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Abstract
Video synopsis is an effective solution for fast browsing and retrieval of long surveillance
videos. It aims to shorten long video sequences into its equivalent compact video repre-
sentation by rearranging the video events in the temporal domain and/or spatial domain.
Conventional video synopsis methods focus on reducing the collisions between tubes and
maintaining their chronological order, which may alter the original interactions between
tubes due to improper tube rearrangement. In this paper, we present an approach to preserve
the relationships among tubes (tracks of moving objects) of the original video in the synop-
sis video. First, a recursive tube-grouping algorithm is proposed to determine the behavior
interactions among tubes in a video and group the related tubes together to form tube sets.
Second, to preserve the discovered relationships, a spatio-temporal cube voting algorithm is
proposed. This cube voting method optimally rearranges the tube sets in the synopsis video,
minimizing false collisions between tubes. Third, a method to estimate the duration of the
synopsis video is proposed based on an entropy measure of tube collisions. The extensive
experimental results demonstrate that the proposed video synopsis framework condenses
videos by preserving the original tube interactions and reducing false tube collisions.

Keywords Video synopsis · Surveillance · Interaction · Tube grouping · Tube
rearrangement

1 Introduction

With the growing demand for security solutions in public and private sectors, surveillance
cameras play a huge role in our day-to-day lives. The enormous amount of videos captured
by these cameras are increasing explosively, creating challenges in its effective retrieval and
review. In most cases, surveillance footage contains highly redundant data with only lim-
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ited useful information. Therefore, it is time-consuming to browse through such massive
video data for inspecting an event of interest. Several techniques such as video fast forward
[17], video skimming [30], video montage [21], video condensation [25] and video summa-
rization [8, 12, 26] have been proposed to address the aforementioned challenge. However,
these methods lose the dynamic aspect of video or have apparent stitching seams in the
summary. To address these drawbacks, an object-based technique, video synopsis [38, 39,
41] has been proposed in the literature.

Video synopsis provides a compact video representation of long surveillance videos
where multiple objects are displayed simultaneously, irrespective of their time of occur-
rence. The fundamental processing block for video synopsis methods is a tube, which is
a sequence of positions of a moving object in 3D space-time volume. The extracted tubes
in the original video are rearranged along the temporal axis to reduce the spatio-temporal
redundancies. The new optimal start-times for the shifted tubes are generally determined by
minimizing a well-defined energy function [22, 23]. To generate summarized videos with
high condensation ratio, Rav-Acha et al. [41] proposed an object-based approach that shifts
moving objects in the temporal domain. Pritch et al. [38, 39] extended this method for end-
less video streams and proposed a two-phase synopsis framework. Following the classical
framework [39, 41] in video synopsis, several other approaches have been proposed by the
research community.

Due to lack of unified qualitative standards to determine the effectiveness of synop-
sis video, the evaluation of results depends on the input video content and application.
However, some of the standards mentioned in [2, 39] that should be satisfied by a syn-
opsis video are as follows: 1) The length of the synopsis video should be lesser than
the original video and it should preserve maximum activities of the original video; 2)
Collisions between moving objects should be minimized as far as possible; 3) The tem-
poral order between objects should be preserved as much as possible in the synopsis
video.

In any video sequence, the spatio-temporal collisions between moving objects can be
considered as some sort of behavioral interactions among them. For example, the overlap
of body parts of multiple persons in a video may indicate people walking together, normal
conversation, fight or personal attack. The collisions between moving objects in the orig-
inal video, which indicates important behavior interactions, are generally termed as true
collisions. Collisions that occur in the synopsis video due to the temporal and spatial rear-
rangement of object tubes, but which does not exist in the original video, are termed as false
collisions.

1.1 Motivation and overview

Most of the existing methods [27, 32, 39] in video synopsis take either collision avoidance
or chronological order preservation into consideration during the generation of synopsis.
In order to reduce false collisions between tubes or to increase the condensation rate, the
related tubes may be shifted to inappropriate temporal locations in the synopsis video, which
may alter the original behavior interactions between them. Moreover, the synopsis video
depends highly on the tracking and segmentation results of moving objects. Several tracking
errors are possible due to occlusion and object cross scenes in the video, where the tubes
involved will be tracked as new tubes after such scenarios. Furthermore, a single tube can
be segmented into several tubes due to over-segmentation. Hence, preserving the original
object interactions become a challenge during synopsis generation while trying to achieve a
trade-off amongmaintaining all activities, reducing collisions and preserving temporal order
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between tubes. In this paper, we aim to discover and preserve the relationships between
tubes by grouping all related tubes using a recursive tube-grouping method.

During synopsis generation, conventional video synopsis approaches [13, 33, 39] carry
out the rearrangement of tubes immediately after extracting tubes from video. The tube
rearrangement process computes the new optimal start-time labels to tubes for positioning
them in synopsis video. However, inapt spatial and temporal rearrangement of tubes in a
synopsis video may generate false interaction perceptions. In view of this problem, we can
observe that the underlying reason for false tube collisions is the simultaneous overlap of 3D
trajectories of tubes in the spatio-temporal domain. Therefore, to reduce false collisions, we
have to prevent the sharing of same spatial location at the same time (spatio-temporal cube)
in the synopsis video by multiple tubes that do not overlap in the original video. To this end,
we propose a spatio-temporal cube voting algorithm by considering the synopsis video as a
three-dimensional volume V , created using several space-time cubes. This spatio-temporal
cube voting approach optimally rearranges the interacting tube sets, which are identified,
and grouped using the proposed recursive tube-grouping method.

In most of the conventional video synopsis methods [14, 27, 39], the length of synopsis
video is either user-defined or randomly determined. Nevertheless, the length of the syn-
opsis video has to be computed by taking the video content into consideration, rather than
determined by the user who is not much aware about the actual object density in the video.
Hence, we propose a method to determine the length of a synopsis video using an entropy
measure of tube collisions in original video.

1.2 Contributions

To summarize, the three main contributions of our work are as follows:

– A recursive tube-grouping algorithm is proposed that identifies and binds interacting
tubes together to form tube sets for preserving the strong behavior interactions among
tubes, utilizing their spatial and temporal proximity.

– A spatio-temporal cube voting algorithm is presented for optimal positioning of tube
sets in the 3D space-time volume representation of synopsis video, to maintain tube
interactions discovered by our tube-grouping approach. This method aims to reduce
false tube collisions by minimizing the number of tubes that share each space-time cube
in the 3D representation using a method of cubes voting to possible temporal locations
of tube sets.

– A length estimation method for synopsis video is proposed using an entropy-based
measure of tube collisions and duration of the longest tube set.

The contribution of this paper is integrating the three above components together into a
single framework for the generation of synopsis video, preserving object interactions while
minimizing false collisions.

The rest of the paper is organized as follows. Section 2 outlines the related works.
Section 3 details the proposed approach. Section 4 presents the experimental results and
Section 5 concludes the paper.

2 Related work

This section reviews the related existing works in video synopsis. The various state-of-the-
art methods for synopsis generation can be roughly categorized based on different aspects
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such as optimization framework, camera topology, and trajectory analysis. Table 1 gives a
comprehensive list of the existing approaches in each of the different video synopsis cat-
egory. In the following, we discuss the relevant works under each classification of video
synopsis.

2.1 Off-line optimization frameworks

An off-line optimization method that improves condensation ratio and utilization of spa-
tial domain by shifting objects both spatially and temporally is presented by Nie et al. [33].
Additionally, the moving space of the input video is expanded to include the shifted objects
using a multilevel patch relocation (MPR) method. Li et al. [27] proposed a two-stage opti-
mization framework that aims to reduce object collisions by decreasing the size of objects
during a collision. To determine the collision relationship between tubes, He et al. [15]
formulated the tube rearrangement as a graph coloring problem. A comprehensive frame-
work, which extracts tubes and video clips for handling crowdedness of video is proposed
in [28]. The proposed approach aims to discover the relationships between tubes and group
them accordingly. Further, a greedy optimization method rearranges the groups to form
condensed video. To reduce the computational time of energy minimization problems in
video synopsis, Ghatak et al. [13] presented a hybrid optimization approach using simu-
lated annealing and teaching learning-based optimization algorithms. A synopsis method to
reduce collisions by varying the speeds of moving objects, concurrent with size scaling is
proposed in [32]. Ahmed et al. [2] presented an approach, which takes a few types of user
queries into consideration for generating synopsis video. An hybrid method using simulated
annealing and jaya algorithms for minimizing energy in synopsis generation is proposed
in [14]. Although the off-line optimization techniques produce substantially best synopsis
results, they are time-consuming and requires large memory.

2.2 On-line optimization frameworks

To speed up the optimization process and obtain synopsis videos in real-time, Feng et al.
[10] converted the conventional two-phase off-line video synopsis process into a single
phase on-line framework. In [19], a MAP estimation-based approach is presented to deter-
mine the start-time labels of objects using an online synopsis table. Zhu et al. [51] further
extended the method in [19] by transforming tube rearrangement problem into a stepwise
optimization problem, which uses graphics processing unit (GPU) support. He et al. [16]

Table 1 Classification of video synopsis state-of-the-art

Optimization Framework Camera Topology Trajectory-Based

Off-line On-line

Rav-Acha et al. [41],
Pritch et al. [38, 39],
Nie et al. [33], Li et al.
[27, 28], He et al.
[15], Ghatak et al. [13,
14], Nie et al. [32],
Ahmed et al. [2]

Feng et al. [10],
Huang et al. [19],
Zhu et al. [51],
He et al. [16],
Ra et al. [40],
Ruan et al. [43]

Zhu et al. [53],
Mahapatra et al.
[31], Hoshen and
Peleg [18], Zhu
et al. [52], Zhang
et al. [50]

Lu et al. [29],
Xu et al. [48],
Chou et al. [7],
Wang et al. [47],
Pritch et al. [37]
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proposed an online tube rearrangement method using a potential collision graph. In advance,
the graph-based strategy determines the probable tube collisions that can occur in the syn-
opsis video. To speed up video condensation when the number of tubes in the input video
are large, Ra et al. [40] presented a parallelized tube rearrangement approach based on fast
Fourier transform. Ruan et al. [43] proposed a dynamic graph coloring based tube rear-
rangement algorithm for streaming videos. The method models the relationships between
tubes using a dynamic graph, which is updated progressively according to video streaming.

2.3 Camera topology

Most conventional video synopsis approaches process videos with single camera views. To
improve the efficiency of synopsis results, video synopsis methods that work with multi-
camera views are presented. Zhu et al. [53] proposed a synopsis method for multiple camera
environment with overlapping views. Objects and backgrounds from multicamera cameras
are concatenated while generating video synopsis. Similar to [53], Mahapatra et al. [31] pre-
sented another multi-camera approach that extracts objects in the field-of-view of different
cameras, prioritize and associate them using homography and trajectory matching. Hoshen
and Peleg [18] proposed a master-slave camera hierarchy with multiple slave cameras asso-
ciated with a master camera. Live videos are captured by the master camera and objects
from different slave camera streams are identified without aggregating them. Zhu et al. [52]
proposed a joint video synopsis approach that preserves chronological order of objects glob-
ally, among different camera views. An optimization approach is proposed in [50] based on
graph cuts and dynamic programming to present synopsis results from multiple cameras in
an understandable way to the users.

2.4 Trajectory-based

The trajectories of moving objects are spatio-temporal tubes that provide an insight into
the motion proximity and interaction among objects. Trajectory analysis of 3D object tubes
is applied for optimal tube extraction [29], trajectory clustering [7, 37, 47] and combining
multiple trajectories [48]. Clustering of trajectories based on a similarity measurement as the
longest common subsequence is proposed in [7], motion similarity and appearance distance
in [37], event-based trajectory kinematics descriptors [47]. A survey on the various synopsis
methods is presented in [20] and [3].

3 The proposed work

In this section, the proposed framework is described in detail. Figure 1 illustrates the main
procedures of our proposed framework which primarily consists of four steps. Given a
video, the foremost step is preprocessing by detecting and segmenting [1, 9, 34, 45] the mov-
ing objects, followed by multiple objects tracking [10, 24, 44], collectively known as tube
extraction. Secondly, the tubes which are highly interactive are then identified and grouped
together to form tube sets using the proposed recursive tube-grouping algorithm. To start
with tube set positioning, the duration of the synopsis video is determined using an entropy-
based measure of tube collisions and length of the longest interacting tube set. Subsequently,
the start-time labels of tube sets are determined using the proposed spatio-temporal cube
voting algorithm, where the relative temporal relationships between tubes in each tube set
are maintained. As the final step, all tube sets are stitched into the background video to form
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Fig. 1 An overview of the proposed video synopsis framework. In the beginning, tubes are extracted from
the original video. Then, the interacting tubes are grouped to form tube sets by our recursive tube-grouping
algorithm. A spatio-temporal cube voting algorithm rearranges the interacting tube sets, assigning new start-
times to tubes. Finally, the tube sets are stitched into the background to generate a synopsis video

synopsis video according to the start-times computed in the cube voting step. The system
architecture with a high level overview of the above mentioned proposed components and
other pre-processing/post-processing functional parts is presented in Fig. 2.

3.1 Tube extraction

A preprocessing step in synopsis generation is tube extraction. Given a video, the extrac-
tion of tubes begins with the detection and segmentation of moving objects. Generally,
surveillance cameras are static so that the illumination variation in the background will be
slow. Hence, a background subtraction based on Gaussian mixture models [42] is employed
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Fig. 2 Overall system architecture of the proposed video synopsis system consisting of three main com-
ponents: Recursive tube grouping, Spatio-temporal cube voting, Synopsis length estimation, and other
functional parts

to detect the foreground pixels. Morphological operations are applied to eliminate noise
from the resulting foreground mask. Further, a multiple-objects tracking algorithm based on
Kalman filter is implemented to associate the detections of the same object across frames
generating object tubes. In this paper, we have paid more attention on the grouping and
optimal rearrangement of tubes rather than tube extraction.

3.2 Recursive tube-grouping algorithm

Though preserving original interactions between moving objects is an important aspect
while condensing a video, most video synopsis methods focus on preserving the chronolog-
ical order of moving objects or reducing their collisions. Hence, during tube rearrangement
optimization, original interactions may get altered while reducing false collisions. We have
proposed a recursive tube-grouping algorithm to identify the interacting tubes in a video,
and group those with strong spatio-temporal interactions together in the same tube set.

3.2.1 Advantages

The motivation of our proposed recursive tube-grouping approach is illustrated in Fig. 3.
The illustration intuitively shows how our proposed approach preserves the behavior inter-
actions of the tubes, irrespective of the order of their appearance, as compared to an existing
unidirectional grouping method [28]. To discover the relationships between tubes for pre-
serving interactions, a group-partition algorithm has been proposed by Li et al. [28], which
sequentially process each tube and group the related tubes. However, this approach is uni-
directional based on the incremental start-times of tubes and cannot ensure the aggregation
of all related tubes into a single group. The group-partition algorithm in [28] process tubes
sequentially according to their start-times. The tubes depicted in the various scenarios of
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 3 A schematic illustration of comparison between tube-grouping by [28] and our proposed recursive
tube-grouping method. aMutually interacting tubes 1 to 4 that are close in spatio-temporal domain of original
video. b Tube-grouping by existing group-partition method [28]. c Tube-grouping by our proposed approach.
d Mutually interacting tubes 1, 3 and 2, 4 with a similar time of occurrence appear in an alternate order
in the original video. e Existing unidirectional tube-grouping method [28] process tubes sequentially and
subsequently, aggregate the tubes into two sets. f Our recursive tube-grouping approach groups all related
tubes into a single tube set. gDuring synopsis generation, the temporal shift of both sets may alter the original
interactions between tubes 1 to 4. h Our approach preserves the behavior interactions between tubes even
when the tube set is shifted along time axis in the synopsis video

Fig. 3, possess strong spatial proximity and temporal overlap, which indicates interaction
between them. In Fig. 3a, four interacting tubes 1, 2, 3 and 4 that start simultaneously
in the original video are presented. Both the existing unidirectional grouping method [28]
and our proposed approach group the mutually interacting tubes 1 to 4 into a single set as
shown in Fig. 3b and c, respectively. In another scenario represented by Figs. 3d–h, tubes
1 to 4 appear in an alternative order in the original video with nearly same start-times. In
Fig. 3e, according to [28], tubes 1 and 3 forms one set and tubes 2 and 4 forms another
set. Our recursive tube-grouping approach aggregates all related tubes 1-4 into a single tube
set as presented in Fig. 3f. During synopsis generation, the two tube groups generated by
the existing approach will be positioned somewhere along the time axis according to their
duration and start-times as shown in Fig. 3g. Thus, the original interactions between tubes
1 to 4 are altered. However, by grouping all interacting tubes into a single set, our proposed
approach preserves the behavior interactions even when the tube set is shifted temporally
in the synopsis video as shown in Fig. 3h. The proposed recursive tube-grouping algorithm
groups the interacting tubes in the original video to form a tube set. Hence, a set of tubes
become the basic processing unit instead of a single tube in our proposed approach.
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3.2.2 Implementation details

The detailed flow of our proposed tube-grouping process is shown in Algorithm 1. The
recursive tube-grouping algorithm begins by initializing two logical sets Q and G. The set
Q contains all tubes in the original video and G is the set of tubes that are assigned to any
one of the tube sets created by our approach. The tubes in Q are processed one by one. If
a tube Ti is not a member of G, a new tube set is created and Ti is assigned with the new
tube set label. Then, Ti is added to the global set G. Next, the procedure T UBEV ISIT is
called to determine the related tubes for each newly fetched tube Ti . Each tube Tj in Q, but
not included in G, is initialized as not visited. If there exists any tube Tj such that there is
a temporal overlap between Ti and Tj , we measure the spatial proximity between them. If
tube Tj is not assigned to any tube set and has not been visited before in any frame of Ti ,
the tube is immediately marked as visited. Then, the spatial proximity between Ti and Tj is
defined as

D(Ti, Tj ) =
⎧
⎨

⎩

exp

(−min{distf (Ti, Tj )}
ϑf

)

, if T
f
i ∩ T

f
j �= Φ

∞, otherwise
(1)

32339



Multimedia Tools and Applications (2020) 79:32331–32360

where distf (Ti, Tj ) is the Euclidean distance between the centroids of Ti and Tj at every
commonly shared frame f . ϑf represents the average size of objects Ti and Tj in frame f .

T
f
i ∩ T

f
j denotes the temporal overlaps between Ti and Tj . If Ti and Tj do not share any

common frame, D(Ti, Tj ) is infinity. If the minimum distance between tubes Ti and Tj is
less than a spatio-temporal threshold θd , Tj will be assigned with the same tube set label of
Ti and Tj is added to G also.

The interaction relationship between object tubes depends on the threshold parameter.
Since the pixel distance distf does not represent the actual distance between objects, we
need to consider the object size also while determining the threshold θd . Moreover, most
of the surveillance videos contain both pedestrians and vehicles where the interaction can
occur between two pedestrians, two vehicles or a pedestrian and a vehicle. Therefore, taking
either object height or width alone into consideration for determining threshold will not
be sufficient. Hence, we adopt a dynamic threshold computing in our approach for which
the area of temporally intersecting objects are considered which varies depending on the
object size. The threshold is adaptively computed for every pair of tubes in each frame of
the original video as

θd = exp

(
−{A(Ti) ∗ A(Tj )}

dist2f (Ti, Tj )

)

(2)

where distf (Ti, Tj ) denotes the Euclidean distance between the centroids of Ti and
Tj , A(Ti) and A(Tj ) represent the area of tubes Ti and Tj at every commonly shared
frame f .

Further, procedure T UBEV ISIT is recursively called to find the related tubes of Tj .
Thus, every tube related to Ti , but not a member of any tube set, are recursively called
and processed. The aforementioned steps are repeated until all the tubes in Q are pro-
cessed and assigned with a tube set label. Besides determining the behavior interactions
between tubes, the recursive tube-grouping approach also alleviates the tracking and seg-
mentation issues by aggregating the over-segmented or occluded tubes together to form
same tube sets. The computational complexity of the proposed tube-grouping algorithm is
O(M2F), where M is the number of tubes and F denotes the number of frames in the
original video.

3.3 Spatio-temporal cube voting algorithm

After discovering the relationships between tubes and grouping them accordingly into
tube sets, the remaining main process is to find the optimal start-times of tube sets
to rearrange them and generate a condensed video. To obtain a condensed video with
minimum false interactions, we may have to shift the tubes such that the object tra-
jectories should not overlap in the spatio-temporal domain except for overlaps in
the original video. However, shifting the tubes spatially can alter the original inter-
actions between them and hence, we focus on shifting the tubes in the temporal
domain only.

To optimally rearrange the tube sets for preserving tube interactions, we propose a
spatio-temporal cube voting algorithm. Since related tubes are grouped together to form
tube sets, a tube set will become the basic unit for further processing. In our approach,
we represent the synopsis video as a 3-D spatio-temporal cubic volume V (sx, sy, f ),
divided into several space-time cubes, where (sx, sy) represents the spatial location of a
pixel at frame f , satisfying 1 <= sx <= W ; 1 <= sy <= H ; 1 <= f <= F .
W and H represents the width and height of input video frames, respectively. F is the
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total number of frames initialized for the synopsis video. The duration of synopsis video
F is initialized with the duration determined by the length estimation method detailed
in Section 3.5.

3.3.1 Advantages

Most of the state-of-the-art methods [13, 27, 32, 33, 39, 51] in video synopsis for-
mulate the tube rearrangement process as a constrained energy minimization problem
[22, 23, 46, 49]. However, the optimization process is time-consuming and compu-
tationally intensive since it requires redundant computation of activity, collision and
temporal costs iteratively during the minimization of energy functions. Unlike other
energy minimization approaches [27, 33, 39], the proposed cube voting method com-
putes the collision relationship between tubes only once for each tube set. Moreover,
the result of optimization methods will be a trade-off among the baseline standards
mentioned in Section 1, which does not ensure the maintenance of original interactions
between tubes.

The main objective of the proposed spatio-temporal cube voting algorithm is to maintain
the relative interactions between tubes by preserving the true collisions and reducing false
collisions in the synopsis video. Given a video, if more than one tube set rearrangement
solutions exists that preserves the relative temporal order of moving objects, the position
labels which avoids false collision to the maximum extent will be selected for synopsis
generation. Following a tube set arrangement solution, each tube set is filled into the volume
V according to the temporal location defined by the solution with already known spatial
location from the original video. Subsequently, it is able to know which all space-time cubes
will be covered by the tubes with the aforementioned placement. Here, our major objective
is to minimize the number of trajectory occurrences in each cube using a method of voting
by space-time cubes. Moreover, since each grouped tube set is filled into V as a whole, this
approach preserves the original behavioral interactions between tubes without altering their
sequence of interaction.

3.3.2 Implementation details

The detailed flow of the proposed spatio-temporal cube voting method is given in Algorithm
2. The key objective of this algorithm is to find out an optimal starting position for each
tube set so that multiple tube trajectories that cover the same spatio-temporal cube in V

simultaneously are minimized, when placed at those optimal temporal locations. There will
be several possible temporal positions for the placement of each tube sets with the utmost
acceptable position computed as

pmax = F − length(tubeset) + 1 (3)

For positions beyond pmax , tube sets cannot be completely covered within the defined
synopsis duration. We denote each possible position pi , for a tube set gi , as a (tube
set gi , position pi) solution pair. When the positioning of gi at pi covers a cube
in V , the cube will vote for this pair. To begin with the voting procedure, each
cube in V is initialized with a (tube set, position) pair matrix Z of size N × F ,
where N is the total tube sets. Z is initialized with zero votes for every (tube set,
position) pair.

32341



Multimedia Tools and Applications (2020) 79:32331–32360

The algorithm begins by initializing logical sets: G containing all N tube sets, L for the
start-time labels of tubes sets and A for the tube sets which are already been assigned with
a new start-time label by the cube-voting method. The overall voting procedure consists of
two stages. In the first stage, the cubes that will be covered by the positioning of all tube sets
at their possible temporal locations are determined. This begins by fetching out each tube
set gi in G, but not in A, one by one for processing. Then, all possible temporal locations
for the placement of gi is determined. For each possible position pi , we will identify the
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cubes that will be covered by the positioning of gi at pi . If gi covers Ci when placed at pi ,
then (gi , pi) pair will update Z(gi, pi) at Ci as 1.

The second stage implements a voting method where a spatio-temporal cube votes for
all (tube set, position) pairs which can possibly cover it. If a cube Ci can be covered by
more than one (gi , pi) pair, Ci will vote to all such candidate pairs by distributing the votes
equally among them. For example, suppose, a cube can be covered by 8 possible (tube set,
position) solutions corresponding to 3 different tube sets. Then, that specific cube votes 1/8
to each 8 solutions. Similarly, a (gi , pi) pair will receive votes from several cubes in V

when the positioning of gi at pi covers multiple cubes. The voting procedure by a cube Ci

handles two situations

1) Weighted Voting: when Ci was not yet covered by the positioning of any gi ∈ A;
2) Penalty Voting: when Ci was already been covered once or more than once in the

previous placements of any gi ∈ A.

The second stage begins by initializing a weight matrix WT of size N × F . For each cube
Ci in V , all (gi , pi) pairs where gi /∈ A and which can cover Ci are denoted as {gcov , pcov}.
Next, in weighted voting, Ci votes to each of the aforementioned (gi , pi) ∈ {gcov , pcov} by
incrementing their already received votes from other Cj,j �=i as follows

α = 1

number of{gcov, pcov}pairs (4)

WT (gi, pi) ← WT (gi, pi) + α (5)

With respect to the second situation, previously covered Ci participates further in the
voting procedure by voting with a penalty to each (gi , pi) ∈ {gcov , pcov} for reducing the
chance of placement of gi at pi . Subsequently, the penalty voting ensures minimal sharing
of Ci among multiple candidate sets which in turn reduces false collision. We define the
negative penalty as the number of times Ci was covered in the previous positioning of tube
sets. Thus, the solution (gi , pi) will be heavily penalized as the degree of collisions or cube
overlaps increases. The vote for each such (gi , pi) is updated as

β = number of times Ci was covered (6)

WT (gi, pi) ← WT (gi, pi) − β (7)

Further, the total votes that each (gi , pi) solution pair receives from different cubes deter-
mine the selection of a (tube set, position) pair to be added into the synopsis video. The (gi ,
pi) solution which obtains the maximum vote in the weight matrix WT , will be the place-
ment with minimum false collisions since the cubes covered by such a placement are shared
minimally. Subsequently, the tube set gi corresponding to the aforementioned solution is
selected to be placed in the synopsis video immediately. Thus, the new start-time li of gi in
the synopsis video is assigned with pi specified by the solution.

Since each tube set represents a set of mutually interacting tubes, we need to maintain
the relative time interval between these tubes while positioning the tube sets in the final syn-
opsis video. Hence, the tube in gi with the least original start-time is positioned at temporal
position pi . In order to preserve the relationships between tubes, we label the successive
start-times of tubes in gi with respect to the first position pi . Subsequently, our approach
preserves the true collisions of the original video in the synopsis video as well. The tube set
to which the optimal start-time is assigned will be added to A and further, it will not partic-
ipate in the voting procedure. The second stage of voting is repeated until all the tube sets
in G are assigned with an optimal start-time label. Thus, the process of selection of (tube
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set, position) solution with maximum votes is continued and the corresponding tube sets are
positioned in the synopsis video, one after the other.

Figure 4 illustrates the two stages of spatio-temporal cube voting algorithm with tube
sets g1, .., g4 and their acceptable temporal positions p1, .., pk . The jump arrows in stage 1
show the cubes/grids (orange colored) that will be covered by a tube set when positioned
at any given temporal location. In stage 2, the jump arrows indicate the votes cast by each
cube/grid to the (tube set, position) that covers it. The tracking and segmentation issues
by aggregating the over-segmented or occluded tubes together to form same tube sets. The
computational complexity of the proposed cube-voting algorithm is O(NPC), where N

denotes the total number of tube sets, P represents the possible temporal locations of tube
sets, and C denotes the number of cubes in V .

Fig. 4 Illustration of spatio-temporal cube voting method. The first stage updates all cubes (grids in the
spatial domain) that will be covered by different tube sets at various positions. In the second stage, each cube
votes for (tube set, position) pairs that pass through it. The tube set that gets a maximum vote is selected to
add into the synopsis video and the process is repeated until all tube sets are placed in the synopsis video
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3.4 Tube set stitching

In the final step of video synopsis, the background of the original video has to be extracted
to form a background video with the same length as that of synopsis video. The background
of each frame in the input video is computed using temporal medians over its neighboring
frames for each one minute of the video. Each background pixel corresponds to the median
of current frame i.e. 30 seconds frame before and after the current frame. A uniform tempo-
ral sampling of active periods is utilized to create background video from the background
images. Finally, the tube sets are stitched into the background video according to the new
start-time labels computed in the tube set positioning phase. Like most existing video synop-
sis methods, we employ Poisson image editing [36] to stitch tube sets into the background.
Since stitching does not affect the accuracy of synopsis approach, no great attention has
been paid on this step.

3.5 Synopsis length estimation

During the generation of synopsis video, the proposed recursive tube-grouping algorithm
identifies the interacting tubes in the original video based on their spatio-temporal proxim-
ity, and groups the related tubes together to form tube sets. The proposed spatio-temporal
cube voting algorithm optimally rearranges the tube sets in synopsis video. When the length
of the synopsis video is less than that of any tube set, spatial and temporal relationships
between tubes in that tube set cannot be maintained in synopsis as such in the original video.
Therefore, the minimum length of the synopsis video should be the length of the longest
tube set. This ensures the preservation of relative time intervals between tubes in all the tube
sets.

The synopsis length that reduces false collision to the maximum possible extent is the
sum of the duration of all tube sets. Thus, the duration (length) of synopsis can be defined
in the boundary [length(gmax), max(length(O),

∑N
i=1 length(gi))], where gi represents

ith tube set, gmax is the longest tube set and O denotes the original video. To minimize
collisions in the synopsis video, we propose a method to estimate the duration based on an
entropy measure of tube collisions.

The proposed method considers each frame of original video as a 2D grid (x-y spatial
plane). Then, the grids that will be covered corresponding to the original spatial positions
of tube sets are analyzed. This projection of tube sets onto 2D spatial plane will indicate
the probable collisions that can occur in the synopsis. For example, a grid shared by two or
more tube sets indicates an area of false collision if those tube sets are shifted inappropri-
ately along the time axis. However, sharing of a grid by tubes within a tube set shows true
collisions that will be preserved in the synopsis by our tube set rearrangement method. For
each grid X, the probability by which each tube set gi covers it can be defined as

p(gi) = fi

fX

(8)

where fi represents the number of frames in which gi pass through X and fX denotes the
total number of frames in which X is covered by any tube set. The entropy (H ) at each grid
is the expected number of tube collisions determined across all frames in the original video

HX = −
N∑

i=1

p(gi)log2p(gi) (9)
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We compute the total entropy Htot as

Htot =
∑

∀grids

HX (10)

The synopsis duration will be an estimate based on Htot and duration of the longest tube
set. Thus, the length (L) of the synopsis video is estimated as

L =
{

length(gmax) ∗ mean(Htot ), if Htot �= 0

length(gmax), otherwise
(11)

4 Experiments

To evaluate the performance of the proposed approach, we have conducted extensive exper-
iments, which are detailed in this section. The experiments are conducted in MATLAB
R2018b on an Intel Core i5-6500 3.20-GHz processor with 8-GB of memory.

4.1 Datasets

We carried out the experiments on seven publicly available surveillance videos, whose
characteristics are summarized in Table 2. We have selected these 7 videos by taking the
scenarios that have behavioral interactions between objects into consideration. Some of the
diverse scenarios covered by these videos are depicted in Fig. 5.

4.2 Evaluationmetrics

In the following, we evaluate the proposed approach using 6 aspects: (1) frame condensation
ratio, (2) total collision area, (3) total false collision area, (4) interactions violation ratio,
(5) chronological disorder ratio, and (6) visual quality. The first five metrics are used for
objective comparisons while the visual quality metric reflects the vision comfortable degree
of users.

1) Frame condensation ratio (FR): The FR is defined as the ratio between the number
of frames in the synopsis video and original video. One of the qualitative standards
commonly used in video synopsis requires the condensation ratio to be high.

Table 2 Parameters of experimental surveillance videos: Video Number (Num), Video Name (Video),
Resolution, Frame Rate (fps), Number of Frames (#Frames), Number of Tubes (#Tubes)

Num Video Resolution fps #Frames #Tubes

1 Subway Station [6] 448 × 360 30 4470 120

2 Town-Centre [4] 1920 × 1080 25 7500 230

3 BEHAVE-1 [5] 640 × 480 25 14683 35

4 BEHAVE-2 [5] 640 × 480 25 6694 43

5 Street-UET [35] 1280 × 720 30 14730 194

6 CAVIAR-1 [11] 384 × 288 25 3700 16

7 CAVIAR-2 [11] 384 × 288 25 1650 9
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(a) (b) (c) (d)

(e) (f) (g)

Fig. 5 Sample test scenarios. a Town-Centre, b Street-UET, c CAVIAR-1, d CAVIAR-2, e BEHAVE-1, f
Subway Station, g BEHAVE-2

2) Total collision area (CA): The total collision area between two tubes i and j is defined
as

CA(i, j) =
∑

f ∈Fi∩Fj

I (box(if ) ∩ box(jf )) (12)

where Fi ∩Fj denotes the common frames between i and j and I (box(if )∩box(jf ))

is the intersecting area between bounding boxes of tubes i and j in frame f .
3) Total false collision area (TFCA): The TFCA measures the total area of false tube

collisions in the synopsis video. The false collision area (FCA) between two tubes i

and j is defined as follows

FCA(i, j) =
{

CAs(i, j) − CAo(i, j), if t si − t sj = t s
î

− t s
ĵ

CAs(i, j), otherwise
(13)

where CAo(i, j) and CAs(i, j) are the total collision area between tubes i and j in the
original video and synopsis video, respectively. t si and t sj denote the start-times of tubes
i and j in the original video. Similarly, t s

î
and t s

ĵ
represent the start-times of tubes i and

j in the synopsis video.
4) Interactions violation ratio (IVR): IVRmeasures the degree of original behavioral inter-

actions not preserved in the synopsis video. It is defined as the ratio between the number
of tube pairs where interaction is violated in synopsis video and total number of inter-
acting tube pairs in the original video. A higher IVR score means greater number of
altered original interactions, and a synopsis video with all interactions preserved will
achieve an IVR score of 0.

5) Chronological disorder ratio (CDR): CDR measures the degree of violation in the
chronological order of tubes. It is computed as the ratio between the number of pairs of
tubes whose chronological orders are reversed in the synopsis video when compared to
the original video. A higher CDR indicates a greater violation of chronological order.
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Table 3 Performance comparison with (G) or without recursive tube-grouping algorithm. IVR - Interactions
Violation Ratio, TFCA - Total False Collision Area

Video Num IVR IVR (G) TFCA TFCA (G)

1 0.82 0 5.79 × 106 1.06 × 106

2 0.21 0 1.74 × 107 1.94 × 107

3 0.53 0 2.43 × 107 5.24 × 106

4 0.67 0 4.02 × 107 2.67 × 106

5 0.33 0 1.03 × 107 3.90 × 105

6 0.75 0 6.56 × 106 6.58 × 105

7 0.88 0 2.75 × 106 1.03 × 105

4.3 Performance comparison

We compare our proposed framework with a classical synopsis method [39], a scaling
down method to minimize collisions [27], and a group-partition approach to deal with
crowded scenes [28]. The comparison of proposed synopsis framework with the previ-
ous video synopsis methods are discussed in Section 4.3.4. In addition, evaluation of the

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Fig. 6 The first two columns show the representative frames with interactions (marked in yellow and red
color ellipses) in original videos. The third and fourth columns represent corresponding results generated
without recursive tube-grouping. The last column shows the synopsis results generated with recursive tube-
grouping. Video sequences a–e Street-UET, f–j BEHAVE-2, k–o Town-Centre
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Table 5 Objective comparison between synopsis results generated using proposed entropy-based length
method (1) and results with length equal to that of longest tube (2). Num - Video Number, CA - Total
Collision Area, FR - Frame Condensation Ratio

Num CA (1) CA (2) FR (1) FR (2)

1 4.68 × 106 5.79 × 106 0.468 0.289

2 2.94 × 107 1.74 × 107 0.307 0.287

3 5.72 × 107 5.72 × 107 0.385 0.385

4 2.67 × 107 4.23 × 107 0.491 0.342

5 7.89 × 106 1.03 × 107 0.280 0.179

6 3.88 × 106 6.56 × 106 0.432 0.281

7 2.51 × 106 2.75 × 106 0.636 0.418

individual components in our proposed framework are discussed in the following three
subsections.

4.3.1 Evaluation of recursive tube-grouping algorithm

To validate the effectiveness of the recursive tube-grouping algorithm, we evaluate the syn-
opsis videos generated for seven surveillance videos by our proposed method, with (G)
and without recursive tube-grouping. The comparative results are shown in Table 3. An
IVR score of 0 indicates that there is no violation of original interactions in the synopsis
video. The results generated with tube-grouping achieve IVR score as 0 for all seven videos,
validating the preservation of tube interactions by the proposed recursive tube-grouping
algorithm. Similarly, TFCA score of our approach with grouping is significantly lesser com-
pared to the results generated without tube-grouping in almost all test videos. This is caused
by the fact that with the restriction of grouping, tubes have limited options for the placement
in synopsis video, minimizing the chances of false collisions.

Some representative synopsis results generated with and without recursive tube-grouping
algorithm are shown in Fig. 6, where interactions in small groups are highlighted within

Fig. 7 Comparison of Interactions Violation Ratio (IVR) between state-of-the-art video synopsis methods
[39], [27], [28] and proposed framework on 7 test videos
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Fig. 8 Comparison on the subway station sequence. From left to right: the first column shows frames of
the original video. The second, third and fourth columns represent synopsis results of [27], [39] and [28],
respectively. The fifth column shows the synopsis results of our proposed method

ellipses. First row represents scenarios from Street-UET video sequence, where two spa-
tially close persons are walking together as shown in Figs. 6a and b. In the corresponding
synopsis generation without tube-grouping, each of the two persons is considered as sep-
arate tubes while positioning them in the synopsis video (see Fig. 6c and d). As shown
in Fig. 6e, synopsis generation with recursive tube-grouping preserves both original inter-
actions. The second row presents scenarios from BEHAVE-2 video sequence, where two
persons talk with each other while walking together. In synopsis results without tube-
grouping, unrealistic scenes are created where the split tubes of a man and woman seem
to walk with the gestures resembling a conversation (Figs. 6h and i). On the contrary,
synopsis results with our tube-grouping approach well preserves the original activities
as shown in Fig. 6j. Similarly, the last row from Town-Centre sequence shows scenes
(Figs. 6k and l) where two people meet and walk together. Without tube-grouping, the per-
sons are separated and displayed individually in the synopsis video. However, our approach
effectively displays the people together without altering their original interactions.

4.3.2 Evaluation of spatio-temporal cube voting algorithm

Reduction of collision between objects is one of the key factors [39] that should be con-
sidered during the generation of a synopsis video. The main objective of the proposed
spatio-temporal cube voting method is to determine the optimal start-times for tube sets
in the synopsis video. The metric TFCA, measures the total false collision area intro-
duced in the synopsis video due to rearrangement of tubes. Therefore, the effectiveness
of the proposed cube voting tube set rearrangement approach can be evaluated only by
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Fig. 9 Comparison on the CAVIAR-1 sequence. From left to right: the first column shows frames of the origi-
nal video. The second, third and fourth columns represent synopsis results of [27], [39] and [28], respectively.
The fifth column shows the synopsis results of our proposed method

comparing the result of proposed approach with the results of state-of-the-art synopsis meth-
ods that comprise different tube rearrangement optimization approaches. Table 4 shows
the objective comparison results of the proposed spatio-temporal cube voting approach and
state-of-the-art video synopsis optimization methods [39], [27], [28].

From Table 4, we can see that our approach achieves less TFCA than those of the pre-
vious synopsis methods [39], [27] and [28], reduced by more than 7, 19 and 6 times,
respectively. For any given input video, when TFCA becomes nearly equal to CA, we can
conclude that the original interactions preserved in the corresponding synopsis video will be
approximately zero. The TFCA achieved by our proposed method is significantly lesser than
that of [39], [27] and [28] even for videos, where there is not much difference between the
CA score of our approach and that of the other three synopsis methods. For our approach,
the difference between TFCA and CA is almost the same as the total true collision area
(TCA) for all seven videos. Thus, the experimental results demonstrate that the proposed
spatio-temporal cube voting method creates fewer false collisions in the synopsis videos, no
matter which types of scenarios, compared with the conventional synopsis methods.

4.3.3 Evaluation of length estimation

Most of the state-of-the-art video synopsis approaches [14, 27, 39] employ synopsis length
as user-specified or same as the length of the longest tube in the synopsis video. The length
(L) of a synopsis video is counted by frames. The length estimation of the proposed frame-
work is evaluated by experimenting with our proposed entropy-based length estimation (1)
and state-of-the-art longest tube length method (2). The results are compared using the
metrics CA and FR as shown in Table 5.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Fig. 10 Comparison on the Street-UET sequence. From left to right: the first column shows frames of
the original video. The second, third and fourth columns represent synopsis results of [27], [39] and [28],
respectively. The fifth column shows the synopsis results of our proposed method

We find that our approach (1) achieves better scores for total collision area (CA)
compared to the CA scores of results generated by taking length of longest tube (2).
The proposed method is based on the entropy measure of tube collisions in the orig-
inal video. In this way, the probable collisions are taken into account during the esti-
mation of synopsis length, which significantly reduces the total collision in synopsis
video. In contrast, the condensation ratio (FR) of synopsis videos by (2) obtains bet-
ter scores compared to the FR values of our approach (1). This is due to the fact
that length of the longest tube in a video will be generally lesser than the entropy-
based estimated length that takes tube collisions and duration of longest tube set into
consideration.

4.3.4 Comparison of the proposed framework with previous approaches

Figure 7 shows the comparison results of IVR between existing video synopsis methods
[27, 28, 39], and the proposed framework using 7 test videos. Since the proposed method
preserves all tube interactions in the input video, an IVR score of 0 is obtained for all videos.
The optimization process in [39] does not consider object relationships while computing
the optimal start-times for tubes in synopsis video, which resulted in IVR scores greater
than zero for most of the test videos. The scaling down method in [27] achieves higher
IVR scores than the synopsis method in [39], as the reduction in object sizes may alter the
spatio-temporal interactions between objects. The method proposed in [28] preserves the
tube interactions with IVR scores in the range of 0 to 0.5.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Fig. 11 Comparison on the CAVIAR-2 sequence. From left to right: the first column shows frames of
the original video. The second, third and fourth columns represent synopsis results of [27], [39] and [28],
respectively. The fifth column shows the synopsis results of our proposed method

Table 6 shows the detailed comparison results between the proposed framework and three
state-of-the-art video synopsis methods [27, 28, 39]. The results show that our proposed
framework obtains remarkably less TFCA than the previous video synopsis methods [27,
28, 39]. Similarly, Fig. 7 shows an IVR score of 0 achieved by the proposed framework.
Thus, results from the evaluation of individual components, Table 6 and Fig. 7 validated
that the proposed framework preserves the original interactions between tubes and generates
relatively fewer false collisions in the synopsis video.

However, video synopsis method in [27] achieves the lowest CDR values while our
framework achieved the second-lowest CDR in the evaluation using CDR metric. This is
due to the reason that the proposed approach focuses on maintaining the relative chronolog-
ical order of tubes within each tube set in order to preserve the original interactions between
related tubes. Meanwhile, the rearrangement of tube sets to determine optimal positions in
synopsis may result in the violation of chronological order among tube sets. However, with
or without breaking the chronological order, the objective of video synopsis is to find an
optimal arrangement of tubes to generate a compact video.

Visual quality comparison To further analyze the effectiveness of the proposed approach,
a visual quality comparison is made between the results of the proposed method and the
synopsis methods in [39], [27], and [28]. The results on four test sequences are shown in
Figs. 8, 9, 10 and 11. In each figure, the first column presents the representative frames
from original videos with a group of interactions shown in an ellipse. The second, third,
fourth, and fifth columns present corresponding synopsis results by [27], [39], [28] and
proposed approach, respectively. Yellow ellipses denotes interactions in the original video.
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Original interactions preserved in the synopsis results are represented with green ellipses,
whereas interactions that are altered in the synopsis video are denoted with blue ellipses.
Red ellipses represent false collisions and unpleasant visual effects created in the synopsis
results. Orange ellipses represent multiple instances of the same object that are displayed in
the same frame of synopsis video.

Figure 8 represents the synopsis results of subway station video sequence. In the second
and third column of Fig. 8, we can see that the interacting people are separated and displayed
independently by positioning them at different temporal locations. This indicates that [27]
and [39] fail to maintain the relationships between objects in most cases. Both [27] and
[39] maintain the original interactions in one of the three sequences, even though the results
deviate slightly from original scenes. Interactions in three sequences are preserved by the
method in [28] as shown in the fourth column of Fig. 8. However, a few false interactions are
introduced and multiple observations of the same person, highlighted with orange ellipses
are displayed on the same frame of results. Compared to [39], [27] and [28], the proposed
approach preserves the spatio-temporal relationships between objects in all three scenarios
with fewer false collisions as shown in the last column of Fig. 8.

The visual quality comparative results of CAVIAR-1 sequence are presented in Fig. 9.
Each tube is tracked individually by [27] and [39] without considering about the spatio-
temporal interactions between them. However, it can be seen from Fig. 9(b) that overlapping
tubes are considered as a single tube while tracking. Consequently, they are displayed
together (see yellow ellipses in Fig. 9(b)) in the synopsis video by [27] albeit scaling down to
reduce collision. Though [39] preserved the group interactions in two of the three sequences
and [28] preserved interactions in all three sequences, obvious object overlaps (false colli-
sions) are visible. The proposed recursive tube-grouping and cube voting method aggregates
the related single tubes, maintains the relative temporal order between them and displays
with a minimum false collisions.

Figure 10 illustrates the visual comparison results of Street-UET video sequence. This
video presents crowded interactions as shown in the second row of Fig. 10. For all overlap-
ping objects, [27] and [39] have maintained the interactions although partially as presented
in Figs. 10(f), (g), (j) and (k). However, we can see visual artifacts in those results due to
segmentation errors and object collisions. From the comparison between results of [27], [39]
and [28], we can see that our proposed approach reconstructs the original activities without
any visual errors even for crowded scenes.

Figure 11 shows the comparative synopsis results of CAVIAR-2 video sequence. Along
with the failure to maintain object relationships in most results, some foreground segmen-
tation errors by [27] and [39] lead to unpleasant synopsis results as shown in Figs. 11c, f,
and k. Furthermore, a few collisions can be seen in Figs. 11f and g. More visually pleasing
synopsis by [28] with fewer false collisions than the other two previous methods, are shown
in the fourth column of Fig. 11. In Fig. 11k, we can see multiple observations of a person
with red colored jacket due to tracking error. Our proposed approach alleviates the afore-
mentioned problems to reconstruct original interactions using individually tracked tubes as
shown in the last column of Fig. 11.

5 Conclusion

In this paper, we investigate how to preserve the relationships between tubes in the origi-
nal video during the generation of synopsis video. We propose a recursive tube-grouping
algorithm to identify and group the mutually interacting tubes in the original video to form
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tube sets based on their spatial and temporal proximity. Further, to optimally arrange these
tube sets so as to retain the discovered interactions, a spatio-temporal cube voting algorithm
is proposed. This algorithm aims to maintain the relative interactions between tubes within
a tube set while reducing false tube collisions. Furthermore, we propose a length estima-
tion method for synopsis video based on an entropy measure of tube collisions. We also
demonstrate the effectiveness of our proposed video synopsis framework with extensive
experimental results. In the future, we will address the various challenges in video indexing
and retrieval applications.
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