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Abstract
Under low illumination, the colour constancy of human vision can be used for correctly
determining the colour of objects according to the fixed reflection coefficient of external
light and objects. However, video image acquisition equipment does not implement the
colour constancy characteristic of the human visual system. Under low illumination, only a
small amount of light is reflected from the surface of the imaged object; as a result, the cap-
tured image is underexposed. After statistical analysis of low-light images, these inverted
underexposed images appear foggy. Inversion is a uniform and reversible operation that is
performed on the entire image. Hereby, a method is proposed for resolving low-light images
using conventional physical models. First, a low-light image is inverted for obtaining a
foggy image. Subsequently, a pyramid-type dense residual block network and a dark chan-
nel prior K-means classification method are applied to the foggy image, to calculate the
transmission and atmospheric light. Finally, the parameters obtained from this solution are
incorporated into the low-light imaging model to obtain a clear image. We subjectively and
qualitatively analysed the experimental results, and used information entropy and average
gradient for objective quantitative analysis. We demonstrate that the algorithm improves the
overall brightness and contrast of the imaged scenes, and the obtained enhanced images are
clear and natural.
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1 Introduction

With the development of science and technology, it has become possible to record the splen-
dour of the world in the form of images, using digital imaging equipment. Because capturing
high-quality images in dim light is difficult, an angle with sufficient light is typically chosen
for shooting images. Under nocturnal illumination, insufficient indoor lighting, or cloudy
weather conditions [12], the photon count and signal to noise ratio (SNR) are low. As a
result, the amount of light that is reflected from the surface of the imaged object is rela-
tively small, and the image acquisition equipment cannot effectively record the colours of
the imaged object [10]. Images captured in low light have low brightness, low contrast,
relatively high noise, and artifacts, which seriously affect the visual experience.

When the light source changes, the reflection spectrum of the surface of the imaged
object changes as well. The human visual system exhibits colour constancy [22], which
allows objects to be distinguished even under low illumination. Image-acquisition devices
simulate the human eye, and use charge-coupled device (CCD) / complementary metal
oxide semiconductor (CMOS) image sensors to convert external light stimuli into electrical
signals, which are then stored in the digital memory in a specific format. Under low illu-
mination, these sensors can only record those photons that enter the lens; thus, the colour
deviation in the images captured by these image-acquisition devices is serious. Although
hardware technology can also be used to increase the amount of captured photons, hardware
is usually expensive and the processing effect is not ideal [16]. Besides, when the image
has been taken, the hardware method can no longer change the image quality. Therefore,
the image processing method may become the best solution. As digital images are widely
used in intelligent transportation [31] and remote sensing and surveillance [46], methods
for improving the processing of low-light images are essential.

Ying [51] proposed an exposure fusion framework. By designing a weighting matrix
and image fusion using the illumination estimation technology, contrast enhancement was
achieved. Another work described an enhancement algorithm for medical images [28],
which used contrast-limited adaptive histogram equalisation (CLAHE) for improving the
overall contrast of the images; the resulting visual effects were very good. Lu [33] proposed
a deep convolutional neural network (CNN) with depth estimation, for solving the scattering
problem of underwater images under low illumination. Besides, the modeling of uncertain
differential equations is a commonly used method in applied science and engineering [2, 3].
The fuzzy equation solving approach [4, 5] has a certain role in promoting the development
of image enhancement technology.

Image enhancement has been widely used in various fields, and the enhancement of
images under low illumination conditions is an area of extensive research. Low-light
enhancement methods can be roughly divided into two types: to perform end-to-end training
directly, and the other is to enhance by light estimation. The methods of network training are
mostly based on data driving, and the model is obtained through a large amount of training
data. Illumination estimation requires comprehensive consideration of pixels in all channels
of the image. The task is more cumbersome and prone to noise. In this article, to minimize
noise, we enhance the low-light image by inverting it.

A low-light image is inverted, and this inverted image appears foggy [14]. In the
present work, we sought to invert low-light images to obtain foggy images, and use the
inverted images for calculating the scene-to-camera transmission and global atmospheric
light component at that time. The obtained coefficients were incorporated into the low-light
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imaging model [17, 36, 40], to yield clear images. Based on the qualitative and quantita-
tive evaluation of the current experimental results, we conclude that our proposed scheme
can overcome problems such as colour distortion, excessive enhancement, and noise. The
method proposed in this study may provide fresh insights regarding the enhancement of
low-light images.

Our proposed method has three contributions to the field:

(1) We propose a method for the enhancement of low-light images using a conventional
physical model. By estimating the atmospheric light value and illuminance map, clear
images with enhanced brightness and detail are obtained using the proposed method.

(2) We use a pyramid-type dense residual block network for estimating the transmission
map of the image. Dense residual blocks can effectively extract features at different
levels, and a pyramidal pooling layer realises the common estimation of transmission
maps for images of different scales.

(3) We have carried out many comparative experiments that suggest the proposed method
is superior to other algorithms.

The remainder of this article is organised as follows. Section 2 briefly introduces some
related work on low-light image enhancement. Section 3 mainly introduces the methods
mentioned in this article, including low-light imaging models, estimating atmospheric light
values and light maps, and the method for calculating clear images with enhanced brightness
and detail. In Section 4, the qualitative and quantitative analyses of the experimental results
are reported, while the study conclusions are listed in Section 5.

2 Related work

Low-light image enhancement is typically accomplished using the following two
approaches: (1) Improving the characteristics of the associated hardware, such as cameras
that support thermal imaging and infrared sensors; (2) Using low-light image enhancement
algorithms. Note that the cost of the specialised hardware is typically quite high, mak-
ing it inaccessible to the general public. On the other hand, algorithmic low-light image
enhancement can effectively improve the images’ quality, and is much more affordable.
Many algorithmic methods for low-light image enhancement have been proposed. In the
following, we review the existing approaches and discuss some closely related research.

2.1 Existing low-light enhancementmethods

Low-light imaging uses a camera to process the initial acquired data for building an
enhanced RGB output. The objective of low-light image enhancement is to improve the
brightness and contrast of the acquired images, so that the details hidden in the dark can
be resolved. One approach toward low-light enhancement is based on the stack-based high
dynamic range (HDR) method [8]. The HDR method improves image quality by capturing
and fusing multiple images with different exposures / low dynamic ranges. However, this
method requires a combination of multiple images. Any movement of dynamic images may
cause differences between different images, so those images are likely to feature serious
artifacts following the HDR synthesis.

Conventional low-light image enhancement algorithms include the gray-scale transfor-
mation method and the histogram equalisation (HE) method [18]. Huang [19] proposed an
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adaptive gamma correction algorithm based on the cumulative distribution probability his-
togram. Kim [21] proposed a standard adaptive HE. In another study, an algorithm was
proposed that uses the context information between the image’s pixels to enhance the con-
trast of low-light images [9]. Wang [47] proposed an equal-size dualistic subimage HE
(DSIHE) algorithm, for dividing the original image into two equal-size parts to maximise
the image’s entropy, thereby solving the image information loss problem; this method aims
at improving the image brightness and contrast.

Light-based low-light enhancement methods have also been proposed. The original
Retinex theory [23] assumed that image colours can be decomposed into two parts, namely
reflectance and illumination. Later, based on the revision of that theory, single-scale Retinex
(SSR) [20] and multi-scale Retinex theories with colour restoration (MSRCR) [34] have
been developed; however, it was noted that the finally obtained images look unnatural. In
[15], for better reflectivity and illumination, the simultaneous reflectance and illumination
estimation (SRIE) approach was used. Li [29] introduced a new noise term. Although the
proposed method was able to suppress the noise in the images to some extent, it did not
address the colour distortion problem.

Different from the previous methods based on prior knowledge, hereby we propose
an algorithm for low-light enhancement of images using a conventional physical model.
We introduce CNNs, combining a priori and deep learning-based methods. First, a low-
luminance image is inverted to obtain a foggy image. The foggy image is introduced to a
pyramid-type dense residual block network, to estimate the image’s transmission map. We
use a dark primary colour prior to estimate the atmospheric light value of the scene at that
time. The obtained transmission map and atmospheric light value are substituted into the
physical model of low-light imaging, to obtain an enhanced clear image. The qualitative
and quantitative analyses of our experimental results demonstrate the effectiveness of the
proposed method.

2.2 Deep learning-based low-light enhancementmethods

Deep learning has demonstrated excellent results in computer vision tasks. For low-light
image enhancement tasks, deep learning has been widely used as well. For example, the
low-light net (LLNet), proposed in [32], featured a contrast enhancement and denoising
module. According to the theory of multi-scale Retinex, the MSR-net [43] CNN realises
end-to-end mapping by learning the mapping relationship between low-light images and
clear images. In addition, the RetinexNet [49] deep CNN performs operations such as image
decomposition, denoising [13], and lighting mapping. However, because only the real light
on the ground is considered, the effect of noise on light is ignored. Chen [11] proposed
an end-to-end low-light image-processing method based on a full CNN, and demonstrated
good results with respect to noise suppression and colour distortion processing. However,
that proposed method was limited to a specific data format. When the same network pro-
cessed data in the JPEG format, the performance markedly decreased. In the enhancement
of a low-light image using a CNN, the CNN learns the mapping between the low-light image
and the corresponding clear image, thereby achieving the end-to-end reconstruction. There-
fore, learning the mapping between the two images (original and clear) is key to successful
enhancement; it is equally important to select a proper data set for training. When images
in the training set are not uniformly illuminated, local over-enhancement can occur.
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2.3 Image dehazingmethods

Atmospheric particles can significantly absorb or scatter light, degrading the quality of
acquired images. In the fields of image processing, multimedia, and computer vision, image
dehazing has been an actively researched topic. Single-image dehazing is a highly ill-posed
problem. Image dehazing methods can be categorised into those that utilise prior knowledge,
and into data-driven methods that are based on deep learning.

Typically, several images are acquired, under different weather conditions [38]. Then,
statistical analysis is performed on these acquired images, and differences between foggy
images and clear images are determined and registered. For example, Omer [41] used the
“colour line” assumption to specify that pixel intensities in a small image block are dis-
tributed in one dimension in the RGB space. However, the pixels’ intensities for a foggy
image deviate from the straight line, and a mapping can be estimated based on this devi-
ation. Berman [6] determined, by statistical analysis, that clear images contain hundreds
of different colours, and they are aggregated into points in the RGB space, while no such
aggregation was observed for foggy images.

Among the existing data-driven dehazing methods based on deep learning, MSCNN [42]
was the first proposed method for dehazing a single image using CNNs, using an input-
output two-level network for training. Li et al. [27, 30] proposed a dehazing image method
based on the residual network, which avoids the estimation of atmospheric light value and
improves the dehazing efficiency. In [50], a pre-trained VGG [44] network was used as an
encoder, and training was performed by combining the mean squared error (MSE) and per-
ceptual loss metrics. To sum up, deep learning-based methods perform supervised training
based on a large number of collected data, and had demonstrated satisfactory results.

3 Proposedmethod

The ultimate objective of low-light image enhancement is to improve the brightness and
contrast of low-light images, thereby making these low-light images clear. In this paper, we
start with the imaging model of the low-light image and solve other parameters in the model
to finally obtain a clear image. First, we reverse the low-light image to obtain a foggy image.
Then, the foggy image is subjected to the dehazing operation, and the transmission as well as
the global atmospheric light component are calculated. Finally, the calculated transmission
and the global atmospheric light components obtained by dehazing the image are substituted
into the low-light imaging model to solve for the clear image. In the following sections, the
imaging model for low-light images is first introduced (Section 3.1). Next, we explain how
to estimate the transmission map (Section 3.2) and atmospheric light values (Section 3.3).
In Section 3.4, we present the resulting enhanced low-light image. The flowchart of the
proposed method is shown in Fig. 1.

3.1 Low-light imagingmodel

The light emitted from the surface of an object is reflected to an imaging unit to form
an image. This is demonstrated in Fig. 2, where I(x, y) is the incident light, R(x, y) is
the light reflected from the surface of the imaged object, and F(x, y) is the imaging light
(received by the imaging device). The incident light source is divided into two sources
of external light and object reflection. The perceived colour of the external light directly
depends on the spectral component of the light source. The reflected light refers to those
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spectral components of the incident light that are not absorbed by the object but rather
are reflected. For example, the colour of the leaves is green. This is because leaves absorb
much of the blue-violet and red-orange spectral components of light, do not absorb the
green spectral components, and reflect the green components back. The colour perception
of non-light-emitting objects depends on the spectral components of external light and on
the physical characteristics of the absorption spectrum of the object. The retina of the human
eye has a constant colour characteristic, and the colour perception of objects under different
incident light conditions tends to be stable.

Video image acquisition devices simulate the visual imaging process of the human eye.
However, video imaging devices use CCD/CMOS image sensors to convert external light
stimuli into electrical signals before proceeding to the next storage operation. Video imag-
ing devices only record the result of the accumulation of photons that enter the device’s lens,
and the quality of imaging depends on the external lighting conditions. Under low lighting,
the number of photons and SNR are small ; thus, the imaging quality is poor. Low lighting
conditions can be divided into many categories, for example image acquisition under very
low lighting, which introduces a strong noise and colour distortion. In addition, during the
sunset, most objects appear backlit, which can cause colour distortion in captured images.
To enhance the imaging of low-light images, imaging devices often can adjust their expo-
sure. However, short-term exposures are susceptible to noise, and long-term exposures are

Fig. 1 Pipeline framework of the proposed method

Fig. 2 Object imaging model
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likely to cause blurring. A low-light imaging model has been proposed in [17, 36, 40]; this
model is given in (1), as follows:

I = R ∗ T + a(1 − T ), (1)

where a is the atmospheric light intensity, I is the low-light image, T is the transmission
map, and R is the clear image after the enhancement. Unlike traditional image degradation,
this image has certain reduced characteristics. This characteristic is related to depth and
unevenly spans the entire image.

After inverting a low-light image, the inverted image is used with the low-light imaging
model, as shown in (2). The low-light image after the inversion is subjected to the image
dehazing operation. The imaging model of a foggy image is given in (3), as follows:

1 − I = (1 − R) ∗ T + a(1 − T ), (2)

I = J ∗ T + a(1 − T ), (3)

where a is the global atmospheric light component, I is the foggy image, T is the scene-to-
camera transmission, and J is the clear image after the dehazing.

Comparing (1) and (3), we see that the two equations are very similar, and the interpre-
tations of their parameters are similar as well. Since it is difficult to estimate the parameters
of a low-light image, a low-light image is inverted to obtain a similar foggy image. Through
the dehazing operation of the foggy image, the atmospheric light intensity value and the
transmittance value are obtained. Substituting these parameters into (2), an enhanced clear
image is obtained.

3.2 Transmissionmap estimation network

In recent years, people have used statistical cues to count the statistical characteristics of
hazy images, thus obtaining prior knowledge. For example, He [17] counts the characteris-
tics of more than 5,000 images and derives the dark channel a priori theory. Still, this theory
is not ideal for processing white areas such as the sky. Therefore, there are certain errors
in determining the transmission image by extracting the chroma, texture, and contrast from
blurred images. The method based on a priori knowledge may not apply to all images, and
the estimated transmission map may not be accurate enough.

With the development of deep learning, data-driven methods have begun to emerge.
CNNs estimate transmission maps by inferring the inherent characteristics of foggy images.
In this section, we consider a pyramid-like dense residual block network for estimating the
transmission map. The network uses dense residual blocks for feature extraction. Then use
the multi-level pooling module to preserve the larger global structure. Finally, up-sampling
is performed for bringing the size of the convolutional layer to the original size. The network
structure of the final output transmission map is shown in Fig. 3.

As shown in Fig. 3, we use a convolutional neural network for feature estimation. Among
them, the dense block can maximize the information flow of the transfer feature, and con-
nect all layers to ensure better convergence. Each residual block contains 4 small blocks,
the size of the convolution kernel is 3 × 3, and the number of convolution kernels is 32.
In addition, to refine the global structure information, we perform pooling on the extracted
features. The pooling layer reduces the size of the feature map to 1/4, 1/8, 1/16, and 1/32 of
the original size, respectively. Since the image size has changed after pooling, we restore the
image to its original resolution through up-sampling. After the above series of operations,
the features of different levels of the image are fully excavated.
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In the network, we consider dense blocks and multi-level pyramid pooling block as the
coding structure. In addition, we call the transition between dense blocks and up-sampling a
decoding structure. Inspired by previous work [7, 27, 30, 42, 52], the use of residual blocks
for dense connections in the coding structure can extract feature information to the greatest
extent and ensure the convergence of the network. In addition, a multi-level pyramid pool-
ing module is used for considering the global structure-related information, for refining the
learned features [53]. After the input image is continuously convolved by multiple convo-
lution kernels, the feature size at the end of the encoder is only 1/32 of the input size. For
maintaining the image’s resolution, the image is restored using the decoder module. The
decoder consists of dense residual blocks and several up-sampling modules [54].

Since there are enough residual blocks and jump connections in the coding structure,
this increases the depth of the network and enables the network to learn features at differ-
ent levels. We use coding structure to increase the depth of the network, and use multi-level
pyramid pooling to coordinate global structure information. The connection of dense resid-
uals still lacks the global structure-related information about different-scale objects. To use
the global context-related information in classification and segmentation tasks [55], a very
large pooling layer is typically used for capturing. In this paper, for directly estimating
the final transmission map using different-scale images, the multi-level pyramid pooling
approach is used [52]. Multi-level pyramid pooling ensures that different-scale features are
embedded in the final result. After pooling, all four levels of features are up-sampled to
the size of the original image, and the final estimate is connected to the previous original
features, yielding a global estimate of the transmission map.

When the convolution kernel learns more effective features, the loss between the esti-
mated transmission map and the real transmission map will be less, so that the estimated
transmission map will be more accurate. Euclidean loss (L2) results may be blurred, so
using the L2 loss measure for estimating the transmission map may result in the loss of
details. The edges correspond to the discontinuities in the image intensity, and can be con-
sidered using image gradients for representation. In addition, some low-level features of
edges and contours can be obtained from the shallow structure of the CNN. In summary, the
edge-preserving loss function is used for network training.

Fig. 3 Network framework for the transmission map estimation. a The network framework of the CNN. b
The structure of the residual block
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Gradient loss has been used for depth estimation [26], and perceptual loss has been used
in low-level vision tasks [56]. In the edge-preserving loss function, the L2 loss, bidirectional
gradient loss, and feature edge loss are defined as (4). To better retain the detailed informa-
tion in the transmission map during training, we use L2 loss, bidirectional gradient loss and
feature edge loss for joint training in training.

LE = λE,l2LE,l2 + λE,gLE,g + λE,f LE,f , (4)

where LE represents the overall edge retention loss, LE,l2 represents the L2 loss,and LE,g

implies the bidirectional loss (horizontal and vertical). The gradient loss is defined by (5).
The loss LE,f is the characteristic loss, which is defined by (6). The weights λE,l2 , λE,g ,
λE,f are used for balancing the contributions of the different loss terms.

LE,g = ∑

w,h

∥
∥(Hx(Gt (I )))w,h − (Hx(t)w,h

∥
∥
2+

∥
∥
∥(Hy(Gt (I )))

w,h
− (Hy(t)w,h

∥
∥
∥ ,

(5)

where Hx and Hy are the image gradients calculated along the horizontal and vertical
directions, respectively, representing the size of the output feature.

LE,f = ∑

c1,w1,h1

∥
∥(V1(Gt (I )))c1,w1,h1 − (V1(t))c1,w1,h1

∥
∥
2

+ ∑

c2,w2,h2

∥
∥(V2(Gt (I )))c2,w2,h2 − (V2(t))c2,w2,h2

∥
∥
2,

(6)

where Vi is the CNN structure and ci, wi, hi are the dimensions of the corresponding low-
level features. We use the layers before relu1-1 and relu2-1 of VGG-16 [44] for the edge-
extraction procedures V1 and V2, respectively.

In the transmission map estimation, we assign the weight of the loss according to λE,l2 =
1, λE,g = 0.5, λE,f = 0.8. In the training process, we use ADAM as the optimization
algorithm, and the learning rate is 2 × 10−3.

3.3 Estimation of the atmospheric light

In the low-light image enhancement algorithm based on the low-light imaging model, the
intensity of atmospheric light is a critical parameter. In previous studies, statistical analyses
were performed on fog-free images, and a summary of the dark primary colour verification
was provided. For most outdoor fog-free images, some pixels always have a certain minimal
brightness value in a certain colour channel. This minimal brightness is called the dark
primary colour, and the corresponding pixels are called dark primary colour pixels. A dark
primary colour can be defined as

J dark(x) = min
c∈{r,g,b}( min

y∈�(x)
(JC(y))), (7)

where C is the colour channel, JC is the component of image J in the channel, and �(x) is
the square-like neighbourhood around the pixel x.

For a clear image, for a certain pixel x, there are likely to be some dark pixels in its
neighbourhood, making J dark(x) ≈ 0. We call J dark(x) the dark prior colour. For the a
priori estimation of the atmospheric light intensity based on the image dark primary colours,
we first arrange the brightness values in the descending order to organise J dark . Then, the
first 0.1% of the pixels are selected as candidate atmospheric light intensity data, and their
brightness values are compared with those of the corresponding pixels in the original image
I. The maximal brightness is reported as the atmospheric light intensity.
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In practice, estimation of the atmospheric light intensity based on the prior knowledge
of dark channels is likely to be inaccurate. In practical applications, the atmospheric light
intensity A may be set based on the brightest pixel far from the actual atmospheric light,
and not in the area with the heaviest fog. In this paper, we choose the atmospheric light
intensity estimation method that is based on cluster statistics [57]. This method uses the
dark channel prior for obtaining the dark prior colour J dark(x) corresponding to the image
J (x). The first 0.1% of pixels constitute a set XC , which is used as a candidate point for the
atmospheric light intensity estimation.

XC = {xcand |J dark(xcand) ∈ High V alue Range}, (8)

For clustering, we use the k-means algorithm, with k = 5.

L = {Ln|Li ∩
i �=j

Lj = ∅;Ln = XC; i, j, n = 1, 2..., 5}, (9)

The set of the clustered points is then filtered, and the set that minimises the following
equations is selected:

J =
K=5∑

n=1

∑

x∈Ln

‖xi − μn‖2, (10)

where xi is the point in the point set Ln, and is the centre of the set Ln.
After the clustering procedure, the set of points is partitioned into labelled subsets L =

{Ln|n = 1, 2..., 5}. The obtained subsets are sorted in the order of their cardinality (by the
number of points Nn in the subset), and the most populated subset Ln′ is selected; the area
covered by the pixels in this subset is considered as the atmospheric light area. Next, we
consider the geometric centre of all the candidate light points {xi

′|xi
′ ∈ Ln′ } in cluster Ln′

for computing the atmospheric light intensity. The average brightness over all candidate
light spots is taken as the atmospheric brightness vector L∞ :

L∞ = mean(J (xi
′)), (11)

3.4 Image restoration

By performing the steps described in Sections 3.2 and 3.3, we obtain the transmission map
and the atmospheric light intensity A. The obtained parameter values are then used in (2),
yielding a clear restored image 1-R(x), as follows:

(1 − R(x)) = (1 − I (x) − A)

max(t (x), t0)
+ A, (12)

where t0 is a threshold value, to prevent the denominator from becoming too small, which
is usually set to 0.1.

4 Experiments and analysis

In this section, we elaborate on the implementation details of the method and the evaluation
of the experimental results. For validating the effectiveness of the proposed method, exper-
iments were performed using an Intel (R) Core (TM) i7-6700 CPU @ 3.4 GHZ computer,
with 16 GB of RAM and a Windows 10 operating system. The software used for numeri-
cal analysis was MATLAB 2018b. The tested images included urban street scenes, natural
scenes, and indoor images.
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To verify the effectiveness of the proposed method, we randomly selected images from
the NPE dataset [48], LIME dataset [16], DICM dataset [24], MEF dataset [35] and VV
dataset [45]. The specific introduction of the dataset is as follows:

NPE dataset: The dataset has 85 low-light images, divided into four parts: NPE, NPE-
ex1, NPE-ex2 and NPE-ex3. Among them, NPE only contains 8 outdoor natural scene
images. The remaining three are additional supplementary datasets, in which the images are
mainly low-light images in cloudy, dawn, evening and night scenes.

LIME dataset This dataset contains 10 low-light images used in the LIME method.
DICM dataset The dataset contains 69 low-light images collected by commercial digital

cameras.
MEF dataset This dataset is a multi-exposure image set. The dataset contains 17 high-

quality image sequences, the image styles include natural landscape, indoor and outdoor
landscape, and man-made buildings. Each image sequence corresponds to multiple
images with different degrees of exposure, and we select the poorly exposed image in
each image sequence as the object for low-light enhancement.

VV dataset This dataset is composed of 24 images collected by Vassilios Vonikakis in
daily life. Each image in the dataset has a part of the area that is well exposed and part of
the area is underexposed, so this dataset is a challenging task for enhancement. A good
enhancement algorithm should not perform secondary enhancement for well-exposed
areas, it mainly enhances underexposed areas.

We extracted the test images from various data sets and evaluated the quality of the enhanced
images using two aspects: 1) subjective evaluation and 2) objective evaluation. The exper-
imental results are shown in Fig. 4. Clearly, the proposed method yields clear images with
natural colours, whether it is a near or far scene, which proves the effectiveness and applica-
bility of the method. In the following experiments, the proposed method is compared with
various existing methods, for evaluating the effectiveness of its underlying algorithm.

4.1 Objective quantitative analysis

First, we compared the experimental results obtained using the proposed method with
those obtained using conventional image-enhancement methods. The experimental results
are shown in Fig. 5. Panels b–f show the results obtained using the AHE method, the HE
method, the Retinex method, the linear transformation method, and the currently proposed
method. The third and sixth rows show the amplified views of the regions delineated by the
red and blue boxes in group (a) in Fig. 5. As shown in Fig. 5, the image quality is uneven.
Figure 5b and c show the results obtained using the AHE and HE methods, respectively.
Looking at the entire images, the enhanced images exhibit significant tone deviations, with
little or no contrast improvement, and with blurring in some cases. The amplified views
show that the images are severely blurred and are noisy. The results for the Retinex method
are shown in Fig. 5d. The contrast of the enhanced image is significantly improved, but the
image exhibits excessively enhanced areas. The results obtained using the linear transfor-
mation method and the currently proposed method are shown in Fig. 5e and f, respectively.
The overall image quality is better than that of the other methods, but the image processed
using the linear transformation method (Fig. 5e) is darker. In contrast, the currently pro-
posed method yields significant improvements in colour and detail, and outperforms the
other algorithms in terms of its visual effects.

In addition to the above-mentioned conventional enhancement methods, the proposed
algorithm was compared with several new algorithms. These included the SRRM [29],
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EFF [33], DCP [17], LIME [16], SRIE [15], LACE [25], MSRCR [34], and CVC [9] algo-
rithms. Figure 6 compares the brightness and contrast of the images processed using these
different algorithms. In particular, the comparison is performed in terms of the images’
histograms. The wider the histogram, the stronger the brightness and contrast of the corre-
sponding image. Figure 6a shows the original low-light image; the corresponding histogram
is narrow, and is positively skewed, indicating that the image brightness is low. The result
of the image enhancement using the CVC method is shown in Fig. 6b. Compared with the
original low-light image, the histogram of the enhanced image is wider and the brightness is
improved. However, the image still appears dark and fuzzy. The MSRCR, LACE, and SRIE
methods further increase the width of the image histogram, also improving the brightness
and the contrast of the image. The LIMEmethod yields the widest histogram, and the overall
brightness of the image is significantly improved using this method; yet, this method does
not address the colour migration problem. The EFF and SRRM methods feature smaller
improvements of the image’s brightness and contrast, but correct the colour shift. The DCP
method yields excessive enhancement, amplifying the noise in the dark areas. Based on
these observations, the currently proposed method significantly improves the brightness and
the contrast of the image, adequately addressed the colour shift problem, and the overall
visual effect of the image is better.

In Fig. 6 we used the histograms for evaluating the brightness and the contrast of the
processed images. In Fig. 7, for further evaluating the quality of the enhanced images, the
amplified views of the enhanced images are shown. The image of a building taken at night is
shown in Fig. 7a. The CVC method only relatively weakly improves the image brightness,
and the colour of the pixels in the low-light areas of the image is not restored. The MSRCR

Fig. 4 Example experimental results. The first and third rows are the original low-light images. The second
and fourth rows are the enhanced images

32984



Multimedia Tools and Applications (2020) 79:32973–32997

method handles the details better, but the brightness is not satisfactory. The brightness of the
image after processing using the LACE method is low. The SRIE method, LIME method,
and currently proposed algorithm all demonstrate good results in terms of the image colour
and brightness. The EFF enhancement algorithm yields a relatively small improvement of
the image tone deviation, but significantly improves the brightness of the image. The SRRM
method exhibits artifacts and blurry areas after processing. The DCP algorithm excessively
strengthens the edges of the target, generating unnecessary noise.

(c) HE

(e) Linear transformation (f) Our method

(a) Source image (b) AHE

(d) Single scale retinex

Fig. 5 Comparison of the proposed method with conventional enhancement methods
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(a) Source image (b) CVC (c) MSRCR (d) LACE (e) SRIE

(f) LIME (g) EFF (h) SRRM (j) Our method(i) DCP

Fig. 6 Comparison of the different methods in terms of the image brightness and contrast improvements

The currently proposed method does not excessively amplify the noise in the dark areas,
and handles the image details better. The saliency of the object is significantly improved,
and the overall contrast of the image is improved as well. In addition, dark areas are not over-
enhanced. To further observe the performance difference between the currently proposed
method and existing methods, in Fig. 8, the enhancement effect of the currently proposed
method and that of the comparative experiment are shown.

(a) Source image (b) CVC (c) MSRCR (d) LACE (e) SRIE

(f) LIME (g) EFF (h) SRRM (j) Our method(i) DCP

Fig. 7 Comparison of the different methods in terms of the image detail processing
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4.2 Subjective qualitative analysis

Subjective evaluation is mainly based on visual perception. Because different image
enhancement methods focus on different enhancement aspects, it is difficult to ensure
sufficient objectivity when performing subjective evaluation. To further quantify the per-
formance of the currently proposed method, objective evaluation was performed using the
information entropy (IE) and average gradient (AG) metrics [32].

The information metric captures the Shannon information at a specific point in time,
while entropy corresponds to the expected amount of information prior to receiving the
measurement results. We consider a still image as a signal source with a random output,
and we denote by {ai} the set of source symbols A. The average amount of information
contained in the image is given by (13), which present the IE concept:

H = −
L∑

i=1

p(ai)log2p(ai), (13)

According to the information theory, the more details an image contains, the higher is its
information content, and the higher is its information entropy.

Our images contain many details, and there are clear gray differences near the images’
edges (or borders), implying the gray change rate. A high change rate signals that the small
details in the image exhibit significant contrast changes. The rate of change can be consid-
ered as the rate of change in the image density, and can be also used for capturing the image
sharpness. The average gradient is defined as follows:

AG = 1

M × N

M∑

i=1

N∑

j=1

√

(∂f/∂x)2 + (∂f/∂y)2

2
, (14)

where M and N represent the width and the height of the image, ∂f/∂x represents the
horizontal gradient, and ∂f/∂y represents the vertical gradient.

To verify the effectiveness of the proposed method, we randomly selected images from
Retinex dataset [39] and other image datasets for experiments. In Fig. 9, the used images
are depicted, which include images of indoor and outdoor scenes with low illumination and
uneven illumination. The images are labelled as Image 1 – Image 10. These ten images
were enhanced using the MSRCR, LACE, SRIE, LIME, EFF, and SRRM algorithms, and
the enhancement results were compared with those obtained the currently proposed method.
In the first comparison, we evaluated the IEs of the enhanced images. The results of this
comparison are summarised in Table 1, in which the maxima are given in boldface. Table 1
shows that the average IE of non-processed images is 6.581. After enhancement using the
different algorithms, the average IE increased to 7.4. With respect to single-image IE, the
MSRCR, LIME, and the currently proposed algorithm yielded the highest values. For Image
9, the MSRCR algorithm yielded the IE value of 7.681, which was the highest across all of
the considered algorithms. The IE value yielded by the LIME algorithm for Image 2 was
7.846. The currently proposed method exhibited the highest IE for multiple images, and the
average IE across the ten images was 7.671. In summary, the currently proposed method
performed comprehensively better than the other considered methods.

Table 2 compares the average gradients for the enhanced images. Boldface indicates the
maximal gradient. Table 2 shows that the average of the average gradient across the first ten
images without processing is only 4.463, which is relatively low. After processing using the
different methods (as described in the main text), the average (across the images) gradient
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Fig. 8 Examples of some comparative experiments
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Table 1 Comparison of the IE values for images enhanced by the different algorithms

Index Non-processed MSRCR LACE SRIE LIME EFF SRRM Proposed

[34] [25] [15] [16] [33] [29] method

Image1 6.320 7.203 7.395 7.232 7.626 7.516 7.549 7.803

Image2 6.817 7.665 7.577 7.423 7.846 7.350 7.473 7.836

Image3 6.636 7.325 7.240 7.125 7.560 7.569 7.760 7.685

Image4 6.823 7.522 7.445 7.410 7.790 7.629 7.696 7.836

Image5 5.734 7.442 7.162 6.921 7.813 6.939 6.949 7.566

Image6 6.663 5.056 7.052 7.047 7.344 7.150 7.166 7.496

Image7 6.945 7.441 7.307 7.377 7.466 7.257 7.369 7.539

Image8 7.360 7.679 7.691 7.612 7.685 7.698 7.718 7.794

Image9 7.121 7.681 7.632 7.571 7.287 7.674 7.746 7.591

Image10 5.388 7.507 6.978 6.823 7.201 6.902 6.903 7.566

Average value 6.581 7.250 7.347 7.254 7.562 7.368 7.433 7.671

(a) Image 1 (b) Image 2 (c) Image 3 (d) Image 4 (e) Image 5

(f) Image 6 (g) Image 7 (h) Image 8 (i) Image 9 (j) Image 10

Fig. 9 Examples of low-light images

Table 2 Comparison of the average gradients of images enhanced using the different algorithms

Unprocessed MSRCR LACE SRIE LIME EFF SRRM Proposed

[34] [25] [15] [16] [33] [29] method

Image1 2.926 5.227 4.344 3.592 4.002 5.848 4.626 6.449

Image2 3.414 9.629 7.269 6.019 6.364 7.385 7.005 11.873

Image3 3.665 9.063 5.298 4.876 5.518 6.428 6.547 9.946

Image4 5.038 10.276 5.117 4.421 7.146 8.291 10.178 9.781

Image5 2.499 10.605 6.881 4.728 4.114 5.383 3.699 14.737

Image6 1.654 5.896 2.718 2.381 2.043 2.981 1.902 4.939

Image7 8.317 11.488 11.015 9.886 12.724 11.611 13.990 17.116

Image8 6.361 10.386 8.465 7.708 8.934 8.499 9.737 12.336

Image9 7.947 13.911 5.510 5.332 14.889 11.501 12.284 12.845

Image10 2.811 7.323 5.548 4.892 4.552 5.439 4.844 9.963

Average value 4.463 9.380 6.217 5.384 7.029 7.337 7.481 10.999
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increased, and the extent of the increase was method-dependent. The maximal increase for
the currently proposed method was 10.999. The LACE method exhibited a relatively small
improvement (39.3%). The MSRCR method exhibited a good overall performance, and
demonstrated significant results with respect to the processing of multiple images.

Besides,in order to verify the effectiveness of the method in this paper, we conduct
experiments on all the images in the MEF dataset and VV dataset to obtain the average per-
formance indicators of different methods. We use different methods to enhance the images
in the dataset, and use average gradient, natural image quality evaluator (NIQE)[1] and
BRISQUE [37] to objectively evaluate the enhancement results. The experimental results
are shown in the following Table 3 . The best performance has been marked in bold. From
the average gradient evaluation, SRIE and our method have obtained the best performance
on MEF dataset and VV dataset respectively. As for the NIQE evaluation, our method
achieves the best performance on both MEF dataset and VV dataset. For the BRISQUE
evaluation, the LIME method has achieved better performance on the MEF dataset, while
our method has achieved better results on the VV dataset.

4.3 Comparison of time complexity

We also tested the computational complexity of the ten image-processing methods for the
images in Fig. 9. For this, image processing for each image and method was repeated ten
times, and the average over the replicate runs was taken as the final estimated performance
time. From Table 4, it is evident that the processing time increases with an increasing image
size. The time required for processing a 1039× 789 image exceeds 1 s, and the time required
for processing a 2000 × 1500 image reaches 3.89 s. For smaller images, the processing
speed is relatively fast, and the processing time is under 1 s.

To determine the temporal complexity of the currently proposed method, the method’s
performance was compared with those of the MSRCR, EFF, LIME, and SRIE methods.
The image dimensions used in this test were 600 × 300, 700 × 500, 1024 × 760, 1500
× 800, and 2000 × 1300. The runtimes of the different methods are listed in Table 5. The
SRIE method takes the longest time to process a single image and has the lowest processing
efficiency. For processing a 2000 × 1300 image using this method, the processing time
reached 286.81 s. This is mainly because the iterative calculation complexity of the SRIE

Table 3 Comparison the average performance of different methods on the MEF dataset and the VV dataset

MSRCR [34] LACE [25] SRIE [15] LIME [16] EFF [33] SRRM [29] Proposed
method

Average gradient evaluation

MEF dataset 4.137 5.465 5.162 5.461 4.787 5.085 5.844

VV dataset 5.126 4.338 8.141 6.937 4.655 7.254 7.040

NIQE evaluation

MEF dataset 17.436 16.541 17.001 15.375 16.664 15.955 15.114

VV dataset 13.531 12.315 12.438 11.043 13.692 12.531 10.537

BRISQUE evaluation

MEF dataset 28.531 22.262 23.701 20.423 28.569 28.145 21.503

VV dataset 28.925 28.293 20.432 27.732 34.225 25.863 19.289
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Table 4 Processing time of different-resolution images (time units: s)

Image index size time Image index size time

Image 1 720 × 680 0.64 Image 6 731 × 480 0.59

Image 2 560 × 420 0.53 Image 7 735 × 480 0.62

Image 3 500 × 375 0.51 Image 8 720 × 480 0.55

Image 4 2000 × 1500 3.89 Image 9 701 × 460 0.51

Image 5 1039 × 789 1.25 Image 10 600 × 398 0.48

method is relatively high, which prolongs the runtime. The MSRCR method exhibited a
higher processing speed. For a 600 × 300 image, the processing time reached 0.21 s, the
shortest among all the tested methods. For a 2000× 1300 image, the runtime of the MSRCR
method was 7.94 s, while the runtime of the currently proposed method was 7.38 s. The
processing speed of the currently proposed method was equivalent to that of the MSRCR
method, and the processing time for a single image was shorter.

The above subjective evaluation, objective evaluation, and time complexity analysis sug-
gest that the currently proposed method outperforms all the other considered methods.
The currently proposed method effectively enhances low-light images, and its temporal
complexity is acceptable.

4.4 Image enhancement under extreme conditions

To more comprehensively evaluate the performance of the currently proposed method,
image enhancement was applied to images that were acquired under extreme illumination
conditions. Very low-light images that were enhanced using the currently proposed method
are depicted in Fig. 10. In the first and the third rows in Fig. 10, the original low-light
images are shown. In the second and the fourth rows, the corresponding enhanced images
are shown. In Fig. 10a, an image that was captured under backlight conditions is shown.
Owing to the backlight, the image exhibits tonal deviation. The processed (enhanced) image
has much higher brightness and contrast. In Fig. 10c, a dark indoor scene is shown. Because
the light is very low and the image content is blurred, the enhancement is not ideal, but the
colour of the box can be easily identified. In Fig. 10d, the enhancement of a natural-scene
image is demonstrated. The brightness and contrast of the enhanced image are much bet-
ter, and the tonal imbalance is significantly alleviated. The enhancement of the two images
shown in Fig. 10e and f is not ideal, but no block effect is observed in the enhanced images,
and they look more natural.

Table 5 Comparison of the times required for the different algorithms to process different-resolution images
(time units: s)

600 × 300 700 × 500 1024 × 760 1500 × 800 2000 × 1300

MSRCR [34] 0.21 0.49 0.89 3.63 7.94

EFF [33] 5.72 6.86 7.97 8.96 15.42

LIME [16] 2.59 4.08 10.53 12.75 13.62

SRIE [15] 12.89 42.48 92.48 199.73 286.81

Proposed method 0.45 0.32 0.91 3.27 7.38
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(a) Image 1 (b) Image 2 (c) Image 3

(d) Image 4 (e) Image 5 (f) Image 6

Fig. 10 Examples of image enhancement for images acquired under extreme illumination conditions

To analyse the experimental results more objectively, the images in Fig. 10 were
enhanced using the MSRCR, LACE, SRIE, LIME, EFF, and SRRM methods. To quantita-
tively compare the overall image quality, the quality of the enhanced images was measured
using the natural NIQE and BRISQUE.

NIQE is an objective evaluation index without reference images. NIQE extracts feature
from highly regular natural landscapes and then fits it into a multivariate gaussian model.
Comparing the features in the test image and the natural landscape image actually measures
the difference in the multivariate distribution of the image under test and the natural land-
scape image. The multivariate distribution is constructed from the features extracted from a
series of normal natural images.

The NIQE algorithm measures the difference between the test image and the natural
image. First, obtain small blocks on the image, and then use the gaussian line distribution
to describe the spatial domain features on the small blocks. Finally, the features on the test
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Table 6 Comparison of BRISQUE values of images enhanced by the different methods

MSRCR [34] LACE [25] SRIE [15] LIME [16] EFF [33] SRRM [29] Proposed
method

Image 1 12.170 15.195 16.014 12.229 23.405 26.049 9.720

Image 2 25.618 24.647 28.003 26.058 33.075 33.212 27.117

Image 3 19.888 18.171 21.843 19.632 36.132 32.457 17.024

Image 4 30.795 31.946 27.696 29.511 30.425 25.882 29.185

Image 5 42.863 42.134 42.898 43.656 44.217 40.650 32.545

Image 6 26.203 36.313 25.796 19.099 35.312 30.341 20.696

Average value 26.256 28.068 27.042 25.031 33.761 31.432 22.714

image are compared with the standard natural image features, and the evaluation formula is
as follows:

D
(
v1, v2,

∑
1,

∑
2

)
=

√

(v1 − v2)
T

(∑
1 + ∑

2

2

)−1

(v1 − v2), (15)

where v1, v2 and
∑

1,
∑

2 are the mean vector and covariance matrix of the multivariate
Gaussian model of the natural image and the multivariate Gaussian model of the distorted
image, respectively. When the gap between the test image and the natural landscape image
is larger, the NIQE value is larger, and the image quality is worse.

BRISQUE proposes a general-purpose non-reference image quality evaluation based on
statistics of natural scenes. First, the local normalized brightness coefficient is obtained by
subtracting the mean value divided by the variance. The coefficient is used to quantify the
loss of the “naturalness” of the image. The parameter feature vector is obtained by introduc-
ing the asymmetric generalized Gaussian distribution to fit the corresponding relationship
between the natural image and the distorted image. Finally, the support vector model is used
to map the parameter features to the quality scores.

When using BRISQUE for image quality evaluation, the test image is represented as an
artificially designed feature vector, and then a support vector machine is used for classifica-
tion. In the classification process, half of the feature vectors are extracted for the first time,
and in the second extraction, they are scaled 0.5 times on the original basis. Perform local
luminance normalization on the extracted features, and asymmetric generalized Gaussian
distribution to fit and other operations. Because BRISQUE also compares the difference

Table 7 Comparison of NIQE values of images enhanced by the different methods

MSRCR [34] LACE [25] SRIE [15] LIME [16] EFF [33] SRRM [29] Proposed method

Image 1 7.419 7.303 7.536 7.418 6.883 7.412 7.366

Image 2 13.823 14.038 11.753 13.362 11.839 13.408 13.132

Image 3 8.436 8.080 11.917 9.085 11.349 9.584 8.931

Image 4 10.990 10.762 11.646 12.466 12.367 11.317 10.110

Image 5 8.453 9.180 8.162 8.629 9.679 8.001 8.963

Image 6 10.871 9.112 10.691 9.688 10.914 10.759 10.031

Average value 9.999 9.746 10.284 10.108 10.505 10.080 9.756
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between the test image and the natural image, the higher the BRISQUE score, the worse the
image quality.

The BRISQUE and NIQE values are listed in Tables 6 and 7, respectively, for the
images in Fig. 10. The best performance has been marked in bold. For the BRISQUE val-
ues (Table 6), the MSRCR method yielded the best performance of 25.618 on Image 2,
while the currently proposed method yielded 27.117. For all the other images, the currently
proposed method demonstrated the best results among all the methods. For the currently
proposed method, the average value was 22.714. Regarding the NIQE values in Table 7, the
LACE,SRRM and the currently proposed method have all demonstrated good enhancement
performance. By comparing the results for the different considered methods, we conclude
that the currently proposed method yielded higher detection values on multiple images, and
has better effectiveness and applicability than the other considered methods.

5 Conclusion

In the present study, we considered the problem of enhancing low-light images. We first
provided an overview of the problem, as well as an overview of the existing methods to
deal with the image-enhancement problem. Then, we introduced our proposed method for
image enhancement and studied its performance. The proposed method first reverses a low-
light image to obtain a foggy image. Next, the method uses a CNN based on dense residual
blocks for estimating the transmission map of the image. After calculating the transmis-
sion map, the atmospheric light intensity value of the image was estimated. We used a dark
channel prior method with dark primary colour pixels of 0.1% as candidate atmospheric
light intensity values. The obtained transmission map and atmospheric light intensity value
were substituted into a low-light imaging model, to obtain a clear image. We used conven-
tional physical modelling methods for obtaining clear images, and used CNNs for statistical
inference.

The proposed method was shown to better maintain the image details and overall exhib-
ited a balanced distribution of the image colour. We used the IE, AG, BRISQUE, and NIQE
metrics for evaluating the performance of the method. Both objectively and subjectively, the
currently proposed method exhibited significant advantages over the existing methods. In
future work, we will seek to improve the real-time performance of the algorithm and will
further explore the application of low-light enhancement to video images.
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