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Abstract
Background modeling is a well accepted foreground detection technique for many visual
surveillance applications like remote sensing, medical imaging, traffic monitoring, crime
detection, machine/robot vision etc. Regardless of simplicity of foreground detection con-
cept, no conventional algorithms till date seem to be able to concurrently address the
key challenges like illumination variation, dynamic background, low contrast and noisy
sequences. To mitigate this issue, this paper proposes an improved scheme for foreground
detection particularly addresses all the aforementioned key challenges. The suggested
scheme operates as follows: First, a spatio-temporal local binary pattern (STLBP) tech-
nique is employed to extract both spatial texture feature and temporal motion feature from
a video frame. The present scheme modifies the change detection rule of traditional STLBP
method to make the features robust under challenging situations. The improvisation in
change description rule reflects that to extract STLBP features, the mean of the surround-
ing pixels is chosen instead of a fixed center pixel across a local region. Further, in many
foreground detection algorithms a constant learning rate and constant threshold value is
considered during background modeling which in turn fails to detect a proper foreground
under multimodal background conditions. So to address this problem, an adaptive formu-
lation in background modeling is proposed to compute the learning rate (αb) and threshold
value (Tp) to detect the foreground accurately without any false labeling of pixels under
challenging environments. The performance of the proposed scheme is evaluated through
extensive simulations using different challenging video sequences and compared with that
of the benchmark schemes. The experimental results demonstrate that the proposed scheme
outperforms significant improvements in terms of both qualitative as well as quantitative
measures than that of the benchmark schemes.
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1 Introduction

Video analysis and understanding is an active area of research in the field of computer
vision. To detect foreground object or moving object in a scene accurately, foreground
detection method serves as a basic step in many computer vision applications like visual
surveillance [1, 19, 25, 30, 40, 47, 54, 63], human-machine interaction [33, 52, 56, 59],
object tracking [22, 28, 34], vision-based hand gesture recognition [48], person counting
[29, 38], traffic surveillance [12, 17, 23, 31, 37, 42, 50], content-based video coding [11],
optical motion capture [6]. This pre-processing task further helps the higher level processes
for better object classification and tracking. Hence, an accurate foreground detection with
minimum false error rate is very crucial for the performance of higher-level processes. The
basic method for detecting moving objects in a video sequence is the background subtrac-
tion. In background subtraction technique, it is necessary to build and maintain an up-to-date
background model, where each pixel from next frame is compared with the background
model. When the pixels from the next frame are deviate from that of the background model
are labeled as moving object. It is a difficult task to create an accurate foreground detection
in complex environment where few key challenges experienced as background subtraction
methods are dynamic background, sudden/gradual changes in illumination, noisy image,
camouflage and camera jitter.

Many significant efforts in this direction are made to achieve high accuracy for mov-
ing object detection under complex environments [5]. Foreground detection is broadly
realized by three approaches namely background subtraction approach, frame-difference
approach and optical flow approach. Among these, the background subtraction approach is
most widely utilized technique in background modeling [61]. Besides the aforementioned
approach, there exist several model-based approaches for robust foreground detection like
HOG detector [14], DPM detector [2] etc. However, the above mentioned detectors are
always well suited for specific applications and may fail in general cases. To mitigate this
issue, a popular feature extractor namely STLBP came into existence, which potentially
employed in several reported works for foreground detection under challenging real time
applications. STLBP is a variant of local binary pattern (LBP) where each pixel is modeled
as a group of STLBP dynamic texture histogram which collectively captures both spatial
rexture features as well as temporal motion features from a video frame [64]. However, the
overall foreground detection accuracy of STLBP degrades in strong multimodal background
conditions. This is due to the fact that, the texture features extracted in STLBP method
are sensitive towards the dynamic behavior and illumination variation of background. Fur-
ther, during background modeling a constant learning rate and a threshold value is adopted
that leads to an increase in false detection rate. In the suggested scheme, a STLBP feature-
based robust foreground detection algorithm is proposed for background modeling. The key
contributions of the suggested scheme are outlined as follows:

I A modification in change description rule for traditional STLBP method is proposed
in foreground detection to obtain the robust features under complex situations.

II Next, an adaptive strategy is formulated in background modeling to compute the
learning rate (αb) and threshold value (Tp).

III The efficacy of the proposed scheme is validated in terms of qualitative and quantitative
measures with that of the state-of-the-art approaches.

The remaining sections of the article is structured as follows. Section 2 elaborately
presents the relevant works for foreground detection. In Section 3, some preliminaries about
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the LBP and STLBP techniques are discussed. Section 4, puts forward the proposed scheme
for foreground detection. Experimental results and discussions are critically analyzed in
Section 5. Finally, Section 6 provides the concluding remark.

2 Related work

In recent past, several research findings on foreground detection are reported [5, 49, 53]. In 2004,
Piccardi briefly categorized the methods used for foreground detection based on accuracy,
speed and memory requirements [49]. The suggested scheme helps to compare the com-
plexity of different methods and allow the readers to select an adaptive method for specific
purpose. In this work an efficient background modeling strategy is adopted under challeng-
ing conditions like illumination variation, dynamic background, camouflage, rippling water
and noise. Bouwmans et al. in [4] provided a detailed survey on statistical modeling used for
foreground detection. In most of the earlier schemes, foreground is extracted by subtracting
the reference/background frame from the current frame. The reference frame can be taken
as (1) first frame or previous frame [51], (2) average of several consecutive frames [36],
(3) median of several consecutive frames [39]. The above mentioned methods claim to be
very simple and fast for foreground detection. However, this is very sensitive to background
changes which in turn leads to degrades in overall performance.

To overcome the limitation of basic background subtraction method, Wren et al. [59]
proposed a simple Gaussian distribution to model the intensity value of a pixel at a fixed
location over time. Further, the authors have used an adaptive updating technique for
background modeling under dynamic background. However, this uni-modal Guassian dis-
tribution model is not suitable for multi-modal background. So to resolve this issue, a
multi-modal Gaussian distribution model has been proposed to provide the solution over
uni-modal Guassian distribution.

In 1999, the most widely accepted multi-modal distribution over time is proposed by
Stuffer and Grimson [55] which is popularly known as mixture of Gaussians (MoG) or
Gaussians mixture model (GMM). In this work, the background model is adaptively updated
in an iterative manner and performs significantly well under gradual illumination changes
and non-stationary background conditions. The GMM model provides the best solution to
many practical situations for foreground extraction. There are numerous improvements of
GMM model has been incorporated in literature [8, 58, 65]. However, when background
varies very fast (many modes, i.e. more than 5 modes), a few Gaussians (usually 3 to 5) are
not sufficient to accurately model the background. GMM also needs apropriate threshold
value and learning rate for obtaining improved results.

To overcome the problem of GMM, in 2000, A. Elgammal et al. [16] proposed a non-
parametric approach based on kernel density estimator (KDE). This approach measures
the probability distribution of background values by taking the recent history at each pixel
value over time. The distribution is then used to map the pixel belongs to foreground or
background. The major limitations associated in KDE is the huge computational time as it
takes the history of a pixel to measure the density.

Codebook method is another notable approach to model the background [35]. In this
work, each pixel comprises a codebook and each codebook consist of several codewords.
The number of codewords comprise the variation in pixel. The improvement over this
scheme reported in [60] uses both spatial and temporal information. This method can able
to detect the moving object under dynamic environment and decreases the false positive rate
to a certain extent.
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In [26], M. Hiekkila et al. proposed a texture-based approach for background model-
ing using a group of histogram-based on local binary pattern (LBP). The most important
property of LBP is the robustness behavior towards the illumination changes and its com-
putational simplicity. This method exhibits improved result under slow moving background
pixels. However, its performance degrades sharply when backgrounds have strong changes
(under multi-modal background condition).

Zhang et al. [64] extended the algorithm in [26] by measuring the local binary pattern
in spatio-temporal domain named as spatio-temporal local binary pattern (STLBP). For
modeling each pixel, the authors use weighted LBP histograms which includes both spatial
and temporal information. The limitation of this approach is that, it uses constant learning
rate which reduces the detection performance when the speed of a moving object varies
across the successive frames. In [3], the author proposed a local binary self-similarity pattern
and demonstrate its effectiveness against state-of-the-art methods.

There exist several foreground detection algorithms based on subspace learning mod-
els such as Principal Component Analysis (PCA) [7]. In PCA, the background sequence is
modeled by low-rank matrix and sparse error to constitutes the foreground objects. In partic-
ular, PCA-based BGS techniques are robust against noise and illumination changes. Several
variants of PCA-based techniques in the field of change detection are designed and devel-
oped by many researchers [10, 57]. The major challenges associated in PCA-based BGS
is the absence of any update mechanism for classification of background/foreground. Fur-
ther, the overall execution time is quite high for long duration video sequences [7]. In 2013,
Feng et al. [18] proposed an online Robust PCA (OR-PCA) to reduce the memory cost and
enhance the computational efficiency. Furthermore, Javed et al. [32] improved the origi-
nal OR-PCA for an accurate foreground detection using image decomposition technique.
In this work, the input video frames are decomposed into Gaussian and Laplacian images.
Then, OR-PCA is applied to both the decomposed image with specific parameters to model
the background separately. Then, an alternate initialization process is applied to speed-up
the optimization process. Again, Han et al. [24] improved the OR-PCA for background
subtraction considering camera jitter condition.

In 2018, Goyal et al. [20] proposed a counter-based adaptive background learning with
respect to changes in background. In this work, the authors have addressed the Heikkila
technique [26] for foreground detection by updating the learning rate by considering differ-
ent challenging conditions. However, this method achieves lower accuracy with respect to
different conditions like camouflage, shadow, outdoor varying illumination environments
and high dynamic background. In [62], authors utilize the advantage of intensity, color and
Local Ternary Pattern (LTP) features for background modeling. In this scheme, the authors
have obtained five features for each pixel. Again, out of five features, the dominant feature
is calculated adaptively over the pixel in time domain for the improvement of accuracy in
detection of foreground under complex backgrounds. Again, the authors use double thresh-
old value for further improvement in accuracy of detection. In 2019, Moudgollya et al.
[41] used angle co occurrence matrix (ACM) along with gray level co-occurrence matrix
(GLCM) for extraction of six features. In this work, the authors have employed the merit of
ACM and GLCM for foreground detection under different challenging environments. The
major drawback of this method is the huge computational overhead.

In 2017, Z. Zhong et al. [66] proposed a robust background modeling method, which
updates the background at pixel-level and object-level to detect the motionless or slow-
moving objects. This method is effectively works well in many real time application,
particularly when there is a variation of speed of foreground objects. In 2018, Panda et al.
[45] proposed a spatio-temporal BGS method utilizing Wronskian change detection model.
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Further, they have used a new fuzzy adaptive learning rate to improve the detection accu-
racy. Again in [46], the authors have used multi-channel Wronskian change detection model
and codebook technique for foreground detection. As these methods are effective to provide
impressive results under challenging environments, but it fails to reduce the false detec-
tion rate under dynamic environments. Its due to the fact that the aforementioned schemes
[45, 46] utilizes of a constant threshold value for all type of complex situations in a video
sequence.

From different literature findings it has been noticed that most of the schemes for fore-
ground detection operates in spatial domain instead of both spatial as well as temporal
domain. Further, in background modeling most reported schemes use a constant learning
rate and a constant threshold value. This arbitrary selection of learning rate and threshold
value does not ensure improved results for all challenging situations. So the aforementioned
facts motivate us to propose a modified STLBP-based technique with adaptive formulation
of learning rate and threshold value for foreground detection.

3 Overview of LBP and STLBPmethods For BGS

This section presents an overview of LBP and STLBP-based approach for background
subtraction. To give a better insight the following subsections are presented as explained
below.

3.1 Conceptual overview of local binary pattern

Local binary pattern (LBP) is a gray scale invariant in nature and a powerful texture descrip-
tor [26, 43, 44]. LBP is a well accepted feature extractor in many pattern recognition and
computer vision applications. The prime usefulness of LBP operator is that it is very robust
to monotonic transformation of gray value of the pixel and gives an excellent information
about the region texture feature.

LBP operator labels the neighborhood of a pixel using binary derivative technique. The
binary derivative of a pixel in a given image region can be measured by thresholding the
relation of neighborhood pixels with that of center pixel. The classical or traditional LBP
operator works in a 3 × 3 local region of an image. It generates a binary value 1 when a
neighboring pixel is greater than or equal to the center pixel and generates binary value 0, if
neighboring pixel is less than that of the center pixel. The mathematical expression of LBP
is expressed as follows:

LBP(xc, yc) =
7∑

i=0

s(gi − g(xc, yc)) × 2i , i = 0, 1, 2...7 (1)

where, gi represents the gray value of surrounding pixels with respect to center pixel
coordinate (xc, yc). The function s(gi − g(xc, yc)) is defined as,

s(gi − g(xc, yc)) =
{
1 if gi − g(xc, yc) � 0
0 otherwise

(2)

The 8 neighbors of the center pixel in 3× 3 region are then represented with a 8 bit number.
Thereafter, the binary number is converted to its equivalent decimal value, which presents
the LBP label for the center pixel. The basic working principle of LBP operator is shown in
Fig. 1.
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Fig. 1 Example of Basic LBP operator. (i) 3×3 region of an image, (ii) binary conversion after thresholding,
(iii) Weights assigned to neighborhood pixels (equivalent decimal value of the binary number in clock wise
direction starting from pixel coordinate(1,1)), (iv) Summing of weights, (v) LBP code for center pixel

Ojala et al. [44], extended the definition of basic version of LBP in which I number
of equally-spaced pixels located on a circle of radius R to measure the LBP code for the
center pixel as shown in Fig. 2. The value of I may be any number unlike fixed number of
neighboring pixels (i.e. 8) used in basic LBP operator. If the number of pixels I is less it
leads to less computational overhead. On the otherhand, large number of pixels I require in
large-scale texture features. The circular LBP can be mathematically expressed as,

LBPI,R(xc, yc) =
I−1∑

i=0

s(gi − g(xc, yc)) × 2i , i = 0, 1, 2...I − 1 (3)

where, g(xc, yc) is the center pixel value with coordinates (xc, yc) of circular region of
radius R and gi (i = 0, 1, 2.....I − 1) is the gray values of the equally spaced I pixels on
the circle of radius R centered at (xc, yc). The definition of s(gi − g(xc, yc)) is same as
in (2). The (I, R) values may be varied like (4,1), (8,1), (16,2) etc proposed in [44]. The
coordinates of circular neighbor pixels is given as,

[xi, yi] =
[
xc + Rcos

(
2πi

I

)
, yc − Rsin

(
2πi

I

)]
, i = 0, 1, 2...I − 1 (4)

The coordinates of the neighbors that do not fall on pixel points are approximated through
bilinear interpolation [44].

Fig. 2 LBP code for circular neighbor (6,2)
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3.2 Background subtraction using LBPmethod

In 2006, Heikkila et al. [26] proposed an efficient approach for moving object detection by
modeling the background using region texture-based method. This method, makes the cir-
cular LBP more robust against small or negligible changes in pixel value. Here, the circular
LBP operator has been modified as,

LBPI,R(xc, yc) =
I−1∑

i=0

s(gi − g(xc, yc) + α) × 2i (5)

where, expression for s(x) is same as defined in (2) and α is responsible to retain the dis-
criminative power of LBP operator when the gray values of neighboring pixels are very
close to the center pixel value of a region [26].

The limitation of this method is that it does not contain any temporal information of the
pixels. As a result, it fails to detect moving object accurately under dynamic environmental
conditions.

3.3 Background subtraction using STLBPmethod

To mitigate this aforementioned problem, Zhang et al. [64] extended the work reported in
[26] by presenting a new dynamic texture operator namely spatio-temporal LBP (STLBP).

From the Fig. 3, let Ft and Ft−1 be the current and previous frame respectively. In cur-
rent frame Ft , g(xc, yc; t) and g(i; t) (i = 0, 1, 2....I − 1) are the center pixel and circular
neighbor pixels respectively. To measure the motion information along the temporal direc-
tion, only circular neighbors g(i; t − 1), (i = 0, 1, 2...I − 1) of frame Ft−1 is considered.
Two LBP codes for center pixel g(xc, yc; t) for spatial and temporal neighboring pixels are
expressed as follows:

LBPI,R(xc, yc; t) =
I−1∑

i=0

s(g(i; t) − g(xc, yc; t) + α) × 2i (6)

LBPI,R(xc, yc; t − 1) =
I−1∑

i=0

s(g(i; t − 1) − g(xc, yc; t) + α) × 2i (7)

(i) )iii()ii(

Fig. 3 STLBP histogram measurement for circular neighbor. (i) Circular neighbor of two consecutive frames
with same coordinate values with respect to center pixel, (ii) Histogrm measurement on 2I bins of each frame
and (iii) Resultant histogram
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LBPI,R(xc, yc; t) and LBPI,R(xc, yc; t − 1) represents the spatial LBP and temporal
LBP of a circular region having radius R. The spatial histogram (on current frame) and
temporal histogram (on previous frame) are computed from spatial LBP using (6) and (7)
respectively over a circular region of radiusRregion. Figure 3 illustrate the STLBP histogram
measurement of a circular neighbor. Next, the STLBP histogram is calculated by summing
the spatial histogram and temporal histogram as follows:

Ht = ω × Ht−1,i + (1 − ω) × Ht,i , i = 0, 1, 2....I − 1 (8)

where Ht,i and Ht−1,i are the current and previous frame histograms of ith bin respectively
shown in Fig. 3. Ht is the resultant spatio-temporal histogram at time t and ω is the spatio-
temporal rate. Each pixel is modeled with a group of adaptive STLBP-based histogram
techniques which are computed over a circular region of radius Rregion.

The advantage of STLBP method is that it extracts the spatial information as well as tem-
poral information for each pixel that further reduces the false detection rate under dynamic
condition. From different observation it is noticed that a constant threshold and learning
rate is used in STLBP method. As a result the overall performance of foreground detection
accuracy reduces to a great extent.

4 Proposed approach

In the proposed work, an improvement in spatio-temporal LBP (STLBP) descriptor [64]
for foreground detection under complex scenario is proposed. In the suggested scheme,
a change description rule is formulated which essentially modifies the traditional STLBP
method reflects in (6) and (7) respectively. The modified change detection rule is defined as
follows:

LBPI,R(xc, yc, t) =
I−1∑

i=0

sTr (g(i; t) − μg(t) + α) × 2i (9)

LBPI,R(xc, yc, t − 1) =
I−1∑

i=0

sTr (g(i; t − 1) − μg(t) + α) × 2i (10)

where,

sTr (x) =
{
1 if x >= Tr × Ft (xc, yc)

0 otherwise
(11)

and

μg(t) = 1

I

I−1∑

i=0

g(i; t) (12)

Tr (= 0.2) is the user defined constant value.
To support our claim for the proposed foreground detection with the modified change

description rule, two experiments are carried out as follow: The first experiment shows the
variation in feature under dynamic environment which is shown in Fig. 4. Further, second
experiment focuses on variation in illumination (refer Fig. 5). Here, the mean of surround-
ing pixels is taken instead of considering the center pixel across the local circular region
of radius R = 2 to generate spatial-LBP which is defined in (9). The reason behind the
selection of mean of the surrounding pixel with that of the center pixel is that, the obtained
mean values of surrounding pixels for two consecutive frames with high dynamic region
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Fig. 4 Feature variation of a particular pixel (65, 77) on WT dataset across 280 frames

are invariant in nature as compared to the variation of center pixel of these regions. So that
motivate authors to extract the invariant features under dynamic and illumination variation
environments. During the experiment, two widely accepted video sequences namely WT
(Waving Tree) [9] and OTCBVS [15] with 280 frames are used. An illustration for feature
variation of a particular pixel with coordinate (65, 77) on WT (Waving Tree) and a particu-
lar pixel with coordinate (128, 85) on OTCBVS datasets across all 280 frames are shown in
Figs. 4 and 5 respectively.

From the Figures it has been noticed that in both the video sequence (WT and OTCBVS)
the proposed spatio-temporal LBP features value give less variation with respect to the
erratic behavior of a dynamic pixel at a particular location along 280 frames. Additionally,
the proposed scheme shows less variation in feature values in temporal direction than that
of the traditional STLBP scheme.

Fig. 5 Feature variation of a particular pixel (128, 85) on OTCBVS dataset across 280 frames
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Additionally, to show the effectiveness of proposed foreground detection, another
experiment is conducted between traditional spatial-LBP expressed in (6) and proposed
spatial-LBP expressed in (9) is shown in Fig. 6. During experimentation, initially the tex-
ture features are extracted from both the traditional spatial-LBP and proposed spatial-LBP.
Next, the extracted texture features from both the techniques are given as the input to GMM
[55]. The parameters of GMM are kept same for both the inputs. Further, the performance
measures like Recall, Precision and F − measure resulted from GMM process are com-
puted. Figure 6 shows the comparison between the encodings of traditional spatial-LBP
and proposed spatial-LBP for Highway [21], PETS 2006 [21] and OTCBVS [15] datasets
respectively. From Fig. 6, it is clearly noticed that the proposed spatial-LBP achieves poten-
tial improvements as compared to traditional spatial-LBPwith respect to the aforementioned
performance measures.

Further, Fig. 7 shows the generated foreground of the proposed spatio-temporal LBP
over traditional spatio-temporal LBP on different threshold value. In this comparison, we
adopt the background modeling procedure reported in [26]. All parameters (ω = 0.01, αb =

HW PETS 2006 OTCBVS

Fig. 6 An experimentation to show the comparison between the encodings of traditional spatial-LBP and
proposed spatial-LBP for highway (HW), PETS 2006 and OTCBVS video sequences. The texture features
from traditional spatial-LBP and proposed spatial-LBP are considered as input to GMM. The second, third
and forth rows show the Recall, Precision and F − measure values respectively
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Fig. 7 Foreground segmentation results comparison on traditional STLBP and proposed STLBP based on
different threshold (Tp). a 250th frame of WT video sequence, b–d segmented foreground results of tra-
ditional STLBP method [64] with Tp value 0.6, 0.7 and 0.8 respectively, e–g segmented foreground results
of modified STLBP method with Tp value 0.6, 0.7 and 0.8 respectively , h–j segmented foreground results
of the proposed STLBP method with Tp value 0.6, 0.7 and 0.8 respectively. Both traditional STLBP and
proposed STLBP are input to the background modeling technique reported in [26]

αw = 0.01, TB = 0.8, α = 3 and Tr = 0.2) are kept fixed for fair comparison in all
methods. In Fig. 7, (b)–(d) show the segmented results of foreground by traditional spatio-
temporal LBP method as in [64], (e)–(g) show the segmented results for foreground using
the extracted STLBP features by considering mean of the surrounding pixels instead of cen-
ter pixel shown in (6) and (7). Finally, (h)–(j) show the segmented results of moving objects
by proposed spatio-temporal LBP method with the changed description rule expressed in
(9) and (10). The results for each methods are shown on the basis of threshold values (Tp)
0.6, 0.7 and 0.8 respectively.

Next, we compute the two histograms Ht and Ht−1 of the binary pattern resulted from
a circular region depicted in (9) and (10). This histogram of binary pattern over a region is
used as local texture feature. As shown in Fig. 3, the Ht and Ht−1 over a region is computed
as follows:

Ht,n =
∑

x,yεR

N(LBPI,R(x, y; t) = n), n = 0, 1, 2...2I − 1 (13)

and
Ht−1,n =

∑

x,yεR

N(LBPI,R(x, y; t − 1) = n), n = 0, 1, 2...2I − 1 (14)

where Ht,n and Ht−1,n represents the nth bin histogram of t and t − 1 respectively; and
N(z) is 1 (if z is true) or 0 (otherwise). The histogram H of STLBP is generated with the
help the aforementioned two histograms as follows:

Ht = ω × Ht−1,n + (1 − ω) × Ht,n, n = 0, 1, 2...2I − 1 (15)
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The STLBP histogram expressed above provides the information about spatial texture
feature and temporal motion feature.The parameter ω depends on the degree of dynamic
background condition. If the background changes very fast then larger value of ω is adopted
otherwise a small value of ω is considered for small changes in background. In our case the
value of ω is taken as 0.01 experimentally.

4.1 Proposed backgroundmodeling algorithm using STLBP feature

Background modeling is considered to be a prime step for background subtraction process
as it has a higher impact on overall detection accuracy. For background model initialization,
the STLBP histogram is evaluated over a circular region of radius called Rregion centered
at a particular pixel (x, y) using first and second frame. According to the MOG, the K

background models for a pixel consists of {H(x,y)
mk

, k = 1, 2...K}. Initially, the weights
of each model histograms are taken as equal value. Next, the weights of the model his-
tograms wk (k = 1, 2...K) are normalized to make their sum equal to 1. From the next
frame (third frame), the STLBP histogram H over a circular region of radius Rregion cen-
tered at the pixel (x, y) is computed using the last stored frame. Then, current histogram
H(x, y) is compared with the K model histograms using a proximity measure expressed
in (16).

⋂
(Hm,H) =

L−1∑

l=0

min(Hm,l, Hl) (16)

whereL = 2I represents the number of bins. The intuition behind the histogram intersection
in (16) is that it measures the common part of two histograms to measure the similarities
between them.

For better understanding, let us take an example with K = 4 (multimodal Gaussian).
Let the proximity measure between current histogram and four model histograms at pixel
point (x, y) be ∩1,∩2,∩3 and ∩4. Then updating the background model is same as in [26]
as follows:

– If max(∩1,∩2,∩3,∩4) < Tp (Tp= is the threshold value for proximity measure), then
current histogram replaces the model histogram having lowest weight. The weight of
this newly added histogram is initialized with a low value i.e. 0.01 for our experiment.

– If max(∩1,∩2,∩3,∩4) > Tp , then we select the the best match model histogram having
highest proximity value.The best matching model histogram with the current histogram
is updated s follows:

H
x,y
mk

= αb × Hx,y + (1 − αb) × H
x,y
mk

, αb ∈ [0, 1] (17)

where αb is an user defined learning rate.

The weights of the histogram is updated as follows:

ωk = αw × Mk + (1 − αw) × wk, αw ∈ [0, 1] (18)

where αw is an user defined learning rate, Mk is 1 for best matching model histogram and 0
for others.
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In the suggested scheme, we have presented a newly adaptive updating learning rate (αb)
which is expressed in (19).

αb = C1 × exp
(
C2 × (

max (..) − Tp

))
(19)

where, max(..) refers to the maximum proximity measure between models’ histogram with
respect to the current. Again, C1 and C2 are constant values. The intuition behind this new
adaptive updating learning rate is that if the matched model ‘max(..)’ is very close to the
Tp (i.e. the difference ‘max(..)−Tp’ is very less), then the updating learning rate converges
its lower value (i.e. C1). When the matched model away in similarity from current (i.e. the
difference ‘max(..) − Tp’ increases), the updating learning rate increases. This improves
the convergence rate at each frame. It has been observed that, when background changes
quickly under dynamic condition (unstable conditions), the matched model ‘max(..)’ very
close to Tp . Therefore, a small learning rate is desirable for updating the model. On the
contrary, if the background is stable (i.e, matched model ‘max(..) >> Tp’ the model is
updated with higher learning rate.

Further, in this work we have formulated to select an adaptive threshold value Tp which
is dynamically changed with respect to each pixel as background also changes dynam-
ically over time in a complex environment. Throughout this work we have considered
Tp = Tp(x, y). In the proposed scheme, we have used a counter which counts the the num-
ber of times the pixels identified as a foreground pixels. The counter value increases by one
if the pixel at a particular location (x, y) along the temporal direction continuously classi-
fied as foreground pixel. If the pixel at (x, y) once classified as background in any t th frame,
counter is reset to zero. The criteria for aforementioned conditions are as follows:

{
Foreground countt = countt−1 + 1
Background countt = 0

(20)

In illumination changes condition, some times it is noticed that the pixel is wrongly
classified as foreground instead of background. However, in the succeeding frames the same
location of the pixel is classified as background. This is due to the fact that scenario like
a slight movement in leaf position may be classified as foreground whereas it is expected
to be classified as background. Under this circumstances, the counter value is set to be
zero to avoid such misclassification. If the counter value increases gradually, the pixel is
considered as a foreground. During experimentation, we have assumed that if the counter
value is above T +

h , the pixel is considered as foreground. It is expected that T +
h value should

be maximum for foreground detection under challenging conditions. Once the counter value
is above T +

h , the pixel is regarded as foreground and Tp(x, y) value will be increased. The
intuition behind to increase the Tp(x, y) value is that, the pixel proximity value which
are very close to Tp(x, y) (i.e. max(..) � Tp(x, y)) are classified as background. So to
mitigate this situation, the Tp(x, y) value is increased by a factor of β

count
amount. If the

pixel at position (x, y) continuously detected as foreground the counter value increases
which decreases the value of β

count
. Therefore, Tp is approximately equal to Tp−init at the

high value of counter additionally which leads to removal of false positive in a frame. The
Tp value is maintained a constant for counter value within the range [T −

h , T +
h ]. The same

theory is adopted when Tp(x, y) value decreases when the counter value is equal to zero.
For better clarity, the proposed adaptive thresholding approach is outline in Algorithm 1. In
Section 5.1, the influence of selecting an adaptive threshold Tp(x, y) and learning rate αb

is presented in detail for better clarity.
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All the produced model histograms are not certainly resulted by the background process.
To determine whether the histogram models belong to background or not the persistency of
the histogram in the model is computed. Equatino (18), shows that persistence is directly
related to the model histogram’s weight. The larger the weight, the higher is the probability
of being a background histogram produced by background process. During the final stage of
the updating procedure, sort the model histograms at a pixel with decreasing order of their
weights and select the most probable B background model histograms which are on the top
of the list.

B = arg min
b

(
b∑

k=1

ωk > TB

)
, TB ∈ [0, 1] (21)

where TB is the user defined threshold.
For foreground detection, the histogram H at a pixel in the current frame is compared

against the B background model histograms using proximity measure reflected in (16). This
foreground detection process is done before the updatation of the background model. For
atleast one background model histogram, if the proximity measure is greater than Tp , the
pixel is classified as background, otherwise the pixel is classified as foreground.

4.2 Parameters value selection in the proposed scheme

In the proposed scheme, the learning rate (αb) and threshold value (Tp) are computed adap-
tively. However, there are some influence parameters which help to compute the above
mentioned two parameters. A careful consideration must be applied to select the parameter
values. There are so many tunable parameters used in the proposed scheme. So in most of
the cases, constant value is adopted to reduce the overall computational burden and number
of variables used in the algorithm. The contemplation for choosing the parameters value for
different datasets are discussed as explained below.

Circular neighborhood LBP operator needs a proper value of I and R. If I value is more
then the number of bin size (i.e. 2I ) which in turn increases the length of the histogram. On
the other hand, if the value of I is considered to be small, there is a chance of information
loss in the local region as the histogram length decreases. Furthermore, the memory size is
an important factor for choosing the size of I . In the proposed scheme the radius size R is
taken as 2. Selection of larger size of R decreases the correlation among the pixels, which
causes the problem for finding the shape of the moving objects. Again, the smaller value of
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R increases the number of false positives due to extraction of texture information which is
too local. In this work, the value if I and R is taken experimentally as 6 and 2 respectively.
The circular region of radius Rregion refers to the region for histogram calculation. A large
value of radius Rregion incorporate large information into the histogram. Therefore, in a
result, the shape of the moving objects are not extracted properly. However, the smaller
value of radius Rregion leads to proper detection of moving objects shape but creates large
number of false positives. Therefore, the radius Rregion is chosen as 5 to compromise both
abovesaid requirements.

The requirements of number of models is distinct for different video sequences. It
depends on the nature of complexity associated in each video. In the dynamic environment
(i.e. outdoor scenario) which is a multimodal distribution, the value of K must be chosen
high (preferably more than 5) and for an unimodal distribution environment (i.e. indoor), the
value of K must be less (approximately 2). If higher value of K is taken, memory require-
ment and computational complexity increases. Further , for small value of K the detection
result deteriorates to a great extent. In the suggested scheme, during experimentation for all
videos, the value of K is considered as 4.

The selection parameter TB directly related to the number of models required. The value
of TB should be very high (≈0.8) for multimodal background and small (≈0.2) for unimodal
background. We have taken 0.8 for all our video sequences

The learning rate parameter (αb, αw) responsible for adaption speed of background
model. In this work, only learning rate αb is taken into consideration for updatation which
is depicted in (19). Higher values of learning rate leads to faster updatation of current value
histogram into the background model histogram. Faster updatation of background due to
selection of high value of learning rate which causes the misclassifcation of slow moving
object as background. On the contrary, low value of learning rate causes the slow updata-
tion, which is responsible for increase in false positives. Therefore, αb value in (19) changes
in accordance with the speed of moving object in a video sequence. The value of learning
parameter (αw) is taken as 0.01 for all video sequences. To make a fair comparison, we have
kept the parameters value constant for all datasets. Table 1 depicts the parameters value
selection for all the datasets of the proposed scheme.

5 Experimental analysis

To appraise the efficaciousness of the proposed scheme, extensive simulations are carried
out in MATLAB R2019a software running in a 64 bit windows with Intel Core i7 processor
utilizing 32GB RAM under certain pertinent and specific test environment. To conduct the
exhaustive simulations, some of the standard and widely accepted video sequences from
different data sets are adopted with different challenging scenario. Further, the considered
datasets are categorized into indoor and outdoor environment respectively. Table 2 depicts
a detailed information about different video sequences used in the experiments. Further,
the different and source of video sequences are listed in Tables 3 and 4 respectively. The

Table 1 The parameter values of the proposed method for all datasets

LBPI,R Rregion Tr K Tp−initial TB C1 C2 αw T +
h T −

h � β ω

LBP6,2 5 0.2 4 0.7 0.8 0.01 2 0.01 5 3 0.02 0.1 0.01
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Table 2 Information about the video sequences used in the proposed scheme

Video Scenario Data set Frame size Description

Waving Tree Outdoor Wall flower 120×160 A person is walking with waving tree in

(WT) background.

Campus (CA) Outdoor Perception.i2r 128×160 Vehicle and men are moving

with waving of leaves at background.

Intelligent Indoor SBMnet 240×320 Man is walking in a room with constant

Room (IR) illumination and high noisy environment.

Canoe (CAN) Outdoor Changedetection 240×320 Canoe is sailing with rippling of water surface

swaying of vegetation at background

OTCBVS Outdoor OTCBVS 240×320 Men are moving with illumination changes

condition because of sailing of clouds.

Highway (HW) Outdoor Changedetection 240×320 Vehicles are moving under small waving of

leaves and different illumination condition at

background

Fountain (FO1) Outdoor Perception.i2r 128×160 Men are moving with different speed with

fountain at background.

Fountain (FO2) Outdoor Changedetection 288×432 Small vehicles are passing behind the fountain.

Watersurface Outdoor Perception.i2r 128×160 A person is walking and after-that standing

(WS) at the bank of water surface.

Table 3 Challenges associated with different video sequences

Video sequences Challenges in video sequences

WT Dynamic background

CA Dynamic background with Camouflage

IR Constant illumination and noise environment

CAN Rippling Water

OTCBVS Illumination variation and shadow

HW Dynamic background and illumination variation

FO1 Dynamic background and still position of moving object

FO2 Dynamic Background and small moving object

WS Camouflage, rippling water and still position of moving object

Table 4 Download source of the video sequences used in our experiment

Video sequences Download source

WT https://www.microsoft.com/en-us/research/project/test-images-for-wallflower-paper/

CA, FO1, WS http://vis-www.cs.umass.edu/∼narayana/castanza/I2Rdataset/
IR http://www.scenebackgroundmodeling.net/

CAN, FO2, HW http://changedetection.net/

OTCBVS [15]
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proposed approach is compared with eight state-of-the-art approaches namely GMM [55],
KDE [16], STBS [13], PBAS [27], T-BGS [26], STLBP-BGS [64], Goyal’s method [20]
andMoudgollya’s method [41]. To retain about the fairness of the proposed scheme in entire
experimentation and comparison no post processing operations are adopted to improve the
overall detection performance of the proposed scheme. The overall experiment is segregated
in terms of qualitative and quantitative evaluation measures.

In context to qualitative evaluation, visual assessment of frames for different video
sequences are shown with respect to improved segmented foreground detection.

For quantitative measurement, performance matrices in terms of Recall, Precision,
F-measure(F1), Similarity, percentage of correct classification (PCC) and average clas-
sification error (ACE) are computed. To give a better insights to the reader, following
quantitative matrices are presented as follows:

Recall = T P

T P + FN
(22)

Precision = T P

T P + FP
(23)

F − measure = 2
Recall × precision

Recall + Precision
(24)

PCC = T P + T N

T P + T N + FP + FN
(25)

Smilarity = T P

T P + FP + FN
(26)

ACE (AverageClassif icationError) = FP + FN

M
(27)

where, M is the number of frames taken for evaluation purpose. The necessary description
used for measuring the performance are represented as follows:

I True Positive (TP): the number of pixels that are correctly detected as foreground
pixels.

II False Positive (FP):the number of background pixels that are incorrectly detected as
foreground pixels.

III True Negative (TN): the number of background pixels correctly marked as background
pixels.

IV False Negative (FN): the number of foreground pixels that are incorrectly marked as
background pixels.

Additionally, the pseudo code to generate TP, TN, FP and FN over selected frames is
described in Algorithm 2.
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5.1 Influence of adaptive threshold and learning rate

In this section, we show the influence of adaptive selection of threshold value (Tp) and
learning rate (αb) instead of choosing it heuristically. In this experiment, the qualitative as
well as quantitative measures are evaluated using some video sequences namely WT and
WS and shown in Figs. 8 and 9 respectively. In the proposed scheme i.e. STLBP (without

WT:250

(a) (b) (c) (d)

Fig. 8 Qualitative and Quantitative comparison of proposed STLBP1 and proposed STLBP2 . First row
(Qualitative comparison): a 250th frame of WT video sequence, b Ground truth, c Proposed STLBP1 and d
Proposed STLBP2 results. Second row shows the Quantitative comparison in terms of Recall, Precision

and F − measure respectively of WT video sequences
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WS:1601

(a) (b) (c) (d)

Fig. 9 Qualitative and Quantitative comparison of proposed STLBP1 and proposed STLBP2 on WS video
sequence. First row (Qualitative comparison): a 1601st frame of WS video sequence, b Ground truth, c
Proposed STLBP1 and d Proposed STLBP2 results. Second row shows the Quantitative comparison in terms
of Recall, Precision and F − measure respectively of WS video sequences

adaptive parameter selection) the value of Tp and αb are considered as 0.7 and 0.01 respec-
tively. From the Figures it is clearly observed that the proposed scheme STLBP (with
adaptive parameter selection) shows superior performance than that of the proposed scheme
STLBP (without adaptive parameter selection). Henceforth, to make an uniformity for the
subsequent results and analysis the proposed scheme without adaptive parameter selection
and proposed scheme with adaptive parameter selection are named as proposed STLBP1
and proposed STLBP2 respectively.

5.2 Qualitative analysis

The qualitative comparison in terms of visual assessment of the proposed scheme (proposed
STLBP2) than that of the benchmark schemes namely GMM [55], KDE [16], STBS [13],
PBAS [27], T-BGS [26], STLBP-BGS [64], Goyal’s method [20] and Moudgollya’s method
[41] using WT, HW, OTCBVS, CA, FO2, FO1, WS, IR and CAN video sequences are
shown in Figs. 10, 11, 12, 13, 14 and 15. The video sequences used in the experiment con-
stitute different complex situations like waving of tree, rippling water, low contrast, varying

WT-214

WT-253

WT-259

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)

Fig. 10 Visual assessment of Moving object detection for WT video sequence: a original frames, b Ground
Truth, c GMM, d KDE, e STBS, f PBAS, g T-BGS, h STLBP, i Goyal’s method, jMoudgollya’s method and
k Proposed STLBP2
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HW-450

HW-582

HW-650

(a) (b) (c) (d) (e) (f) (g) (h) (k)(j)(i)

Fig. 11 Visual assessment of Moving object detection for HW video sequence: a Original frames, b Ground
Truth, c GMM, d KDE, e STBS, f PBAS, g T-BGS, h STLBP, i Goyal’s method, jMoudgollya’s method and
k Proposed STLBP2

OTCBVS-45

OTCBVS-48

CA-1815

CA-2312

FO2-655

FO2-739

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)

Fig. 12 Visual assessment of Moving object detection for OTCBVS, CA and FO2 videosequences:a Orig-
inal frames, b Ground Truth, c GMM, d KDE, e STBS, f PBAS, g T-BGS, h STLBP, i Goyal’s method, j
Moudgollya’s method and k Proposed STLBP2

FO1-369

FO1-441

WS-1476

WS-1531

IR-171

IR-216

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)

Fig. 13 Visual assessment of Moving object detection for FO1, WS and IR video sequences: a Original
frames, b Ground Truth, c GMM, d KDE, e STBS, f PBAS, g T-BGS, h STLBP, i Goyal’s method, j
Moudgollya’s method and k Proposed STLBP2
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CAN-836

CAN-859

(a) (b) (c) (d) (e) (f) )k()h()g( (j)(i)

Fig. 14 Visual assessment of Moving object detection CAN video sequence: a Original frames, b Ground
Truth, c GMM, d KDE, e STBS, f PBAS, g T-BGS, h STLBP, i Goyal’s method, jMoudgollya’s method and
k Proposed STLBP2

illumination, camouflage, noisy and different speed of foreground object. Figure 10 shows
the visual quality assessment comparison of the proposed scheme (proposed STLBP2) over
that of the benchmark schemes. From the obtained result it is seen that the number of false

Fig. 15 Visual assessment of moving object detection for different video sequences: a Original frames, b
Ground Truth, c GMM, d KDE, e STBS, f PBAS, g T-BGS, h STLBP, i Goyal’s method, j Moudgollya’s
method and k Proposed STLBP2
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positives and false negatives reduces significantly in the proposed STLBP2 scheme in com-
parison to benchmark schemes. In Fig. 11 for HW sequence, the proposed STLBP2 scheme
brings potential improvement in terms of foreground extraction than that of PBAS, T-BGS,
STLBP and Goyal’s BGS approaches. However, techniques like GMM, KDE, STBS and
Moudgollya’s methods fails to extract the desired foreground with respect to ground truth.

Further, the visual assessment for some complex sequences like OTCBVS, FO2, and CA
is presented in Fig. 12. These sequences exhibits complex scenario like change in illumina-
tion, rippling water, dynamic background with low contrast and camouflage. From Fig. 12,
in-case of varying illumination (OTCBVS sequence) the proposed STLBP2 method exhibits
illumination invariant nature and accurately detect the foreground object with reduced false
positive rate. Further, for low contrast and dynamic sequences (CA and FO2) the proposed
STLBP2 scheme shows similar improvement over state-of-the-art approaches. In particu-
lar, the proposed STLBP2 scheme minimizes the wrong classification and able to detect the
foreground object accurately.

Figure 13 includes some complex sequences namely WS and FO1 where issues like
dynamic background, ripple of water and noise are present. From the Figure it is noticed
that for WS sequence the extracted foreground is demolished by background for T-BGS
and STLBP method. This is due to the adoption of constant threshold value and learning
rate. However, the proposed STLBP2 scheme is more visual appealing than that of the other
schemes with reduced false detection. Similarly, for IR video sequence (a noisy sequence),
the proposed STLBP2 scheme produces superior foreground detection in comparison to the
competitive schemes.

Further, Fig. 14 contains most complex video sequence namely CAN where many
challenging scenarios like illumination variation, rippling water, camouflage (i.e. some
chromatic feature of background is similar as foreground) and still position of foreground
object for a while are present. For CAN video sequence, the proposed STLBP2 scheme has
not shown significant results for foreground detection as compared to BGS methods like
KDE and PBAS.

A more detailed visual assessment representation of the proposed STLBP2 scheme over
eight well accepted schemes is shown in Fig. 15. In conclusion, the proposed STLBP2
scheme shows impressive performance in most of the cases in terms of visual quality
assessment than that of the reported schemes used in the experiments.

5.3 Quantitative analysis

The quantitative analysis and comparison of the proposed scheme (i.e. proposed STLBP1
and proposed STLBP2) is conducted in terms of Recall, Precision, F-measure and Percent-
age of correct classification (PCC), Average Classification Error (ACE) and Similarity.

Tables 5, 6, 7, 8, 9, 10, 11, 12 and 13, present the quantitative comparison of the pro-
posed approach against eight different state-of-the-art BGS methods for different video
sequences. From the obtained Tables 5–13 it is seen that the proposed STLBP2 scheme
outperforms almost in all cases over other BGS methods in terms of Recall, Precision, F-
measure and Percentage of correct classification (PCC), average classification error (ACE)
and Similarity.

Figure 16a shows the average Precision for all BGS schemes. The average Precision
value of PBAS is 0.7898 which is best among the methods. The next best average Preci-
sion value is 0.6866 obtained from the proposed STLBP2 method. The proposed STLBP2
method yields 13% less that of the highest reported scheme. Similarly, the average Recall
value shown in Fig. 16b for T-BGS, STLBP, proposed STLBP1 and proposed STLBP2
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Table 5 Quantitative Comparison of proposed method with that of other state-of-the-art BGS method for
‘WT’ data sequences

Algorithms Metric

Precision Recall F measure PCC Similarity ACE

GMM 0.5049 0.7639 0.6080 87.98 0.4367 2305
KDE 0.1837 0.9997 0.3104 45.83 0.1837 10392
STBS 0.9160 0.7597 0.8305 96.22 0.7102 725
PBAS 0.6782 0.6380 0.6575 91.89 0.4897 1555
T-BGS 0.6866 0.9920 0.8115 94.38 0.6828 1078
STLBP 0.7500 0.9916 0.8540 95.87 0.7452 793
Goyal’s method 0.8218 0.8185 0.8201 95.62 0.6951 839
Moudgollya’s method 0.8689 0.4320 0.5771 92.28 0.4056 1481
Proposed STLBP1 0.8865 0.9841 0.9327 98.27 0.8740 332
Proposed STLBP2 0.9143 0.9976 0.9541 98.83 0.9122 225

Table 6 Quantitative Comparison of proposed method with that of other state-of-the-art BGS method for
‘HW’ data sequences

Algorithms Metric

Precision Recall F measure PCC Similarity ACE

GMM 0.5982 0.5494 0.5728 98.38 0.4013 1227
KDE 0.3420 0.8725 0.4914 96.43 0.3257 2704
STBS 0.1138 0.6683 0.1945 92.96 0.1077 4423
PBAS 0.9774 0.9148 0.9451 99.79 0.8959 159
T-BGS 0.6649 0.9981 0.7982 99.03 0.6641 707
STLBP 0.6842 0.9978 0.8118 99.11 0.6832 650
Goyal’s method 0.8318 0.9674 0.8945 99.62 0.8091 287
Moudgollya’s method 0.0808 0.0988 0.0889 96.85 0.0465 590
Proposed STLBP1 0.7728 0.9888 0.8676 99.51 0.7661 355
Proposed STLBP2 0.9148 0.9988 0.9550 99.85 0.9139 113

Table 7 Quantitative Comparison of proposed method with that of other state-of-the-art BGS method for
‘OTCBVS’ data sequences

Algorithms Metric

Precision Recall F measure PCC Similarity ACE

GMM 0.1655 0.1750 0.1706 98.87 0.0933 866

KDE 0.0790 0.7151 0.1423 94.28 0.0766 4385

STBS 0.0235 0.1358 0.0401 95.69 0.0205 3305

PBAS 0.1731 0.1188 0.1409 99.04 0.0758 737

T-BGS 0.0388 0.7100 0.0736 88.16 0.0382 9090

STLBP 0.0405 0.7198 0.0766 88.50 0.0399 8824

Goyal’s method 0.0395 0.3722 0.0714 93.58 0.0370 4927

Moudgollya’s method 0.0083 0.0254 0.0125 98.59 0.0063 268

Proposed STLBP1 0.1793 0.6471 0.2802 97.80 0.1633 1687

Proposed STLBP2 0.2085 0.7248 0.3238 98.20 0.1932 1375
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Table 8 Quantitative Comparison of proposed method with that of other state-of-the-art BGS method for
‘CA’ data sequences

Algorithms Metric

Precision Recall F measure PCC Similarity ACE

GMM 0.2358 0.7321 0.3565 93.44 0.2171 1343
KDE 0.0523 0.9938 0.0994 55.24 0.0523 9167
STBS 0.4350 0.6536 0.5224 97.93 0.3535 608
PBAS 0.7553 0.5270 0.6208 98.40 0.4501 327
T-BGS 0.2182 0.8709 0.3490 91.93 0.2114 1653
STLBP 0.1660 0.8686 0.2788 88.83 0.1620 2286
Goyal’s method 0.2401 0.1524 0.1864 96.70 0.1028 677
Moudgollya’s method 0.7600 0.0250 0.0484 97.87 0.0248 433
Proposed STLBP1 0.5234 0.8231 0.6399 97.70 0.4705 471
Proposed STLBP2 0.6513 0.9109 0.7593 98.57 0.6119 294

Table 9 Quantitative Comparison of proposed method with that of other state-of-the-art BGS method for
‘FO2’ data sequences

Algorithms Metric

Precision Recall F measure PCC Similarity ACE

GMM 0.4754 0.5731 0.5197 98.55 0.3511 1796
KDE 0.1080 0.9793 0.1945 88.86 0.1077 13755
STBS 0.2194 0.8328 0.3473 96.97 0.2101 2922
PBAS 0.9628 0.8379 0.8960 99.73 0.8116 330
T-BGS 0.0815 0.9853 0.1506 83.70 0.0814 16576
STLBP 0.0864 0.9822 0.1588 84.82 0.0862 15568
Goyal’s method 0.3569 0.7942 0.4925 98.44 0.3267 1829
Moudgollya’s method 0.6054 0.1456 0.2348 99.04 0.1330 145
Proposed STLBP1 0.7024 0.8953 0.7872 99.50 0.6490 609
Proposed STLBP2 0.9123 0.9886 0.9489 99.78 0.9028 280

Table 10 Quantitative Comparison of proposed method with that of other state-of-the-art BGS method for
’FO1’ data sequences

Algorithms Metric

Precision Recall F measure PCC Similarity ACE

GMM 0.6150 0.4905 0.5457 97.17 0.3753 579
KDE 0.4710 0.7649 0.5830 96.21 0.4114 776
STBS 0.7583 0.6492 0.6995 98.07 0.5379 395
PBAS 0.8410 0.6272 0.7185 98.30 0.5607 348
T-BGS 0.5541 0.9359 0.6961 97.17 0.5339 579
STLBP 0.5655 0.9332 0.7042 97.29 0.5434 556
Goyal’s method 0.6929 0.4864 0.5716 97.48 0.4008 517
Moudgollya’s method 0.1431 0.2130 0.1712 94.42 0.0936 553
Proposed STLBP1 0.6656 0.8489 0.7461 98.00 0.5951 409
Proposed STLBP2 0.7202 0.8721 0.7889 98.38 0.6514 330
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Table 11 Quantitative Comparison of proposed method with that of other state-of-the-art BGS method for
‘WS’ data sequences

Algorithms Metric

Precision Recall F measure PCC Similarity ACE

GMM 0.4722 0.1658 0.2455 91.84 0.1399 1671
KDE 0.5055 0.9319 0.6555 92.16 0.4875 1606
STBS 0.3169 0.4826 0.3826 87.53 0.2365 2553
PBAS 0.8758 0.6880 0.7706 96.72 0.6269 671
T-BGS 0.1754 0.8567 0.2912 66.61 0.1704 6837
STLBP 0.1767 0.8217 0.2909 67.93 0.1702 6568
Goyal’s method 0.7040 0.7913 0.7451 95.67 0.5938 887
Moudgollya’s method 0.3643 0.1567 0.2191 91.06 0.1231 1830
Proposed STLBP1 0.6743 0.7943 0.7294 95.28 0.5741 966
Proposed STLBP2 0.7030 0.8611 0.7741 96.2 0.6314 760

Table 12 Quantitative Comparison of proposed method with that of other state-of-the-art BGS method for
‘IR’ data sequences

Algorithms Metric

Precision Recall F measure PCC Similarity ACE

GMM 0.4820 0.3357 0.3957 98.70 0.2467 990
KDE 0.6409 0.9444 0.7636 99.26 0.6176 565
STBS 0.2184 0.5070 0.3053 98.27 0.1801 1174
PBAS 0.8475 0.3796 0.5243 99.13 0.3553 665
T-BGS 0.5337 0.9940 0.6945 98.96 0.5320 764
STLBP 0.5335 0.9924 0.6940 98.97 0.3313 756
Goyal’s method 0.6905 0.8655 0.7681 99.54 0.6236 349
Moudgollya’s method 0.0090 0.1149 0.0167 90.04 0.0084 1865
Proposed STLBP1 0.6193 0.9890 0.7617 99.29 0.6151 526
Proposed STLBP2 0.7975 0.9886 0.8829 99.70 0.7903 227

Table 13 Quantitative Comparison of proposed method with that of other state-of-the-art BGS method for
‘CAN’ data sequences

Algorithms Metric

Precision Recall F measure PCC Similarity ACE

GMM 0.0290 0.5074 0.0548 92.54 0.0282 5714
KDE 0.0278 0.9997 0.0540 85.08 0.0278 11426
STBS 0.0795 0.5870 0.1400 97.79 0.0753 1254
PBAS 0.9945 0.8326 0.9064 99.83 0.8288 56
T-BGS 0.0106 0.9989 0.0209 51.27 0.0106 29803
STLBP 0.0111 0.9995 0.0220 52.52 0.0111 28698
Goyal’s method 0.2177 0.7186 0.3341 98.58 0.2006 978
Moudgollya’s method 0.1891 0.0235 0.0418 99.63 0.0213 70
Proposed STLBP1 0.1972 0.9552 0.3270 97.86 0.1954 1366
Proposed STLBP2 0.3331 0.9619 0.4948 99.35 0.3287 469
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methods are 0.9269, 0.9230, o.8806 and 0.9224 respectively. The average F-measure value
is illustrated in Fig. 16c. However, it is noticed that the proposed STLBP2 scheme attains
second and third best result for average Precision and average Recall value respectively.

Fig. 16 Average Quantitative metrics comparison of different competing BGS methods with proposed
method: a Precision, b Recall, c F-measure, d PCC, e Similarity, and f ACE
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Table 14 Overall performance evaluation of algorithms

Cumulative score

Algorithms Precision Recall F-Measure PCC Similarity ACE Total Score Rank

GMM 40 26 40 40 40 37 223 2

KDE 32 71 38 29 38 28 236 4

STBS 43 32 42 44 42 42 245 5

PBAS 80 33 64 75 68 73 393 8

T-BGS 26 77 37 25 36 23 224 3

STLBP 32 73 43 33 41 31 253 6

Goyal’s method 60 37 54 57 54 56 318 7

Moudgollya’s method 38 9 15 44 15 57 178 1

Proposed STLBP1 65 58 73 64 72 64 396 9

Proposed STLBP2 71 79 80 84 89 83 486 10

This is viable as the F-measure is the harmonic mean between Precision and Recall. From
the result it is seen that the obtained average F-measure is the highest for the proposed
STLBP2 scheme. The obtained average F-measure is 10.69% higher with respect to the
second best method (i.e. PBAS). Similarly, for average PCC performance measures the pro-
posed STLBP2 scheme and second best scheme (i.e. PBAS) achieved 98.74% and 98.09%
respectively. The proposed scheme attains 0.66% higher value that of the second best
scheme. Again, the improvements for the proposed STLBP2 approach is also noticed for
average Similarity and average ACE as 17.27% and 13.28% respectively in comparison to
the second best method depicted in Fig. 16.

Finally, overall performance [46] ranking between different BGS schemes based on the
accuracy matrices is evaluated with respect to the proposed scheme and shown in Table 14.
The ranking is made for ten BGS approaches using nine video sequences. The ranking strat-
egy for evaluating the overall performance, the contenders are sorted in an ascending order
of enumeration based on the performance (for Precision, Recall, F-measure, PCC and Sim-
ilarity) and are assigned scores of 1, 2, 3, 4,..., 10. However, for average classification error
(ACE) the assigned values are arranged in a descending order. To conduct this experiment, a
cumulative score is calculated by taking all considered test sequences. Next, the total score
for a contender for different BGS algorithms is computed by adding its cumulative score
for all performance matrices like Precision, Recall, F-measure etc. Finally the contenders
are ranked as 10, 9, 8....1 (where 10 is the best and 1 is the worst) based on their overall
total score. It is seen from the Table 14 that the proposed STLBP2 and proposed STLBP1
methods scored highest and second highest respectively in comparison to the other BGS
schemes.

6 Conclusion

In the present work, an improved scheme for foreground detection is proposed under dif-
ferent complex scenarios. The proposed scheme initially utilized a spatio-temporal local
binary pattern (STLBP) based approach to capture both spatial textural feature and temporal
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motion feature from a video. In the suggested scheme, an improvement in change descrip-
tion rule of traditional STLBP method is made to capture robust features under challenging
scenarios like waving tree, rippling water, camouflage, noisy video, low contrast and illumi-
nation variation. During background modeling step, instead of captivating a constant value
for learning rate αb and threshold value Tp , an adaptive formulation strategy is proposed to
compute αb and Tp to detect the foreground object more accurately with reduced false error
rate. A thorough experimental analysis has been conducted on challenging video sequences.
The performance of the suggested scheme has also been contrasted and validated in compar-
ison to some benchmark schemes with similar experimental setup. From qualitative analysis
and quantitative evaluations it is clearly noticed that the suggested scheme brings poten-
tial improvement in terms of accurate foreground detection with that of the state-of-the-art
background subtraction approaches.

It is realized that the proposed algorithm is capable of detecting the foreground
objects effectively under challenging conditions like illumination variation, noisy and
dynamic background. The proposed BGS approach shows superior performance in terms
of foreground detection under certain challenging conditions like dynamic background,
illumination variation, shadow, low contrast and noisy sequences. However, the proposed
scheme has not shown consistent results for foreground detection under camouflage and
backgrounds with rippling of water conditions.

Developing an efficient foreground detection algorithm is still an open challenge in the
field of computer vision. Future work should focus in the following directions: First, devise
of multi-feature based foreground detection using different background conditions. Second,
to formulate some alternate background modeling methods to enhance the foreground detec-
tion accuracy and further reduces the effect of false positive rate. Finally, exploring some
recent deep learning techniques to segment the foreground accurately could be considered
as another area of extension.
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