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Abstract
A new fault diagnosis method of rolling bearings was presented based on variational mode
decomposition (VMD), Tsallis entropy and Fuzzy C-means clustering (FCM) algorithm.
Firstly, the measured vibration signals were decomposed with VMD in different scales to
obtain a series of band-limited intrinsic modal function (BIMF). The VMD parameters were
determined according to the change of the BIMF center frequency. Then, the Tsallis entropy of
BIMF components were calculated and used as the signal features. Finally, the features were
put into FCM classifier to recognize different fault types. It is proved by experiments that this
method is feasible and the proposed approach could obtain better result compared with the
method based on mode decomposition (EMD) and local mean decomposition (LMD).

Keywords Variationalmodedecomposition (VMD) .Tsallis entropy . FuzzyC-means clustering
(FCM) algorithm . Fault diagnosis . Rolling bearing

1 Introduction

Rolling bearing is an important component of rotation machinery, its operation directly affects
the working condition of the whole mechanical equipment. The bearing failure will cause huge
security risks in the manufacturing process. Therefore, it has a very import significant for on-
line monitoring and fault-diagnosis of rolling bearings [2, 28]. This is why fault diagnosis of
rolling bearing becomes a research focus, and many the vibration analysis methodologies have
been proposed. When a rolling bearing fails, the collision occurs between the faulty part and
other components, and non-stationary, non-linear shock signals can be obtained from the
sensor installed on the device. This is also the basic principle of these analysis methodologies.

https://doi.org/10.1007/s11042-020-09534-w

* Zeng Yan
zengyan3925@163.com

1 Key Laboratory of Measurement Technology and Instrumention of HeBei Province, Yanshan
University, Qinhuangdao 066004 Hebei, China

2 Tangshan Polytechnic College, Tangshan 063299 Hebei, China

/
Published online: 13 August 2020

Multimedia Tools and Applications (2020) 79:30069–30085

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-020-09534-w&domain=pdf
http://orcid.org/0000-0003-2275-6354
mailto:zengyan3925@163.com


Most methods include two typical steps: feature extraction and selection, condition classi-
fication. In the first step, time domain, frequency domain, and time-frequency domain analysis
are often applied [21]. The extracted time domain features like peak-to-peak value, root mean
square value, kurtosis indicator, etc. obtained from the raw signals can be used, but some
information are not easily observed. Frequency domain analysis could solve this problem
which conduct FFT on the raw vibration signal, then analyzing the power spectrum, kurtosis
spectrum, order cepstrum, envelope spectrum, etc. for diagnosis [5, 11, 32]. However,
frequency domain analysis has limited analytical capabilities for non-stationary signals and
this is why time-frequency domain analysis have been used for non-stationary signals diag-
nosis [8]. No matter which domain features are adopted, most of the features extracted are
redundant. It is need to choose the typical information used the method like PCA [36],
Kullback Leibler (K–L) divergence [3], distance evaluation technique [18], feature discrimi-
nant analysis, and compressed sensing [1, 12].

In addition, there are other transform domain analysis which are proved to be effective.
Especially, Empirical Mode Decomposition (EMD) and Local Mean Decomposition (LMD)
are widely used in feature extraction [22, 23, 31, 41], but the decomposition error is lager and
decomposition result is susceptible to sampling frequency in these two feature extraction
methods. Because EMD and LMD both are the recursive modal decomposition, modal aliasing
is existed which make it difficult to separate the components with similar frequency, and the
end effect has also appeared. Compared with EMD and LMD, VMD shows great advantages
in bearing fault diagnosis [37, 42] . VMD determines the frequency center and bandwidth of
each decomposition mode by iteratively searching for the optimal model. It is the non-
recursive and variational modal decomposition, which could avoid modal aliasing and suc-
cessfully separate two pure harmonic signals with similar frequencies. It has the characteristics
of high precision and fast convergence and shows good robustness to noise. Therefore, VMD
is used in this paper, and the Tsallis entropy of multiple modalities are calculated as the signal
features.

In the second step, some artifificial intelligence algorithms have been proposed, like support
vector machine(SVM) [38], artificial neural network(ANN) [16], random forest [40], etc. In
addition, there are some algorithms constructed based on the objects [43]. Most of the
algorithms can be used for rolling bearing diagnosis, but they are heavily dependent on the
features extraction and much signal prior knowledge.

With the development of deep learning, the concept of building a network is applied in
many aspects, which includes Image-Text Matching [10, 15], Social Multimedia [13, 14, 35],
fault diagnosis [6, 7, 39]. At the same time, there are many deep learning-based bearing
diagnosis methods proposed [29, 30]. Especially CNN has excellent feature extraction ability.
Attention mechanism is introduced which could assist the deep network to extract the
discriminative features and visualize the learned diagnosis knowledge effectively under the
condition that there is only a small data set [19]. In addition, The multi-layers is also utilized as
the main architecture of the fault diagnosis, and is proved efficient [20]. However, most of
method based on deep learning have a long training time for the learning model, and can’t
check run process which is not flexible. Therefore, two steps: feature extraction and selection,
condition classification are adopted considering the actual operation of bearing signals. FCM,
which has been proved convergent [24–27], is used for classification after the feature
extraction .

Specifically, the method proposed in this paper is: 1) adopt VMD to decompose the
obtained raw signal. 2) The obtained Tsallis entropy after signals decomposition with VMD
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are used as the signal features considering Tsallis entropy can solve the non-extensive problem
of the system. 3) Fuzzy c-means clustering algorithm (FCM) is applied for better diagnosis.
Next, the remainder of this paper is organized as follows. In Section 2, the feature extraction is
presented. Then the FCM is described in Section 3. The Overall framework is presented in
Section 4. The experimental results are shown and discussed in Section 5, and the conclusion
is then presented in Section 6.

2 Feature extraction

In the feature extraction, the obtained vibration signal is decomposed with VMD firstly to get a
series of band-limited intrinsic modal function (BIMF). Then, the Tsallis entropy of BIMF
components were calculated and used as the signal features. Specially, the VMD and Tsallis
entropy calculation are described as follows.

2.1 VMD

VMD is a non-recursive decomposition method, which can decompose multi-component
signals of complex signals into amplitude-frequency modulation (AM-FM) component
signals. The basic process of this algorithm are: assuming that each eigenmode function
has a limited bandwidth with different center frequencies firstly, then the variational
problem is solved by conversion, and each eigenmode function is demodulated to
Corresponding base frequency band in order to minimize the sum of the estimated
bandwidth of each eigenmode function, finally extract each eigenmode function and
corresponding center frequency.

Decompose a real signal f(t) into K sparse and independent sub-signals, its AM and FM
signal form can be defined as:

uk tð Þ ¼ Ak tð Þcos φk tð Þ½ � ð1Þ

uk(t) is the K IMF components obtained by VMD decomposition of signal f(t), {uk(t)} = {u1(t),
u2(t),⋯, uK(t)}, (k = 1, 2,⋯K). φk(t) is a non-monotonically decreasing phase function and

φ
0
k tð Þ≥0,Ak(t) is the instantaneous amplitude of uk(t) (envelope) which satisfiesAk(t) ≥ 0.
The instantaneous frequency of uk(t) is

ωk tð Þ ¼ φ
0
k tð Þ ¼ dφk tð Þ

d tð Þ ð2Þ

Obviously, Ak(t) and ωk(t) are gradually changing relative to φk(t), that is, within the interval of
[t − δ, t + δ] (where δ = 2π/φ′(t)), uk(t) can be regarded as a harmonic signal with amplitude
Ak(t) and frequency ωk(t).

Here, assume that each mode of the signal has a limited bandwidth with a center frequency,
variational problems can be described as seeking k modal functions uk(t) so that the sum of the
estimated bandwidth of each mode is the smallest and the constraint is the sum of each mode is
the original input signal f(t).

Specifically, the analytical signal of each modal function uk(t) is obtained through the
Hilbert transform, and then its unilateral frequency spectrum can be obtained:
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δ tð Þ þ j
πt

� �
*uk tð Þ ð3Þ

Where n← 0 is a unit pulse function, j is an imaginary unit, and * is convolution.
Then the analysis signal of each mode is added an estimated center frequency dij = ‖xj − vi‖,

the spectrum of each mode is modulated to the corresponding base band:

δ tð Þ þ j
πt

� �
*uk tð Þ

� �
e− jωk t ð4Þ

Where {ωk} = {ω1, ω2,⋯, ωK}, (k = 1, 2,⋯K) is the center frequency of each {uk(t)}.
Calculate the squared L2 norm of the demodulated signal gradient to estimate the bandwidth

of each modal signal. The variation problem is expressed as follows:

min
ukf g⋅ ωkf g

∑
K

k¼1
∂t δ tð Þ þ j

πt

� �
*uk tð Þ

� �
e− jωk t

���� ����2
2

( )
; s:t: ∑

K

k¼1
uk tð Þ ¼ f tð Þ ð5Þ

To find the optimal solution of the above constrained variational model, transform the
constrained variational problem to be solved into a non-constrained variational problem by
introducing quadratic penalty factor and Lagrange operator. And the extended Lagrangian
function is:

L ukf g; ωkf g;λð Þ ¼ α ∑
K

k¼1
∂t δ tð Þ þ j

πt

� �
*uk tð Þ

� �
e− jωk t

���� ����2
2

uk ⋅ωk

þ f tð Þ− ∑
K

k¼1
uk tð Þ

���� ����2
2

þ λ tð Þ; f tð Þ− ∑
K

k¼1
uk tð Þ

� �

ð6Þ

Where α is the second penalty factor, it guarantees the reconstruction accuracy of the signal in
the presence of Gaussian noise, λ(t) is Lagrange operator and keeps the constraints strictly, 〈⋅,
⋅〉 represents inner product.

Next, Alternate Direction Method of Multipliers(ADMM) is adopted. Seek the “saddle

point” of the Lagrange expression by alternately updating unþ1
k , ωnþ1

k , andλn + 1.
The problem of solving unþ1

k can be expressed as:

unþ1
k ¼ argmin

uk∈X
α ∂t δ tð Þ þ j

πt

� �
*uk tð Þ

� �
e− jωk t

���� ����2
2

þ f tð Þ− ∑
K

i¼1
ui tð Þ þ λ tð Þ

2

���� ����2
2

( )
ð7Þ

Where X is the solution space of uk. Using the Parseval/Plancherel Fourier isometric method to
solve this problem in the frequency domain.

unþ1
k ωð Þ ¼ argmin

uk ;uk∈X
α jω 1þ sgn ωþ ωkð Þð Þuk ωþ ωkð Þ½ �k k22 þ f ωð Þ− ∑

K

i¼1
ui ωð Þ þ λ ωð Þ

2

���� ����2
2

( )
ð8Þ

Where u, f , λ is the Fourier transform of the corresponding time signal respectively. In the first
term of Eq. (8), the variableω← ω ‐ ωk.
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unþ1
k ωð Þ ¼ argmin

uk ;uk∈X
α j ω‐ωkð Þ 1þ sgn ωð Þð Þuk ωð Þ½ �k k22 þ f ωð Þ− ∑

K

i¼1
ui ωð Þ þ λ ωð Þ

2

���� ����2
2

( )
ð9Þ

Using Hermitian symmetry of the real signal in the reconstructed fidelity term, these two terms
can be written as half-space integrals at non-negative frequencies.

unþ1
k ωð Þ ¼ argmin

uk ;uk∈X
∫∞0 4α ω‐ωkð Þ2 uk ωð Þj j2 þ 2 f ωð Þ− ∑

K

i¼1
ui ωð Þ þ λ ωð Þ

2

				 				2
" #

dω

( )
ð10Þ

The solution to this quadratic optimization problem is:

unþ1
k ωð Þ ¼

f ωð Þ−∑i≠kui ωð Þ þ λ ωð Þ
2

1þ 2α ω‐ωkð Þ2 ð11Þ

In addition, because the center frequency ωk only appears in the low-frequency bandwidth. It
can be expressed:

ωnþ1
k ¼ argmin

ωk

∂t δ tð Þ j
πt

� �
*uk tð Þ

� �
e−jwk t

���� ����2
2

( )
ð12Þ

And get

ωnþ1
k ¼ ∫∞0 ω uk ωð Þj j2dω

∫∞0 uk ωð Þj j2dω ð13Þ

Obviously, ωk is at the center of gravity of the corresponding modal power spectrum.
Iterate uk ωð Þ and ωk using Eqs. 11 and 14 to get the optimal solution. Generally, the

termination criterion of iteration number n satisfies:

∑
K

k¼1
un−1k −unk

�� ��2
2

∑
K

k¼1
unk

�� ��2
2

< e ð14Þ

Where e(e > 0) is the convergence constraint of fixed precision.
According to the above description, the specific process of VMD algorithm is as follows

(1) Initialize u1k ωð Þ
 �
, ω1

k


 �
, λ1 ωð Þ, bf ;

(2) Repeat

bλ ωð Þ for bλnþ1
ωð Þ←bλn

ωð Þ þ γ bf ωð Þ− ∑
K

k¼1
bunþ1
k ωð Þ

� �
do

(1) Update γ for all ω ≥ 0:
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unþ1
k ωð Þ←

f ωð Þ− ∑
i< k

unþ1
i ωð Þ− ∑

i>k
uni ωð Þ þ λn ωð Þ

2

1þ 2α ω−ωn
k

� 2 ð15Þ

The quadratic penalty factor α improves convergence. Especially when the signal
contains noise, the Lagrange multiplier using the quadratic penalty function effectively
approximates the precise reconstruction of the signal.

(2) Update ∑
K

k¼1
bunþ1
k −bunk�� ���

2
2= bunk�� ��2

2
Þ < e:

ωnþ1
k ←

∫∞0 ω unþ1
k ωð Þ		 		2dω

∫∞0 unþ1
k ωð Þ		 		2dω ð16Þ

Where buk is the modal function in the frequency domain; bλ represents the Lagrange multiplier

operator in frequency domain and plays a mandatory role; bf represents the original signal in
frequency domain.

(3) Dual ascent for all ω ≥ 0:

λnþ1 ωð Þ←λn ωð Þ þ γ f ωð Þ− ∑
K

k¼1
unþ1
k ωð Þ

� �
ð17Þ

In this formula, γ represents noise tolerance coefficient. To achieve good de-noising effect, it
can be set: γ = 0.

until convergence: ∑
K

k¼1
unþ1
k −unk

�� ���
2
2= unk
�� ��2

2
Þ < e. At the end of the iteration, K compo-

nents are output.
It is need to be noted that the decomposition layers K has an effect on the decomposition

results, the specific impact has been explained in Reference [17] and the optimal number of
decomposition layers for rolling bearing diagnosis has been proved in the experiment of this
paper.

2.2 Tsallis entropy

The concept of Shannon entropy was first proposed by American scholar C.E.
Shannon in 1948. The theory states that if an event has multiple possible outcomes
and the probability of each outcome is pi(i = 1, 2,⋯, N), the information obtained by a
certain result can be expressed by Ii = logα(1/pi), and the information entropy defined
for time series is
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S dð Þ
BG ¼ −k ∑

N

i¼1
pilnpi ð18Þ

Where k = 1. Obviously, Shannon entropy is based on thermodynamic B-G entropy, and it is
extensive.

Tsallis entropy introduces non-extensive parameter q on the basis of Shannon entropy and
constructs a new form of entropy function. It can be expressed:

S dð Þ
q ¼ k

q−1
1‐∫ f xð Þqdx� 

; q∈R ð19Þ

Where f(x)is the probability density distribution function which satisfies ∫f(x)dx = 1, and q is
the non-extensive parameter.

In addition, Tsallis entropy can be expressed discretely:

S dð Þ
q ¼ k

q−1
1− ∑

n

i¼1
pqið Þ

� �
; q∈R ð20Þ

Where pi is the probability density distribution function of random variables i,k is a constant. In

this paper k = 1,∑
n

i¼1
pqið Þ ¼ 1.

The selection of the non-extensive coefficient q of different tested systems has a great
significance to the calculation of Tsallis entropy, q can describe the non-extensive degree of
the test system, and make system entropy meets the following pseudo-additivity:

Ss Aþ Bð Þ
k

¼ Ss Að Þ
k

þ Ss Bð Þ
k

þ 1−qð Þ Ss Að ÞSs Bð Þ
k2

ð21Þ

Therefore, q makes information measurement more targeted and flexible. q < 1 and q > 1
denote the system’s specific super-extendability and sub-extensibility, respectively. Especially
q→ 1, Tsallis entropy is equivalent to Shannon entropy which be proved in below formula.
Therefore, Tsallis entropy which is the extension of Shannon entropy also can describe
systems with extensive characteristics, and it is often used in the analysis of random complex
signals.

limS dð Þ
q ¼ lim

q→1

k
q−1

1− ∑
n

i¼1
p ið Þq

� �
¼ lim

q→1

k
q−1

∑
n

i¼1
p ið Þ 1−p ið Þq−1

� �� �
¼ −k ∑

n

i¼1
p ið Þlnp ið Þ ¼ SdBG ð22Þ

In this paper, Tsallis entropy is suitable due to the randomness of vibration signal from the
rolling bearing fault. After the vibration signal is decomposed by VMD, k eigenmode
functions are obtained. Then choose the appropriate non-extended parameter q to calculate
the Tsallis entropy of each eigenmode function. The features of the fault information of the
signal can be distinguished according to the change of entropy value [9, 33, 34].

3 FCM

FCM algorithm is a kind of partition-based clustering algorithm. It is an improvement of the
classic C-means algorithm. The principle of FCM algorithm is to maximize the similarity
between the objects that are divided into the same cluster and minimize the similarity between
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the objects of different cluster. In this process, it is need to minimize the Euclidean distance
between all data points and each cluster center, and the weighted sum of fuzzy membership
firstly, then correct the fuzzy classification matrices and cluster centers continuously until the
convergence constraints for a given precision are met. Lastly, clustering the data points with
similarity.

Assume the sample set is X = {x1, x2,⋯xn}, where n is the number of samples. The
cluster center vector V = [v1, v2,⋯, vc]T, where c is the number of cluster centers. The
fuzzy classification matrix is U = [uij]c × n, where uij is the membership degree of the
data point xjrelative to the cluster center vi. The clustering objective function is

J fcm U ;Vð Þ ¼ ∑
n

j¼1
∑
c

i¼1
umij d

2
ij ð23Þ

Where dij is the Euclidean distance from the data point xj to the cluster center vi, it
can be expressed as dij = ‖xj − vi‖. The parameter m is a fuzzy weighted index,
generally m = 2. In addition, introducing the following constraints in FCM algorithm
so as to find the smallest partition of the objective function though calculating U and
V iteratively under the constraints.

0≤uij≤1

∑
c

i¼1
uij ¼ 1

∑
n

j¼1
uij > 0

8>>>><>>>>: 1≤ i≤c; 1≤ j≤n ð24Þ

Specific steps:

1) Set the number of cluster centers c, precisionε(ε > 0) and the fuzzy weighted index m,
initialize the fuzzy classification matrix, and set the iteration number l = 0.

(Update)vi

vi ¼ ∑
n

j¼1
umij x j= ∑

n

j¼1
umij ð25Þ

(Update)U

uij ¼ 1= ∑
c

k¼1

dij
dkj

� �2= m−1ð Þ
ð26Þ

2) Determine whether U satisfies the constraint:

Ulþ1−Ul
�� �� < ε ð27Þ

If the constraint is satisfied, stop iteration, otherwise repeat the step (2) and (3) to get the
optimal result.
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In addition, the effect of clustering can be evaluated by the classification coefficient F and
the average fuzzy entropy H. The more the classification coefficient Ftends to 1, the more the
average fuzzy entropyHtends to 0, the better the clustering effect.

F ¼ 1

n
∑
n

j¼1
∑
c

i¼1
u2ij ð28Þ

H ¼ −
1

n
∑
n

j¼1
∑
c

i¼1
uijlnuij ð29Þ

4 Our methodology

The fault diagnosis method of rolling bearing in this paper is described in Fig. 1: (1)
Collect the vibration signal, set the second penalty factor α, the decomposition levelK,
and perform VMD decomposition on the vibration signal. (2) Through continuous
optimization iterations, when the parameters meet the convergence constraint of a
given precision e(e > 0), K BIMF components are output.(3) Set the non-extensive
parameter q, find the Tsallis entropy of each BIMF function, and get the feature
entropy value. (4) Perform FCM cluster analysis on the entropy value to determine
the fault type of the vibration signal.

5 Experiment

In this paper, the Western Reserve University bearing test bench data are used for
experiments [4]. The bearing test bench is shown in Fig. 2. The platform consists of a
1.5W motor, a torque sensor/decoder, a power test meter and an electronic controller.

Specifically, the experimental data come from the drive end bearing whose model
is 6205-2RS JEM SKF deep groove ball bearing. The bearing inner ring diameter is
25mm, the outer ring diameter is 52mm, the thickness is 15mm, the rolling element
diameter is 7.94mm and the pitch diameter It is 39.04mm. The rolling bearing fault is
caused by artificial damage to the bearing by EDM. Then acquiring the vibration
signal through accelerometers which are mounted in the motor housing to get the
vibration signals under different faults, different speeds, and different load conditions.
Lastly, analyzing the vibration signal to get whether there is one or more faults on the
bearing. In addition, the vibration signal is collected by a 16-channel data recorder,
and the power and speed are measured by a torque sensor/decoder.

In order to verify the effectiveness of this paper’s method, there were two cases in the
experiment (1) Research on different types of fault diagnosis for the bearing with same shaft
diameter; (2) Research on the same type of fault diagnosis for the bearing with different shaft
diameter.

Multimedia Tools and Applications (2020) 79:30069–30085 30077



N

Y

Rolling bearing vibration signal

VMD decomposition

Over decomposition or

under decomposition?

K BIMF components

Calculate Tsallis entropy

Fault feature vector

FCM fuzzy clustering recognition

Fig. 1 Flow diagram of rolling bearing fault diagnosis method in this paper

Fig. 2 Bearing experiment platform of Western Reserve University
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5.1 Different types of fault diagnosis for the bearing with same shaft diameter

In this case, the chosen shaft damaged diameter is 0.1778mm, the speed is 1772r/min, and the
sampling frequency is 12kHz. In addition, The bearing has four status which are normal(NO),
inner race(IR), outer race(OR) and rolling element (RE). In order to obtain a better diagnostic
effect, the VMD parameters are determined experimentally in this section firstly, and then the
effectiveness of the proposed diagnosis method is verified.

(1) Parameter determination

When the original signal is decomposed based on VMD, the scale value K needs to be preset.
The scale value K will affect the decomposition result, which in turn affects the feature
extraction result and diagnosis result. Therefore, it is necessary to set the appropriate K value
and prevent under-decomposition or over-decomposition. Here, a set of sample data with inner
race faults is tested, and the length of sample data is 4096. Set the appropriate K by observing
the center frequency of the signal decomposed at different K values. When K = 5, the sequence

Fig. 3 The VMD decomposition result of signal with inner race fault when K = 5

Table 1 The BIMF components center frequencies of signal with inner race fault at different K values

Scale BIMF1 BIMF2 BIMF3 BIMF4

K = 3 620.54 2807.8 3625 –
K = 4 620.54 1499.1 2807.8 3625
K = 5 620.54 1499.1 2807.8 3459.1
K = 6 620.54 1499.1 2641.9 2912.3
K = 7 620.54 1278 1499.1 2807.8
K = 8 620.54 1278 1499.1 2641.9
Scale BIMF5 BIMF6 BIMF7 BIMF8
K = 5 3625 – – –
K = 6 3459.1 3625 – –
K = 7 3459.1 3625 3784.7 –
K = 8 2912.3 3459.1 3625 3784.7
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diagram and the spectrogram of each component are shown in Fig. 3. When K is taken
different values, the center frequency of each BIMF component are shown in Table 1.

It can been seen from Table 1 that when K > 4, the center frequencies of different BIMF
components change little. Especially when K = 5, the center frequencies of BIMF4 and BIMF5
are similar. This shows that when K > 4, the signal is over-decomposed. At the same time,
when K < 4, the signal is under-decomposition. The frequency 1499.1Hz signal is missing
when K = 3.Therefore, the best VMD decomposed scale K = 4 for the signal with the inner race
fault .

Next, VMD decomposition on the signals with the other three types fault are performed at
different K, the obtained center frequencies are shown in Table 2. Obviously, when K = 4,
neither over-decomposition nor under-decomposition exists in VMD decomposition. Hence, K
is set to 4 in the following experiments.

Table 2 The BIMF components center frequencies of signal with three different faults at different K

Fault type Scale BIMF1 BIMF2 BIMF3 BIMF4 BIMF5

NO K = 3 92.16 2150.4 1093.6
K = 4 92.16 1093.6 2150.4 5007.4
K = 5 92.16 1093.6 2150.4 3072 5007.4

RE K = 3 546.82 2967.6 3446.8
K = 4 368.64 1148.9 2967.6 3446.8
K = 5 368.64 1148.9 2746.4 3299.3 3563.5

OR K = 3 1118.2 2936.8 3483.6
K = 4 1118.2 2936.8 3483.6 5363.7
K = 5 737.28 1118.2 2936.8 3483.6 5363.7

 (a)BIMF1                            (b)BIMF2

   (c)BIMF3                             (d)BIMF4

Fig. 4 The obtained Tsallis entropy with VMD decompsition of the signals with different faults
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(2) Fault Diagnosis

In this part, choosing 40 sets of signals as samples, and there are 2048 data per group. Set the
decomposition scale K to 4 and perform VMD decomposition on the signal with different
types of fault. Then calculate the Tsallis entropy of each decomposed components. The results
are shown in Fig. 4.

According the obtained Tsallis entropy, a 160 × 4matrix can be constructed, which can be
used as the feature in diagnosis. The FCM clustering results are shown in Fig. 5, and the center
coordinates are shown in Table 3. Specially, the clustering center number c = 4, fuzzy
weighted index m = 2, convergence precision e = 0.001.

To further test the diagnosis effect, calculate the classification coefficient and the average
fuzzy entropy, and get F = 0.95466 andH = 0.14579. Obviously, F tends to 1 andH tends to 0.
These results indicate that the FCM clustering result has good effect, and the proposed method
that combining VMD, Tsallis entropy and FCM clustering is feasible in rolling bearing
diagnosis .

(a) BIMF1-2-3                       (b) BIMF1-2-4 

(c) BIMF1-3-4                       (d) BIMF2-3-4 

Fig. 5 The clustering results of different fault signals

Table 3 The clustering center coordinates of different fault signals

Fault type v1 v2 v3 v4

NO 673.76 733.55 767.57 748.28
IR 696.49 706.49 629.27 706.52
RE 699.9 717.73 705.97 699.3
OR 697.01 724.9 741.74 765.27
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(a)BIMF1                   (b)BIMF2

(c)BIMF3                    (d)BIMF4
Fig. 6 The Tsallis entropy with VMD decompsition of the inner fault signals with different shaft diameter

(a) BIMF1-2-3                (b) BIMF1-2-4 

(c) BIMF1-3-4             (d) BIMF2-3-4 

Fig. 7 The clustering results of inner fault signals with different shaft diameter
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5.2 Same type of fault diagnosis for the bearing with different shaft diameter

In this part, the rolling bearings with four different shaft damaged diameters were used for
experiment, which are D1 = 0.1778mm, D2 = 0.3556mm, D3 = 0.5334mm, D4 = 0.7112mm
respectively. The speed was 1772r/min, the sampling frequency was 12kHz, and only the inner
race fault of rolling baring is tested. Similar to the first part, 40 sets of signals are chosen as
samples, and there are 2048 data per group. K is still set to 4. The Tsallis entropy of each
decomposed components shown in Fig. 6. The cluster result is shown in Fig. 7 and the cluster
center coordinates are shown in Table 4(The parameters of FCM are the same as the first part).

Calculate the classification coefficient and the average fuzzy entropy, get F = 0.94598 and
H = 0.15506. It is clear that the proposed method in this paper is also applicable for the fault
bearing diagnosis with different shaft diameter.

In addition, for proving the superiority of the method, comparing this paper’s
method with another two methods, which are almost same to the above process,
except the VMD is replaced by EMD (EMD + FCM) or LMD(LMD + FCM). The
classification coefficient F and the average fuzzy entropy H obtained are shown in
Table 5.

It can be seen that the classification coefficient F is greatest in the above both cases, and the
average fuzzy entropy H is smallest. Obviously, the method proposed in this paper is more
advantageous in fault diagnosis of rolling bearing .

6 Conclusion

In this paper, a new method for rolling bearing fault diagnosis is proposed, which apply VMD
in signals decomposition, then use Tsallis entropy as the signal feature, lastly, combine FCM
algorithm to diagnose. To verify the feasibility of the method, a series of experiments are
preformed, the results are optimistic. Further, comparing with another methods which are
EMD+ FCM and LMD + FCM, it turns out that the method proposed in this paper is the best.

Table 4 The clustering center coordinates of inner fault signals with different shaft diameter

Diameter v1 v2 v3 v4

D1 722.88 734.75 763.36 747.02
D2 699.49 832.52 825.92 802.23
D3 673.87 733.8 767.96 748.36
D4 682.58 711.73 707.46 702.33

Table 5 The clustering effect of different methods

Condition Parameter EMD+ FCM LMD+ FCM this paper’s method

Same shaft diameter, different faults F 0.8988 0.9106 0.95466
H 0.3608 0.2506 0.14579

Same fault, Different shaft diameter F 0.8807 0.9024 0.94598
H 0.3974 0.3016 0.15506
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