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Abstract
This paper proposes a novel deep learning-based single image dehazing network named
as Compact Single Image Dehazing Network (CSIDNet) for outdoor scene enhancement.
CSIDNet directly outputs a haze-free image from the given hazy input. The remarkable fea-
tures of CSIDNet are that it has been designed only with three convolutional layers and
it requires lesser number of images for training without diminishing the performance in
comparison to the other commonly observed deep learning-based dehazing models. The
performance of CSIDNet has been analyzed on natural hazy scene images and REalistic Sin-
gle Image DEhazing (RESIDE) dataset. RESIDE dataset consists of Outdoor Training Set
(OTS), Synthetic Objective Testing Set (SOTS), and real-world synthetic hazy images from
Hybrid Subjective Testing Set (HSTS). The performance metrics used for comparison are
Peak Signal to Noise Ratio (PSNR) and Structural SIMilarity (SSIM) index. The experimen-
tal results obtained using CSIDNet outperform several well known state-of-the-art dehazing
methods in terms of PSNR and SSIM on images of SOTS and HSTS from RESIDE dataset.
Additionally, the visual comparison shows that the dehazed images obtained using CSID-
Net are more appealing with better edge preservation. Since the proposed network requires
minimal resources and is faster to train along with lesser run-time, it is more practical and
feasible for real-time applications.
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1 Introduction

Various particulate matters such as dust, water drops, aerosol, etc. in the atmosphere often
obscure the clarity of vision-based applications in outdoor environment. The most com-
mon phenomenon in outdoor environment due to inclement weather conditions is haze [25].
With a rise in the number of vision-based applications such as object classification [14],
autonomous driving [31], remote sensing [5], etc., outdoor scene enhancement has become
increasingly desirable for obtaining a clear scene. In literature, various methodologies have
been developed to resolve the same.

1.1 Motivation

Haze is a signal dependent non-linear noise. This incurs attenuation in an image with
increase in scene depth [25]. Thus, the pixel locations in a scene image suffer different
amount of degradation. Single image dehazing has gained more popularity lately than those
requiring additional data like multiple images [24] and different degrees of polarization [32].
Since acquiring additional information is not feasible for real-time applications, the process
of single image dehazing becomes more challenging. A notable problem in dehazing is the
absence of datasets with natural image pairs of hazy and haze-free images, as it is unlikely
that the atmospheric conditions remain same on a hazy and a clear day. Consequently,
synthetic hazy images are used for training purposes and then, the dehazing methods are
tested on natural hazy scene images. Although significant work has been done to remove
haze using deep learning, the difficulty still remains with the complicated structure of the
architecture and requirement of rigorous training.

1.2 Contributions

This paper proposes a deep learning-based single image dehazing network named as “Com-
pact Single Image Dehazing Network (CSIDNet)” for outdoor scene enhancement. The
contributions of this paper are three-fold and summarized as follows:

– As the name implies, CSIDNet is a more compact network than the existing deep
learning-based dehazing models and consists of only three convolutional layers.

– CSIDNet is trained on a much smaller dataset with lesser number of images without
compromising the performance. Thus, it is easy to train with faster run-time and more
approachable for real-time applications.

– The dehazed images obtained using CSIDNet are visually appealing and outperform
the benchmarked deep learning-based dehazing models in terms of peak signal-to-noise
ratio and structural similarity index measures.

Most of the dehazing models, to the best of our knowledge, are either computationally
expensive, leading to an increased run-time, or require a number of resources for imple-
mentation. Contrary to this, CSIDNet has been designed with fewer layers and trained on
an exceptionally lesser number of images, and yet significantly outperforms state-of-the-art
methods.

The rest of the paper is organized as follows: Section 2 outlines the literature of image
dehazing for outdoor scene enhancement, Section 3 presents the architectural design of
proposed CSIDNet, Section 4 shows the comparison of results obtained with discussions,
and finally, Section 5 highlights the concluding remarks with the future scope.
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2 Related work

Some of the initial attempts for outdoor scene enhancement were based on Histogram
Equalization (HE) and contrast restoration based methods [7, 26]. Tan [33] maximized the
local contrast based on Markov random fields which led to over-saturated results. Fattal
[6] used a refined image formation model to remove haze, but this is time consuming and
fails in regions with dense haze. Meng et al. proposed Boundary Constraint and Contex-
tual Regularization (BCCR) [23] method to efficiently remove haze with the assumption
that haze-free images have better contrast than hazy ones. This result discontinuities in
poor contrast regions. Ancuti et al. [2] proposed a contrast enhancement method to restore
the discontinuities near edges lost due to poor contrast. Contrast restoration methods often
produce unrealistic images due to the underlying assumption that the pixel intensity distri-
bution of a clear scene must be uniform. The use of better assumptions and priors helped to
make significant progress in outdoor scene enhancement. He et al. observed the low inten-
sity values in the RGB image and proposed the Dark Channel Prior (DCP) [9]. DCP states
that there always exist some pixels with low intensities within a local patch of one or more
color channels in an RGB image. The drawback of DCP is haze overestimation in the sky
regions. To reduce the computational time due to soft matting in DCP [15], He et al. intro-
duced median of median filter [35], fast matting [8], and guided filter [10]. DCP was further
used by Long et al. [19] to deal with halo artifacts by estimating an atmospheric veil for
dehazing of remotely sensed hazy images. Thereafter, based on the behaviour of different
image domains under hazy conditions, Tang et al. [34] proposed haze relevant features i.e.
hue disparity, maximum saturation, and maximum contrast.

Recently, deep learning-based image dehazing models have achieved enormous popular-
ity. Endeavours have been made to combine these models with the conventional atmospheric
scattering model [25] for obtaining the clear scene. Zhu et al. introduced a Color Attenuation
Prior (CAP) [38] based method to calculate the scene depth and then estimated the transmis-
sion map. However, it is not always accurate, and further calculation of airlight using this
leads to accumulation and amplification of error. Cai et al. proposed DehazeNet architec-
ture [4], which calculates the transmission map using four sequential operations. However,
the dehazed images obtained using DehazeNet still persist some haze. Ren et al. proposed
Multi-Scale Convolutional Neural Network (MSCNN) [29], which uses a combination of
fine-scale and coarse-scale networks to output the clear scene. Li et al. combined the trans-
mission map and atmospheric light as a new variable and used this to build an input adaptive
model i.e. All-in-One Dehazing Network (AODNet) [16]. Ren et al. proposed Gated Fusion
Network (GFN) [30], which is a supervised learning-based model taking three contrast rel-
evant features [1, 28] as input to perform dehazing. Wang et al. introduced Atmospheric
Illumination Prior Network (AIPNet) [36] based on the assumption that the luminance/ illu-
mination channel of a hazy image is much more affected by haze than its corresponding
chrominance channel. Yang et al. [37] introduced a region detection network to approximate
the transmission map, which was further used to enhance details in the dehazed image.

Yet, the relation of a hazy image and its corresponding haze-free image is quite com-
plicated and difficult to interpret. This relation cannot be represented completely using the
atmospheric scattering model [25] proposed by Narasimhan and Nayar for describing the
haze formation phenomenon. As a result, the dehazing methods based on this model do
not perform well on natural hazy images even if they show appreciable results on the syn-
thetic images. In the recent literature, Liu et al. proposed Generic Model-Agnostic Network
(GMAN) [18], which does not take any application specific features as input to restore the
haze-free image. Since the performance of deep learning-based dehazing models depend
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on the dataset of hazy and haze-free images, Li et al. proposed REalistic Single Image
DEhazing (RESIDE) dataset [17]. The dataset consists of natural and synthetic hazy scene
images of various haze levels with their ground truth clear counterparts. Recently, Qin
et al. introduced Feature Fusion Attention Network (FFA-Net) [27] by combining the chan-
nel and pixel attentions for image restoration. Hence, the ultimate objective of outdoor scene
enhancement is to increase the robustness of vision-based applications like object track-
ing. The enhancement+tracking pipeline aims to boost the real-time performance. Thus,
the pipeline of faster enhancement and tracking results in the faster visual recognition. For
example, the regression based networks for tracking with shrinkage loss [20] have gained
attention among researchers. Furthermore, segmentation and tracking networks were pro-
posed by Lu et al. [21, 22] in a unified and end-to-end trainable framework. Thus, the goal
is to increase the performance of enhancement networks with faster run-time to synchronize
with a faster vision-based applications.

3 Proposed network: compact single image dehazing network
(CSIDNet)

This section includes explanation of the proposed dehazing network. Figure 1 outlines the
architecture of the proposed network. In contrast to the other networks, CSIDNet com-
prises of only 3 convolutional layers. The detailed explanation of the architectural design of
CSIDNet has been provided in the following subsections.

3.1 Hazy input features

Inspired by DCP [9] and AIPNet [36], CSIDNet extracts dark channel and illumination
channel from input hazy image to learn the pattern of haze.

Fig. 1 Architecture of CSIDNet. The input image is of size M × N with five input features i.e. R, G, B
channels of input hazy image (I ), minimum channel (Imin), and illumination channel (IY)
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3.1.1 Dark channel prior

DCP [9] assumes that pixels of at least one color channel within a local patch always have
low pixel intensity values in the non-sky region. Hence, the dark channel is obtained using

Idark(a) = min
n∈P(a)

(
min

Ch∈{R, G, B}I
Ch(n)

)
(1)

where, Ch represents R, G, and B color channels of the input hazy image I (a), and P(a) is
a local patch centered at pixel location a. Equation (1) implies that the minimum intensity
at each pixel location across all the color channels have a very low value in a haze-free
image. This is mainly because of colourful objects dominated by one color channel and dark
objects like tree trunks, shadows, etc. In this paper, the dark channel with patch size 1 × 1
has been considered.

3.1.2 Illumination channel

For a hazy input image I (a), the illumination channel or Y channel is obtained by YCbCr
color domain [3]. The RGB image channels are converted to YCbCr color channels using⎡

⎣ IY(a)

ICb(a)

ICr(a)

⎤
⎦ =

⎡
⎣ 0.299 0.587 0.144

−0.169 −0.331 0.500
0.500 −0.419 −0.081

⎤
⎦

⎡
⎣IR(a)

IG(a)

IB(a)

⎤
⎦ (2)

where, a is the pixel location, IY(a) is the illumination channel, ICb(a) and ICr(a) are the
corresponding chrominance channels, and IR(a), IG(a), and IB(a) are the red, blue, and
green color channels of the input image I (a).

The RGB color channels, dark channel, and illumination channel are then concatenated
to form the hazy input features for the network as

Iinput(a)
Concatenate←−−−−−−− (IR(a), IG(a), IB(a), Idark(a), IY(a)) . (3)

3.2 Pre-activation

The hazy input features obtained by (3) are fully pre-activated [12] with batch normalization
(Ψ ) and leaky ReLU activation function (Φ) as

Inormalized(a) = Φ
(
Ψ

(
Iinput(a)

))
. (4)

A dropout layer (Ω) has also been included after the pre-activation stage to avoid any over
fitting as

ID(a) = Ω (Inormalized(a)) . (5)

3.3 Convolutional layers

The output of dropout layer obtained by (5) is passed through three consecutive combina-
tions of the following: convolutional layer, batch normalization layer, and activation layer
(i.e. Layers 1, 2, and 3 of Fig. 1) as

Il+1(a) = Φ (Ψ (Wl ∗ Il(a))) ; ∀ l = 1, 2, 3 (6)

where, l is the layer number, W is the kernel weight matrix between l and l+1 layer, Il(a)

and Il+1(a) act as input and output of lth layer, respectively. The input for the first layer is
I1(a) = ID(a) where, ID(a) is obtained from (5).
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3.3.1 Skip connection

Furthermore, to compensate for any possible information loss, the network contains one
global skip connection [13]. The output of this skip connection connects hazy input features
Iinput(a) and output of 3rd convolutional layer after batch normalization as

Iskip(a) = Ψ (W3 ∗ I3(a)) + Iinput(a). (7)

3.3.2 Sigmoid activation

The output of skip connection Iskip is then passed through Sigmoid activation (σ ) to
constraint the output in the range of 0 to 1 as

ISigmoid(a) = σ
(
Iskip(a)

)
. (8)

3.4 Dehazed image

The output ISigmoid(a) contains 5 channels, where, the first three channels correspond to the
required RGB dehazed output image as

Idehazed(a)
Extract first three channels←−−−−−−−−−−−−−− ISigmoid(a). (9)

Thus, CSIDNet directly outputs a haze-free image Idehazed(a) in an interactive time without
any intermediate results like transmission map or atmospheric light.

4 Results, validations, and discussions

This section presents qualitative and quantitative comparison of the results obtained using
proposed network. The results are compared with the existing literature, namely BCCR [23],
DCP [9], CAP [38], DehazeNet [4], MSCNN [29], AODNet [16], and GMAN [18].

While most of the deep learning-based dehazing models are trained on thousands to
millions of images, CSIDNet has been trained only on 200 images without diminishing the
performance. These training images have been selected randomly from Outdoor Training
Set (OTS) of REalistic Single Image DEhazing (RESIDE) dataset [17]. The training of
CSIDNet takes about 30 minutes on a system with Nvidia GeForce 940MX 2GB Graphics
card. This is much lesser than the time taken by other models, which usually require at least
12-36 hours of training. The training has been conducted on an Intel Core i5-7200U 7th

generation system with 2.5GHz processor and 8 GB DDR4 RAM. In further subsections,
the explanation of datasets, network parameters, loss functions, quantitative and qualitative
comparisons, and finally discussions have been provided.

4.1 Datasets

RESIDE dataset consists of 72,135 synthetic hazy images in Outdoor Training Set (OTS) for
training. For testing, it contains 500 synthetic hazy images in Synthetic Objective Testing
Set (SOTS) and 10 synthetic hazy images in Hybrid Subjective Testing Set (HSTS) with
their respective ground truths.

For training of CSIDNet, 200 hazy images have been randomly selected from OTS
to prepare one set of hazy images with their respective ground truths. Likewise, in total,
five sets i.e. Set 1, Set 2, Set 3, Set 4, and Set 5 have been prepared randomly. The
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Table 1 Performance
comparison: Average PSNR
AND SSIM measures (∗ First, †
Second, and ††Third: Top 3
performance metrics values)

Methods Testing Set

SOTS [17] HSTS [17]

PSNR SSIM PSNR SSIM

BCCR [23] 28.147 0.820 28.187 0.791

DCP [9] 16.620 0.818 14.840 0.761

CAP [38] 28.009 0.793 28.333 0.858††

DehazeNet [4] 28.613†† 0.864†† 29.091∗ 0.890†

MSCNN [29] 28.216 0.840 28.287 0.807

AODNet [16] 28.234 0.902∗ 28.254 0.891∗
GMAN [18] 28.836† 0.848 29.052† 0.846

CSIDNet (Proposed) 28.995∗ 0.883† 28.828†† 0.848

training sets are online available on the following link: https://drive.google.com/open?
id=1uCfliFpldUUWdzT5TKPX0kbVH5mMJ1iw.

4.2 Network parameters and loss function

In CSIDNet, the depth of the convolutional layers are considered as 16 for layer 1, 16
for layer 2, and 5 for layer 3. The proposed network has been trained on images of size
224×224, but can be tested for images of any resolution. The kernel size for the convolution
has been chosen as 3 × 3, the slope of Leaky ReLu is 0.2, and the dropout rate is 0.2. The
kernel weights of convolutional layers have been initialized with He Uniform initializer
[11]. CSIDNet is trained for 100 iterations with Adam optimizer of momentum values β1
= 0.9 and β2 = 0.999. The loss function considered for the training of CSIDNet is Mean
Square Error (MSE). It can be defined by

LMSE = 1

ChNp

Ch∑
i=1

Np∑
a=1

(
I i
dehazed(a) − I i

gt(a)
)2

(10)

where, Idehazed is dehazed image, Igt is ground truth, Np represents the number of pixels
in the image, and Ch denotes number of color channels. For further analysis, the proposed

Table 2 Performance
comparison: Average run-time
(in seconds)

Methods Testing Set

SOTS [17] HSTS [17] Natural

BCCR [23] 1.174 1.002 1.604

DCP [9] >50 >50 >50

CAP [38] 0.327 0.289 0.497

DehazeNet [4] 1.951 1.660 3.014

MSCNN [29] 0.954 0.742 1.689

AODNet [16] 0.349 0.297 0.562

GMAN [18] 1.441 1.373 2.036

CSIDNet (Proposed) 0.326 0.282 0.435The bold entries are used to show
better performance

30775Multimedia Tools and Applications (2020) 79:30769–30784

https://drive.google.com/open?id=1uCfliFpldUUWdzT5TKPX0kbVH5mMJ1iw
https://drive.google.com/open?id=1uCfliFpldUUWdzT5TKPX0kbVH5mMJ1iw


network has also been trained with Mean Absolute Error (MAE) as a loss function. It is also
termed as L1 loss. It can be defined by

LL1 = 1

ChNp

Ch∑
i=1

Np∑
a=1

∣∣∣I i
dehazed(a) − I i

gt(a)

∣∣∣ (11)

The number of epochs used for training with L1 loss function are 100, 150, and 200 in order
to find the best possible hyper-parameters.

4.3 Quantitative comparison

The quantitative comparison of dehazed images obtained using CSIDNet has been analyzed
in terms of Peak Signal to Noise Ratio (PSNR) and Structural SIMilarity (SSIM) index
measures. The average PSNR and SSIMmeasures have been tabulated in Table 1 for images
of SOTS and HSTS from RESIDE dataset [17]. Although the PSNR of GMAN is slightly

Fig. 2 Visual comparison on an image from SOTS of RESIDE dataset [17]
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higher than the PSNR of CSIDNet for HSTS dataset, GMAN has a lower SSIM index.
Lower SSIM accounts for the greater number of distortions. Similarly, the SSIM index of
AODNet is higher than CSIDNet for SOTS dataset, but the run-time efficiency of CSIDNet
is better than AODNet. Table 2 illustrates the comparison of average run-time on SOTS,
HSTS, and natural hazy images.

A longer run-time implies that the network generates a lag in the process, leading to
poor performance in real-time. Consequently, it is important for the output to be available in
interactive time. As can be seen in Table 2, the run-time of DehazeNet is one of the highest
amongst all the models, followed by GMAN, making it unfeasible for real-time purposes,
whereas the proposed CSIDNet is fastest among all. Thus, CSIDNet manages to maintain
the PSNR and SSIM values comparatively with faster run-time in comparison to others.

4.4 Qualitative comparison

Figures 2, 3, and 4 show the visualization of dehazed images from SOTS, HSTS, and natural
hazy scenes, respectively. CSIDNet produces dehazed images without any visual artifacts.
BCCR and MSCNN alter the color information near the sky region as they mainly focus on

Fig. 3 Visual comparison on an image from HSTS of RESIDE dataset [17]
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Fig. 4 Visual comparison on natural hazy image

Table 3 Performance measures
for CSIDNet with different
number of layers

Number of Layers Testing Set

SOTS [17] HSTS [17]

PSNR SSIM PSNR SSIM

2 29.049 0.883 28.856 0.849

3 28.995 0.887 28.975 0.859

4 29.008 0.884 28.764 0.854

5 28.850 0.862 28.660 0.844

6 28.770 0.853 28.472 0.818

7 28.551 0.841 28.295 0.801

8 28.606 0.834 28.328 0.792
The bold entries are used to show
the final selected number of
layers in the proposed network
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increasing the contrast. DCP generates dehazed images with halo artifacts near edges and
fails to deal with the sky regions. CAP produces over saturated dehazed images and alters
the color information. However, with respect to aforementioned methods, DehazeNet pro-
duces visually appealing dehazed images but is left with some haze. The dehazed images
obtained using GMAN result in distortions which are easily visible in the visual compari-
son. In comparison among all state-of-the-art methods, the dehazed images obtained using
AODNet seem better than others. However, the blur generated near edges distorts the tex-
tural information. CSIDNet gives visually pleasing results without any visible artifacts; on
the other hand, nearly all the methods generate noticeable distortions, especially in the sky
region. It is due to the possibility of excessive dehazing by other methods in regions with
fine or light haze.

4.5 Discussions

The compact size of the proposed network has been experimented on different number of
layers and number of filters/depth. Table 3 tabulates the values of PSNR and SSIM index
obtained using trained models generated with different number of layers. It depicts that the
performance on test datasets is better for 3 layers. Similarly, Table 4 tabulates the values
of PSNR and SSIM index obtained using trained models generated with different number
of filters. Figure 5 shows the plots with MSE as a loss function for different number of
layers and different number of filters. Finally, 16 filters were chosen for the proposed net-
work as they take lesser memory and calculation time without compromising the accuracy.
Increasing the number of filters leads to increased memory requirements, which will be
considerably less in the proposed network. Hence, a more compact structure is obtained.

CSIDNet has been trained for five sets separately. Each set contains 200 images for
training i.e. Set 1, Set 2, Set 3, Set 4, and Set 5. For quantitative comparison, the testing
has been performed on images from SOTS and HSTS datasets in terms of PSNR and SSIM
index measures. Table 5 shows the performance measures obtained with MSE loss function.
The table tabulates the performance measures using trained models generated with training
sets 1, 2, 3, 4, and 5. Similarly, Tables 6, 7, and 8, show the performance measures obtained
with L1 loss function for 100, 150, and 200 epochs, respectively.

It can be observed that using MSE as a loss function for training, gives better PSNR and
SSIM index measures. This can be interpreted by the mathematical behaviour of MSEwhich
strongly penalizes the difference between ground truth and predicted value by squaring the
error, as compared to L1 loss which only considers the absolute difference. Figs. 5 and 6
show the plots for MSE as a loss function and L1 loss function, respectively.

Table 4 Performance measures
for CSIDNet with different
number of filters

Number of Filters Testing Set

SOTS [17] HSTS [17]

PSNR SSIM PSNR SSIM

12 28.999 0.885 28.765 0.853

16 29.045 0.887 28.975 0.856

24 29.056 0.888 28.912 0.857

32 29.033 0.887 28.892 0.855
The bold entries are used to show
the final selected number of
filters in the proposed network
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Fig. 5 Plots for the mean square error with different (a) Number of layers and (b) Number of filters

Table 5 Performance measures
for CSIDNet using MSE as loss
function

Training Set Testing Set

SOTS [17] HSTS [17]

PSNR SSIM PSNR SSIM

Set 1 29.045 0.887 28.975 0.856

Set 2 29.108 0.891 28.895 0.856

Set 3 28.982 0.880 28.838 0.844

Set 4 28.908 0.880 28.640 0.844

Set 5 28.932 0.878 28.791 0.842

Average 28.995 0.883 28.828 0.848
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Table 6 Performance measures
for CSIDNet using L1 loss
function for 100 epochs

Training Set Testing Set

SOTS [17] HSTS [17]

PSNR SSIM PSNR SSIM

Set 1 28.952 0.878 28.742 0.844

Set 2 28.960 0.878 28.727 0.842

Set 3 29.019 0.880 28.872 0.842

Set 4 28.791 0.878 28.600 0.843

Set 5 28.836 0.872 28.545 0.831

Average 28.912 0.877 28.697 0.840

Table 7 Performance measures
for CSIDNet using L1 loss
function for 150 epochs

Training Set Testing Set

SOTS [17] HSTS [17]

PSNR SSIM PSNR SSIM

Set 1 29.041 0.876 28.910 0.852

Set 2 29.067 0.885 28.937 0.852

Set 3 28.911 0.871 28.814 0.828

Set 4 28.805 0.878 28.577 0.840

Set 5 28.963 0.869 28.793 0.835

Average 28.957 0.876 28.806 0.841

Table 8 Performance measures
for CSIDNet using L1 loss
function for 200 epochs

Training Set Testing Set

SOTS [17] HSTS [17]

PSNR SSIM PSNR SSIM

Set 1 28.966 0.871 28.874 0.844

Set 2 29.062 0.885 28.889 0.855

Set 3 28.932 0.873 28.725 0.834

Set 4 28.959 0.880 28.751 0.847

Set 5 28.951 0.865 28.743 0.832

Average 28.974 0.875 28.796 0.842
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Fig. 6 Plots for the mean absolute error/ L1 loss with (a) 100 epochs, (b) 150 epochs, and (c) 200 epochs
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5 Conclusion

In this paper, a compact deep learning-based single image dehazing network named as
Compact Single Image Dehazing Network (CSIDNet) has been proposed for outdoor scene
enhancement. The proposed network not only outperforms several state-of-the art dehazing
models, but also sets a benchmark as a compact model with minimal resource require-
ments. The enhanced scene images obtained using CSIDNet successfully maintains trade
off between speed and accuracy. The comparative analysis indicates that CSIDNet is faster
to train with lesser run-time while maintaining its performance and robustness quantita-
tively and visually. The proposed network gives remarkable results, which suggests its scope
in various critical and real-time applications. Moreover, the potential future scope is the
development of an end-to-end network for image dehazing and denoising as well under
non-uniform illumination conditions without considering any priors and assumptions.
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