] 8.23| 28.39 |0.7732 5.77| 25.48 |0.7565 2.42| 19.9 |0.7234
LSM NLR [26] 9.37| 29.56 |0.8721 6.68| 26.37 |0.8676 2.83| 20.29 |0.8317
WESNR [29] 6.59| 26.78 |0.8334 5.28| 24.97 |0.829 2.33| 19.8 |0.8048
NLM [5] 7| 27.18 |0.6747 4.64| 24.29 |0.7918 2.87| 20.03 |0.7288

monarch OURS 9.06|29.09|0.9033 6.5|25.95|0.8967 2.76|19.91|0.8673
BdCNN [1] 7.35| 27.38 |0.8071 5.2| 24.66 |0.8056 2.23| 19.36 |0.7634
LSM NLR [26] 8.98| 29.01 |0.9014 6.25| 25.7 |0.8947 2.61| 19.76 |0.8668
WESNR [29] 5.25| 25.28 |0.8339 4.34| 23.79 |0.8246 2.06| 19.22 |0.807
NLM [5] 6.09| 26.17 |0.7501 3.54| 23.04 |0.7643 0.15| 19.56 |0.6031

boats OURS 9.69|29.75|0.8615 6.79|26.23|0.8582 2.81|19.89|0.8105
BdCNN [1] 7.68| 27.72 |0.7661 5.65| 25.06 |0.7703 2.48| 19.53 |0.7548
LSM NLR [26] 9.51| 29.57 |0.8603 6.44| 25.87 |0.8568 2.63| 19.71 |0.8109
WESNR [29] 7.68| 27.72 |0.7661 5.65| 25.06 |0.7703 2.48| 19.53 |0.7548
NLM [5] 6.29| 26.35 |0.7092 3.08| 22.48 |0.6339 0.65| 18.07 |0.4717

cameraman OURS 6.9| 27.16 |0.8107 5.33|24.84|0.8001 2.46|19.56|0.7392
BdCNN [1] 6.41| 26.74 |0.6714 5| 24.52 |0.7324 2.33| 19.45 |0.7093
LSM NLR [26] 6.94| 27.2 |0.8092 5.04| 24.56 |0.7992 2.28| 19.37 |0.7391
WESNR [29] 4.21| 24.47 |0.7558 3.2| 22.71 |0.734 1.44| 18.53 |0.6956
NLM [5] 6.25| 26.57 |0.6997 3.61| 23.12 |0.7172 0.81| 18.31 |0.61

house OURS 12.27|32.32|0.858 8.21|27.67|0.8575 3.27|20.41|0.834
BdCNN [1] 9.55| 29.57 |0.7648 6.41| 25.81 |0.7614 2.73| 19.92 |0.6963
LSM NLR [26] 12.14| 32.19 |0.8578 7.68| 27.14 |0.8574 3.02| 20.16 |0.8344
WESNR [29] 8.44| 28.49 |0.8128 5.32| 24.78 |0.8075 1.85| 18.99 |0.7939
NLM [5] 7.7| 27.75 |0.6541 4.83| 24.27 |0.7478 2.31| 18.75 |0.6355

Lena OURS 10.02|30.04|0.8764 7.12|26.54|0.8726 2.81|19.89|0.8285
BdCNN [1] 8.02| 28.07 |0.7764 5.77| 25.18 |0.7678 2.48| 19.56 |0.7404
LSM NLR [26] 10.19| 30.09 |0.8752 6.78| 26.2 |0.8708 2.65| 19.73 |0.829
WESNR [29] 6.21| 26.23 |0.784 4.52| 23.93 |0.779 1.76| 18.84 |0.7664
NLM [5] 6.49| 26.48 |0.6907 3.75| 23.15 |0.7101 1.37| 18.78 |0.573

The bold values denotes the indicators which perform best in the corresponding images

and finally found that adjusting the number of iterations can improve this situation. We set
the number of inner loop iterations to 2, and the iterative PSNR values of the parrot with
GN0.01 are shown in Fig. 5c. The PSNR values of both models show an overall upward
trend, and the final PSNR value of our model is better than the LSM NLR results.

In real applications, the real image and the PSNR value are unknown. The inner loop
iteration number can be statistically determined by the best number in an image database,
as shown in Fig. 3. Through this approach, although the selected loop iteration is not the
best for every image, it can obtain the best performance for most noisy images in the same
situation.

33059



Multimedia Tools and Applications (2020) 79:33043–33069

Table 3 The quantitative indicators for the in

Images Methods IN0.01 ISNR |
PSNR | SSIM

IN0.04 ISNR |
PSNR | SSIM

IN0.1 ISNR |
PSNR | SSIM

parrots OURS 15.69|40.81|0.9984 23.31|38.47|0.994 24.49|33.7|0.9432
BdCNN [1] 13.64| 38.89 |0.9845 21.89| 37.03 |0.9729 23.77| 32.92 |0.9314
LSM NLR [26] 13.61| 38.74 |0.9495 22.65| 37.8 |0.9459 23.58| 32.8 |0.9044
WESNR [29] 4.73| 29.86 |0.8945 14.73| 29.88 |0.8928 16.68| 25.9 |0.8437

monarch OURS 17.49|42.58|0.9993 23.15|38.45|0.9959 23.51|32.8|0.9665
BdCNN [1] 12.05| 37.63 |0.9896 21.13| 36.27 |0.9804 21.3| 30.5 |0.946
LSM NLR [26] 13.76| 38.86 |0.9761 21.85| 37.15 |0.9729 21.79| 31.08 |0.9381
WESNR [29] 3.74| 28.84 |0.9216 13.27| 28.57 |0.9183 15.54| 24.83 |0.8343

boats OURS 16.3|42|0.9993 25.27|40.7|0.9969 25.41|34.79|0.9563
BdCNN [1] 14.34| 39.33 |0.9856 23.57| 38.89 |0.9802 24.07| 33.5 |0.9448
LSM NLR [26] 12.94| 38.63 |0.9641 22.48| 37.91 |0.9604 22.88| 32.27 |0.8995
WESNR [29] 4.86| 30.56 |0.8803 14.83| 30.27 |0.8752 17.52| 26.9 |0.76

cameraman OURS 14.81|39.93|0.9983 20.58|35.62|0.9899 20.67|29.73|0.9272
BdCNN [1] -3.03| 22.12 |0.7012 9.45| 24.5 |0.7138 18.45| 27.51 |0.8627
LSM NLR [26] 13.13| 38.26 |0.9537 20.84| 35.88 |0.9449 20.18| 29.23 |0.858
WESNR [29] 1.84| 26.96 |0.8397 12.08| 27.12 |0.8373 14.52| 23.57 |0.7674

house OURS 15.88|41.42|0.9979 23.96|39.4|0.9938 26.93|36.4|0.9289
BdCNN [1] 15.1| 40.92 |0.9837 24.64| 40.13 |0.9746 25.75| 35.19 |0.9096
LSM NLR [26] 13.18| 38.73 |0.9373 22.92| 38.36 |0.9338 25.76| 35.24 |0.8942
WESNR [29] 7.15| 32.7 |0.861 17.2| 32.63 |0.8608 20.34| 29.82 |0.819

Lena OURS 16.62| 42.17 |0.9988 24.73|40.21|0.9954 24.99|34.46|0.9537
BdCNN [1] 13.6| 38.98 |0.9878 23.13| 38.44 |0.98 23.62| 33.01 |0.9401
LSM NLR [26] 13.52| 39.08 |0.9642 22.59| 38.06 |0.9606 22.78| 32.25 |0.908
WESNR [29] 4.65| 30.21 |0.8856 14.54| 30.01 |0.8815 17.65| 27.12 |0.8018

The bold values denotes the indicators which perform best in the corresponding images

5.3 Experimental comparison of mixed noise

In this subsection, we evaluate the effectiveness of the proposed model to remove the mixed
noises. The mixed noises are IN and AWGN, and the noise levels are GN0.01+IN0.01,
GN0.01+IN0.1 and GN0.1+IN0.01. The results for the denoising quantitative indicators
(ISNR, PRSR and SSIM) of the four models are shown in Table 4, and the denoising visual
effects of the four models with GN0.1+IN0.01 noise are shown for parrots, monarch,
boats, cameraman, house and Lena in Fig. 6.

Similar to the denoising results of the Gaussian noise, it can be observed from Table 4
that all quantitative indicators of the proposed model algorithm in this paper is better than
the other three models for the 16 images with mixed noise. In addition, the quality of the
local visualization after recovery is better than that of other models. However, the ISNR and
PSNR values of the GN0.01+IN0.01 and GN0.01+IN0.1 picture parrots are lower than that
of the LSM NLR model.

This situation mainly happens when Gaussian noise is low, and in such situation, the
Laplacian scale mixture (LSM) part in LSM NLR model is more suitable for modeling
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Fig. 3 Denoising effect of noisy images (GN0.1): The first column is the NLM, the second column is the
WESNR, the third column is the LSM NLR, the fourth column is BdCNN, and the fifth column is Oursx

Gaussian noise than the proposed model in some particular cases. We can validate that
the denoising effect of GN0.01+IN0.01 and GN0.01+IN0.1 parrots can be improved by
adjusting the number of iterations. Since WENSNR and BdCNN don’t distinguish different
types of noise in their noise removal process, the quantitative indicators of WENSNR and
BdCNN are relatively lower for mixed noise image removal.

Although the denoising result of the proposed method is better than other models in
most polluted images, the time efficiency of our model has no advantages. For example, the
time consumed for GN0.01+IN0.01 parrots noise removal in our experimental computer
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Fig. 4 Denoising effect of noisy images (IN0.4): The first column is the WESNR, the second column is the
LSM NLR, the third column is the BdCNN, and the fourth column is Ours
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Fig. 5 PSNRs for different noisy images and iteration steps: a Boat with GN0.01 noise, b parrot with GN0.01
noise and c parrot with GN0.01 noise after adjusting the iteration step

is (OURS:54.6s,LSM NLR:55.2s,WESNR:31.2s,BdCNN:15.7s). The running time of our
algorithm is mainly consumed to solve the approximation low-rank optimization problem
iterately, which has no advantage of time efficiency than other methods escpically for pre-
trained method BdCNN. This shortcoming is also a limitation of the proposed method in

Table 4 The quantitative indicators for mixed noise

Images Methods GN0.01+IN0.01
ISNR | PSNR |
SSIM

GN0.01+IN0.1
ISNR | PSNR |
SSIM

GN0.1+IN0.01
ISNR | PSNR |
SSIM

parrots OURS 10.21| 29.23 |0.8757 15.12| 29.2 |0.8727 3.57|20.42|0.8305
BdCNN [1] 9.42| 28.58 |0.794 14.69| 28.77 |0.8155 3.11| 19.92 |0.7524
LSM NLR [26] 10.3| 29.32 |0.8738 15.23| 29.32 |0.8719 3.4| 20.25 |0.83
WESNR [29] 7.77| 26.8 |0.8335 12.54| 26.62 |0.8323 2.95| 19.79 |0.8056

monarch OURS 10.22|29.13|0.9049 14.49|28.67|0.9012 3.32|19.87|0.8655
BdCNN [1] 8.83| 27.77 |0.8328 13.29| 27.46 |0.8374 2.84| 19.38 |0.7834
LSM NLR [26] 10.13| 29.04 |0.9032 14.43| 28.61 |0.9004 3.17| 19.72 |0.865
WESNR [29] 6.44| 25.36 |0.8326 11.06| 25.24 |0.8293 2.58| 19.13 |0.8038

boats OURS 10.81|29.73|0.8618 15.19|29.42|0.8548 3.35|19.89|0.8066
BdCNN [1] 9.17| 28.12 |0.7818 13.88| 28.08 |0.809 3.01| 19.51 |0.7643
LSM NLR [26] 10.63| 29.56 |0.8607 15.04| 29.27 |0.8547 3.17| 19.71 |0.8068
WESNR [29] 7.31| 26.24 |0.7453 11.93| 26.16 |0.7433 2.5| 19.04 |0.7239

cameraman OURS 8.13| 27.28 |0.81 13.09| 27.11 |0.8024 3.02| 19.48 |0.7402
BdCNN [1] 7.4| 26.44 |0.6751 12.38| 26.44 |0.7454 2.94| 19.38 |0.7104
LSM NLR [26] 8.05| 27.19 |0.809 13| 27.02 |0.8027 2.84| 19.31 |0.7403
WESNR [29] 5.34| 24.48 |0.756 10.16| 24.18 |0.7502 2.02| 18.49 |0.6953

house OURS 13.4| 32.26 |0.8577 17.81| 32.13 |0.8548 3.73| 20.38 |0.8356
BdCNN [1] 11.03| 29.91 |0.7772 15.96| 30.27 |0.8067 3.26| 19.88 |0.7219
LSM NLR [26] 13.16| 32.02 |0.8577 17.7| 32.02 |0.8551 3.5| 20.14 |0.8357
WESNR [29] 9.55| 28.4 |0.8125 13.86| 28.18 |0.8101 2.34| 18.99 |0.793

Lena OURS 11.17| 30.1 |0.8786 15.56| 29.88 |0.8731 3.42| 19.95 |0.8279
BdCNN [1] 9.54| 28.52 |0.7975 14.2| 28.47 |0.8191 2.98| 19.58 |0.7535
LSM NLR [26] 11.02| 29.95 |0.8771 15.43| 29.75 |0.873 3.26| 19.78 |0.8282
WESNR [29] 7.35| 26.28 |0.7866 11.94| 26.26 |0.7863 2.33| 18.85 |0.7643

The bold values denotes the indicators which perform best in the corresponding images
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Fig. 6 Denoising effect of noisy images (GN0.1+IN0.01): The first column is the WESNR, the second
column is the LSM NLR, the third column is the BdCNN, and the fourth column is Ours
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real applications, which could be improved by combining the proposed method with other
pretrained methods or more efficient optimization methods.

6 Conclusion

In this paper, we proposed a mixed noise removal model that combines multifidelity terms
with the nonlocal low-rank and TV regularization terms. In the proposed model, the L1
and L2 fidelity terms are employed to fit the IN and Gaussian noise, respectively. TV and
NLR regularization impose edge, NSS, low-rank and sparsity prior knowledge on the nat-
ural images. We also use the nonconvex function logdet(X) as a smooth surrogate function
for the rank approximation rather than the convex nuclear norm. To solve this model, we use
SBIM to decompose the difficult minimization problem of (15) into four simple subprob-
lems. Through many experiments on many images and different noise levels, it is shown
that the ISNR, PSNR and SSIM values on almost noisy images of the proposed model are
better than the values of four state-of-the-art models. In addition, the proposed model can
retain the local information of the images and provide a better visualization effect.

Howerver, there are still several limitations to our current study. Firstly, in some cases, the
PSNR indicator follows an overall downward trend as the iterations increase. This problem
can be solved to some extent by adjusting the number of iterations. However, determining
this situation during the runtime processing of the algorithm and automatically adjusting the
number of iterations is an important issue to be solved in our future work. Secondly, the time
efficiency need to be further improved for real application, and we can utilize Laplacian
smoothing-gradient descent [44] or other methods to speed up the objective function opti-
mization process. Thirdly, since this study follows a traditional image processing approach,
the parameters can not be setted automatically to adapt to various noise level. Therefore, in
the future, we could exploit the deep split Bregman algorithm such as ADMM-Nets [56] to
solve this problem, which combines the deep learning methods with traditional variational
optimization model.

Appendix: Demo parameters selection process for GN0.01 noise
removal

Steps Parameters
(λ1, λ2, μ1, μ2,

γ1, γ2, γ3)

Images ISNR PSNR SSIM

Start point by experience (0.01,20,0.01,0. parrots 6.02 26.23 0.6169
01, 0.1,0.1,1) monarch 5 25.04 0.6589

boats 5.27 25.3 0.6481
cameraman 4.78 25.03 0.616
house 6.75 26.78 0.582
Lena 5.59 25.62 0.6159

adjust γ3 (0.01,20,0.01,0. parrots 6.04 26.26 0.622
01,0.1,0.1,1.2) monarch 5.06 25.12 0.6635

boats 5.21 25.22 0.6464
cameraman 4.82 25.12 0.63
house 6.78 26.8 0.5858
Lena 5.54 25.54 0.6115
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adjust γ2 (0.01,20,0.01,0. parrots 5.93 26.14 0.6049
01,0.1,0.2,1.2) monarch 5.05 25.1 0.6652

boats 5.29 25.34 0.6486
cameraman 4.72 24.97 0.6126
house 6.7 26.71 0.5773
Lena 5.51 25.51 0.6083

adjust γ1 (0.01,20,0.01, parrots 6.06 26.29 0.6162
0.01,0.8,0.1,1.2) monarch 5.02 25.08 0.6667

boats 5.28 25.34 0.6495
cameraman 4.79 25.07 0.6248
house 6.78 26.82 0.5863
Lena 5.55 25.56 0.6121

adjust μ2 (0.01,20,0.01, parrots 6.16 26.38 0.6306
0.8,0.8,0.1,1.2) monarch 5.08 25.14 0.6697

boats 5.33 25.42 0.6567
cameraman 4.78 25.04 0.6229
house 6.73 26.73 0.5781
Lena 5.5 25.47 0.6063

adjust μ1 (0.01,20,0.1,0. parrots 5.99 26.18 0.6124
8,0. 8, 0.1,1.2) monarch 4.99 25.01 0.659

boats 5.21 25.23 0.6437
cameraman 4.8 25.08 0.6279
house 6.76 26.78 0.5843
Lena 5.62 25.65 0.6213

adjust λ2 (0.01,25,0.1,0.8,0.8, parrots 7.24 27.44 0.7087
0.1,1.2) monarch 6.44 26.54 0.7389

boats 6.6 26.66 0.714
cameraman 5.69 25.93 0.6764
house 8.49 28.49 0.6731
Lena 7.13 27.19 0.7043

adjust λ2 (0.01,30,0.1,0.8,0. parrots 9.1 29.3 0.8614
8,0.1, 1.2) monarch 8.81 28.86 0.885

boats 9.41 29.43 0.8478
cameraman 6.88 27.16 0.8025
house 11.68 31.65 0.8405
Lena 9.77 29.8 0.8615

adjust λ1 (0.03,30,0.1,0.8,0.8,0.1,1.2) parrots 9.27 29.45 0.8606
monarch 8.76 28.84 0.8854
boats 9.24 29.31 0.8501
cameraman 6.87 27.18 0.8075
house 11.76 31.75 0.8418
Lena 9.81 29.89 0.8692
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