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Abstract
Recently, scene text detection has become an active research field, which is an essential
component of scene text reading. Especially, segmentation-based methods are commonly
used, since the segmentation results can describe text of arbitrary shape. However, curve
texts have a diversity of shapes, scales and orientations, which are difficult to locate, so
the detector requires to adjust the local receptive fields size adaptively, which can
aggregate multi-scale spatial information to accurately locate the curve text instance.
Moreover, the low-level features are critical for localizing large text instances. When
using Feature Pyramid Network (FPN) for multi-scale feature fusion, it will prevent the
flow of accurate localization signals due to the long path from low-level to top-level. In
order to solve these two problems, this paper proposes an Adaptive Convolution and Path
Enhancement Pyramid Network (ACPEPNet), which can more accurately locate the text
instances with arbitrary shapes. Firstly, an Adaptive Convolution Unit is introduced to
improve the ability of backbone to aggregate multi-scale spatial information at the same
stage. Specially, this unit is a lightweight component and without the cost of computa-
tions, based on this component we present a backbone network for text features extrac-
tion. Secondly, the original FPN structure is redesigned to build a short path from the
low-level to top-level, in this way, we modify the path from one-way flow to two-way
flow and add original features to the final stage of information fusion. Experiments on
CTW1500, Total-Text, ICDAR 2015 and MSRA-TD500 validate the robustness of the
proposed method. When there is no bells and whistles, this method achieves an F-
measure of 80.8% without external training data on CTW1500.
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1 Introduction

In recent years, scene text detection as a fundamental computer vision task has become
an active research field, since it is an essential step in many applications such as
automatic driving, scene understanding and text recognition. With the rapid development
of Convolutional Neural Networks [7, 9, 13, 17, 46, 47], many progresses have been
made [19, 20, 39, 43]. Scene text detection methods can be roughly formulated as two
categories: regression-based methods and segmentation-based methods, especially
segmentation-based methods have received much attention, since the segmentation
results can describe text of arbitrary shape such as curve text. Some new approaches
[19, 24, 27, 45] have been proposed to detect cure texts. On the one hand, many of these
approaches usually employ classification networks as the backbone [7, 10, 42] network.
However, due to the diversity of curve text in shape, scale and orientation, therefore, the
detector requires to adjust the local receptive fields size adaptively to encode sufficient
context information. Based on the fact, it is not optimal that simply transferring classi-
fication networks to text detection. On the other hand, Multi-scale detection is very
important to text detection, as the high layers strongly respond to global features while
the shallow layers are likely to retain local features. Most of previous methods use
Feature Pyramid Network (FPN) [23] to extract multi-scale feature. Nevertheless, it will
prevent the flow of accurate localization signals due to the long path from low-level to
top-level.

To address above problems, an arbitrary shaped text detector is proposed in this paper,
namely, Adaptive Convolution and Path Enhancement Pyramid Network (ACPEPNet).
The proposed detector as a segmentation-based method which can makes arbitrary shape
text detection. The pipeline of this method is as follows, which includes two steps: 1)
Using segmentation network to obtain the segmentation maps. 2) Converting the seg-
mentation maps to binarization maps and then reconstructing the text regions by post-
processing algorithm. Firstly, in order to make detector adjust the local receptive fields
size adaptively and improve non-linear aggregation capability, EfficientNet [42] is used
as the backbone and Adaptive Convolution Unit is embedded into it. By redesigning the
structure of EfficientNet, a set of backbone networks named ACNet-B0 and ACNet-B3
are proposed, which are designed for curve text detection. Acnet-b0 can achieve better
efficiency / accuracy trade-off, while ACNet-B3 can achieve better accuracy. Compared
with classification networks, ACNet can bring significant improvement to text detection
tasks. Secondly, in order to make the low-level features flow into the top-level more
smoothly, a Path Enhancement Feature Pyramid Network (PEFPN) is proposed, which
constructs an extremely short path less than 10 layers and adds original feature maps to
the final stage of information fusion. For high efficiency, we use depthwise separable
convolution [4] instead of conventional convolution in PEFPN.

To show the effectiveness of the proposed method, experiments are carried out on four
public benchmark datasets including CTW1500 [24], Total-Text [1], ICDAR2015 [16] and
MSRA-TD500 [49]. Among these datasets, CTW1500 and Total-Text are specially designed
for curve text detection, ICDAR2015 is multi-oriented text detection datasets and MSRA-
TD500 is multi-lingual text datasets. On CTW1500, on ctw1500, when using ACNet-B3 as
backbone network, the F-measure is 80.8%, which is 2.8% better than PSENet [45]. Mean-
while, this method also achieves promising performance on multi-oriented and multi-lingual
text datasets.
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The contributions can be summarized as:

& We introduced an adaptive convolution unit, which can adjust the local receptive fields
size adaptively and nonlinear aggregate multi-scale spatial information.

& We proposed ACNet, a backbone network designed for text detection, which can improve
the result of curve text detection significantly.

& We proposed PEFPN, a two-way feature pyramid network and it is benefit for cross-scale
feature fusion.

2 Related work

Recent scene text detection task based on deep learning methods have achieved remark-
able results. Scene text detection methods can be roughly formulated as two categories:
regression-based methods and segmentation-based methods.

Regression-based methods usually based on general object detection benchmark [28,
29, 37, 53], which directly regress the bounding boxes of the text instances. TextBoxes
[18] directly modified the anchor scales and the shape of convolutional kernels to deal
with the text with different aspect ratios. TextBoxes++ [21] adopt quadrilaterals to
regress the multi-oriented text. SSTD [36] introduced an attention mechanism to roughly
recognizes the text regions. RRD [22] extracted rotation-invariant features for text
classification and utilized rotation-sensitive features for text regression which are better
for multi-oriented and long text detection. EAST [54] and DeepReg [11] are based on
anchor-free, which utilize pixels to directly regress the multi-oriented text instances.
SegLink [39] use the segments of bounding box for regression and studied their links, to
handle long text detection.

However, most of the above-mentioned methods rely on complex anchor design,
which makes these works heavy-footed and result in sub-optimal performance. In
addition, these methods were specially proposed for multiple oriented text detection,
which are limited to represent quadrilateral bounding boxes and may fall short when
dealing with curve texts.

Segmentation-based methods are mainly joined pixel-level prediction benchmark [2, 3,
14, 25] and post-processing algorithms to get the bounding boxes. Zhang et al. [52] extracted
text regions by semantic segmentation and adopted MSER to detect character candidate. Yao
et al. [51] formulated one text block as three parts, then predicted the corresponding heat-maps
by FCN [26]. Lyu et al. [32] adopted corner localization and represented the bounding box
with irregular quadrangles. PixelLink [6] predicted pixel connections, to separate texts which
are lying close to each other. TextSnake [27] represented curve text for arbitrary shapes text
detection by model ordered disks. SPCNet [48] utilized instance segmentation benchmark and
use context information to detect curve texts while suppressing false positives. PSENet [45]
proposed progressive scale expansion algorithm to construct the text instances by setting
multi-scale kernels.

The above methods have achieved remarkable performances over several horizontal and
multi-oriented text benchmarks. Nonetheless, except for TextSnake [27], SPCNet [48] and
PSENet [45], most of methods have not focused on curve text. However, these methods have
not considered the significance of multi-scale receptive field and low-level feature for curve
text detection.
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3 Methods

3.1 Overall architecture

The overall architecture of our method as shown in Fig. 1. Firstly, the input images are fed into
ACNet, our proposed PEFPN serves as the feature extraction and cross-scale fusion network,
which takes level 2–5 feature maps {P2, P3, P4, P5} from the ACNet, and we aligned the
feature maps to same dimension, which have stride of {4,8,16,32} pixels with respect to the
input image. Secondly, feature maps are fused through top-down and bottom-up pathway, we
denote the feature maps as {M2, M3, M4, M5} and {N2, N3, N4, N5} respectively, Mi and Ni are
merged with the corresponding Pi by element-wise addition. Thirdly, the outputs Vi of PEFPN
are upsampled to the same scale and concatenated to produce feature map F. Finally, we use
progressive scale expansion algorithm [45] as post-processing to obtain the final results.

3.2 Adaptive convolution unit

To make the network adjust the local receptive fields size adaptively and improve non-linear
aggregation capability, we introduced an operation which can select kernel size automatically.
This operation is divided into three steps. We only use two branches in parallel as an example,
however, it can be extended to multi-branch parallel easily. Figure 2 show the architecture of
adaptive convolution unit. Next, we will discuss each step in detail.

(a) ACNet (b) PEFPN (c) Post-processing

Output

Fig. 1 The overall architecture of our detector, a ACNet, the backbone network is designed for curve text
detection. b PEFPN, the feature extraction and multi-scale fusion network. Different colored circles indicate
different levels of feature maps. Top-down pathway is visualized in blue arrows, bottom-up pathway is displayed
in red arrows, respectively. c Post-processing algorithm to obtain the result
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Step 1: Given a feature map X ∈ RH ×W ×Cand projected F into multiple branches in parallel
with different kernel sizes for convolution operations, which can be formulated as
two transformation F 1 mapping X ∈ RH ×W ×C to X1 ∈ RH ×W ×C and F 2 mapping X ∈
RH ×W ×C to X2 ∈ RH ×W ×C. We take F 1 and F 2 as two convolution operators, to
prevent channel dependencies, we use depthwise/dilated convolution [30, 31] for
feature extraction and then followed by Batch Normalization [15] and ReLU [35]
activation. Notably, the kernel sizes are 3 × 3 and 5 × 5, specially, we use 3 × 3
kernel and dilation size 2 to instead of 5 × 5 kernel. After this stage, the network is
able to pay attention to the multi-scale feature in the same layer.



Step 2: To enable the network to improve non-linear spatial aggregation capability, the
kernels need to adaptively select their receptive fields size according to the different
stimulate, we first fuse features from multi branches by element-wise addition:

X
0 ¼ X 1 þ X 2; ð1Þ

Due to each of kernel only with a local receptive field, therefor, the output X′ is unable to
exploit contextual information while it is essential for network sensitivity. Consequently, we
obtained the global spatial information via global average pooling to generate channel-wise

statistics, denote as eX∈Rc, shrinking X′ through its 2D spatial dimensions H ×W, specially, eX c

is the i-th element of eX can be calculated by:

eX c ¼
∑
H

i¼1
∑
W

j¼1
X

0
c i; jð Þ

H �W
; ð2Þ

To limit complexity, we introduce a dimensionality-reduction operation, which is composed of
two fully connected layers. In particular, we use several 1 × 1 convolutions instead, they can be
simply defined as W1 ∈ Rd ×C, W21 ∈ RC × d and W22 ∈ RC × d:

S1 ¼ W21α β W1eX� �� �
; S2 ¼ W22α β W1eX� �� �

; ð3Þ

where β refers to the Batch Normalization [15] and α represents the ReLU [35] activation. we
use d to control the compactness of Si ∈ RC × 1, d takes the maximum of C/r and L. r denotes
dimensionality-reduction ratio, L is the minimum value of d (L = 8):

d ¼ max
C
r
; L

� �
; ð4Þ

Step 3: In order to select the multi-scales spatial information adaptively, we adopted the
SoftMax as self-attention function:

μ1 ¼
eS1

eS1 þ eS2
;μ2 ¼

eS2

eS1 þ eS2
; ð5Þ

Step 1 Step 2 Step 3

Fig. 2 Adaptive Convolution Unit
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Where μ1 ∈ RC × 1 and μ2 ∈ RC × 1, we conduct μ1 and μ2 as the attention scores, which represent

the sensitivity of network to multi-scales spatial information. The final outputs bX are produced
by channel-wise multiplication:

bX ¼ μ1 � X 1 þ μ2 � X 2; ð6Þ

3.3 Backbone network design

As shown in Table 1, ACNet-B0 has seven stages with {1,2,2,3,3,4,1} MBconv [38, 44]
blocks, respectively. In adaptive convolution unit, K is the number of paths that controls the
number of choices of different kernels to be aggregated, and the dimensionality-reduction ratio
r that determines the number of parameters in Step. 2(see Eq. (4)). AC [6, 50] is the typical
setting in ACNet. In addition, we also design a deeper network based on EfficientNet-B3 [42]
for better accuracy and named ACNet-B3, which has seven stages with {1,2,3,3,5,5,6,2}
MBconv [38, 44] blocks.

3.4 Path enhancement feature pyramid

In the backbone network, low level has larger feature maps and richer spatial details, it is more
likely to describe local texture and patterns. On the contrary, high level has smaller feature
maps and strongly respond to entire text instances. Generally, localization is more sensitive to
low level features, especially for arbitrary shapes text detection, due to the irregularity of text
shapes, the network needs to capture more sensitive edge information. However, features are
restricted by one-way flow in FPN [23], consequently, it is necessary to build a two-way path
to propagate semantically strong features and enhance all features with reasonable classifica-
tion capability. To address this problem, we further enhance the localization capability of the
entire feature hierarchy by spreading the strong response of low-level information. we build an
extremely short path, which includes of less than 10 layers to prevent the loss of local features
after a lengthy backbone.

We takes level 2–5 feature maps {P2, P3, P4, P5} from the backbone network, and we
align the feature maps to same dimension, which have stride of {4,8,16,32} pixels with
respect to the input image. Different from traditional FPN [23], we reduced the dimen-
sion to 64 for efficiency, and then fuse the multi-scale features through the following
steps:
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Table 1 show the structure of our proposed backbone ACNet. We start from EfficientNet [42]
for three reasons: 1) It is the state-of-the-art network with high efficiency on classification. 2)
Compared with other networks, it has fewer parameters and FLOPs without losing accuracy.
3) The network architecture of EfficientNet [42] is obtained by reinforcement learning search
algorithms, rather than artificial design, therefore, it has a better balance among depth, width
and resolution. EfficientNet [42] is mainly composed of a stack of repeated mobile inverted
bottleneck MBConv [38, 44] and we still follow this design. Moreover, in order for the model
to adaptively select the receptive field size, we use Adaptive Convolution Unit instead of
depthwise convolution in each MBConv [38, 44] block, and then each block consists of a
sequence of 1 × 1 expand convolution, adaptive convolution unit and 1 × 1 project convolu-
tion. Adaptive convolution unit is imposed only a slight increase in parameter and computa-
tional cost.



Firstly, in the top-down path, we use the same approach as FPN [23]:

Mi ¼ Conv UpX2 Piþ1ð Þ þMiþ1ð Þ; ð7Þ
WhereMi denotes the i-th level of fusion feature map in the top-down path, the value of i is {2,
3, 4} and M5 is simply P5, UpX2 refers to 2 times up-sampling. To further improve the
efficiency, in Conv, we use depthwise separable convolution [4] instead of common 3 × 3
convolution. The structure as shown in Fig. 3a.

Secondly, we build a reverse path to return the low-level features to the high level:

Ni ¼ Conv DownX2 Pi−1ð Þ þ Ni−1ð Þ; ð8Þ
Where Ni denotes the i-th level of fusion feature map in the bottom-up path, the value of i is {3,
4, 5} and N2 is simply P2, bothDownX2 andConv are depthwise separable convolution [4] with
factor 2 and 1 respectively. The architecture as shown in Fig. 3b.

Thirdly, after the above operations, we obtained two sets of feature maps, which are
respectively called {M2, M3, M4, M5} and {N2, N3, N4, N5}. We introduced the original

Table 1 The architecture of ACNet-B0 and ACNet-B3 network with different channels and layers, each row

refers to a stage iwith bLi MBconv [38, 44] blocks, with input resolution bHi � bWi and the MBconv [38, 44] block
of each stage i includes the corresponding components listed in operator

Stage
i

Resolution

bHi � bWi

Operator

bF i

#Channels

bCi

#Layers

bLi
1 640×640 Conv3x3 32/40 1
2 320×320 AC [K = 2, r = 4] 16/24 1/2

Conv1x1
3 320×320 Conv1x1 24/32 2/3

AC [K = 2, r = 4]
Conv1x1

4 160×160 Conv1x1 40/48 2/3
AC [K = 2, r = 4]
Conv1x1

5 80×80 Conv1x1 80/96 3/5
AC [K = 2, r = 4]
Conv1x1

6 40×40 Conv1x1 112/136 3/5
AC [K = 2, r = 4]
Conv1x1

7 40×40 Conv1x1 192/232 4/6
AC [K = 2, r = 4]
Conv1x1

8 20×20 Conv1x1 320/384 1/2
AC [K = 2, r = 4]
Conv1x1
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feature maps {P2, P3, P4, P5} at same level, then, Pi is merged with the correspondingMi

and Ni by element-wise addition:

Vi ¼
Mi þ Pi; i ¼ 2
Mi þ Ni þ Pi; 4≥ i≥3

Ni þ Pi; i ¼ 5

8<
: ; ð9Þ

Where Vi represents the i-th level of final output. The operation as shown in Fig. 3c. With these
optimizations, we name the efficient feature fusion network as path enhancement feature
pyramid network (PEFPN).

3.5 Loss function

It is common that binary cross entropy [5] is used to optimize the network’s weight.
Nonetheless, the text instances usually occupy only an extremely small region in natural
images, which leads to the prediction of detector bias to the regions which are non-text region.
Thus, in order to obtain a better model during the learning phase, we utilize dice coefficient
[34] in training stage, and it can be formulated as follow:

L Di;Gið Þ ¼ 2∑x;y Di;x;y � Gi;x;y
� �

∑x;yD
2
i;x;y þ ∑x;yG

2
i;x;y

; ð10Þ

where Di, x, y denotes the value of pixel (x, y) in detection result Di, and Gi, x, y indicates ground
truth Gi.

In addition, to distinguish patterns, such as fences, lattices, which are similar to text strokes.
We use Online Hard Example Mining (OHEM) [40] to improve the discernment of detector.
Let us consider the training mask given by OHEM asO, and the final loss can be formulated as
follow:

L
0 ¼ 1−L Di⋅O;Gi⋅Oð Þ; ð11Þ

(a) Top-down (b) Bottom-up (c) Final feature fusion

Fig. 3 The illustration of Path Enhancement feature pyramid network. a Top-down path. b Bottom-up path. c
Final feature fusion, where 4 ≥ i ≥ 3
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4 Experiment

4.1 Datasets

CTW 1500 [24] is a popular challenging dataset for arbitrarily curve text detection. It includes
1000 training images and 500 testing images. Different from conventional text datasets (e.g.
ICDAR 2017 MLT, ICDAR 2015), In order to describe the shape of an arbitrarily curve text
that 14 points are used to label the text instances in CTW1500.

Total-Text [1] is also a newly released benchmark for long curve text detection. It consists
of horizontal, multi-Oriented and curve text instances. The benchmark is divided into training
set and testing set with 1255 and 300 images, respectively.

ICDAR 2015 [16] is a multi-oriented benchmark for text detection. Scene text images in
this dataset are taken by Google Glasses without taking care of positioning, image quality and
viewpoint. It contains a total of 1500 images, 1000 images for training and another 500 images
for testing. The text regions are labelled by 4 vertices of the quadrangle.

MSRA-TD500 [49] is a commonly used dataset for text detection. It includes 300 training
pictures and 200 test pictures with text line level annotations. It is a dataset with multi-oriented,
multi-lingual and long text lines. We follow these works [27, 32] to tr model on HUST-TR400
[50], which include 400 images.

4.2 Evaluation metrices

In order to evaluate the performance of our detector, we use the Precision (P) and Recall (R)
that have been utilized in information retrieval field. Meanwhile, we utilized the F-measure (F)
which can be obtained as follows:

F ¼ 2� P � R
P þ R

; ð12Þ

where calculating the precision and recall are based on using the ICDAR 2015 intersection
over union (IOU) metric [16], which is obtained for the j-th ground-truth and i-th detection
bounding box as follow:

Table 2 Results of backbone with different combinations of multiple kernels

Kernel bX CTW 1500 Total-Text

3 × 3 5 × 5 7 × 7 F F

√ 78.0 77.8
√ 76.2 75.9

√ 75.8 75.3
√ √ √ 78.7 78.3
√ √ 79.5 79.7
√ √ √ 78.5 78.2
√ √ 79.3 79.6

√ √ √ 77.1 76.8
√ √ 77.6 77.2

√ √ √ √ 78.8 78.5
√ √ √ 79.5 79.8

“F” means F-measure
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IoU ¼ Area Gj∩Di
� �

Area Gj∪Di
� � ; ð13Þ

Where Gj and Di same as Eqs. (10) and (11). Meanwhile, a threshold of IoU > t is used for
counting a correct detection.

4.3 Implementation details

During training, three data augmentation strategies are adopted in the all datasets: 1)
rescaling images with the ratio {0.5, 1.0, 2.0, 3.0} randomly; 2) flipping the images in the
range [−10°, 10°] randomly; 3) All the images are re-sized to 640 × 640 for better efficiency.
For quadrangular text, we calculate the minimal area rectangle to extract the bounding boxes.
For curve text dataset, we use the result of progressive scale expansion algorithm [45] as the
final output.

During the inference, for all test images, we set a suitable width and then re-scale the height
through the aspect ratio. We use a batch size of 1 and a single 1080ti GPU to evaluate the
inference speed (i.e. FPS) in a single thread. When calculating the inference speed, the model
forward time cost and the post-processing time cost are included.

4.4 Ablation study

To investigate the effectiveness of our proposed module, we conduct an ablation study on the
ICDAR 2015 and the CTW 1500, which is a quadrangle text dataset and a curve text dataset
respectively. Note that, all experiments without any external dataset.

Table 3 Result of with or without PEFPN, “F” means F-measure

Backbone FPN PEFPN CTW 1500 Total-Text
F F

ResNet50 √ 76.5 75.7
ResNet50 √ 77.5 76.6
ACNet-B0 √ 78.7 78.3
ACNet-B0 √ 79.5 79.7

Table 4 Result of whether the model uses the original feature map, Pi denotes the original feature map at the i-th
level, “F” means F-measure

Pi CTW 1500 Total-Text
F F

79.1 79.3
√ 79.5 79.7

29234 Multimedia Tools and Applications (2020) 79:29225–29242

We train our model from scratch with batch size 8 on 2 GPUs for 72 K iterations, and the
initial learning rate is set to 1 × 10−3 and is divided by 10 at 24 K and 48 K iterations. All the
networks are optimized by using stochastic gradient descent (SGD). Note that no extra data set
is used during training. We use a weight decay of 5 × 10−4 and a Nesterov momentum [41] of
0.99 without dampening. We adopt the weight initialization introduced by [8].



Different kernels and different branches In Section 3.1, we only take two size kernels as
examples, therefor, in order to explore the effect of combination of different kernels and
number of different branches, in Table 2, we use three different kernels, 3 × 3 denote the 3 × 3
depth-wise convolution, 5 × 5 denote the 3 × 3 depth-wise convolution with dilation 2, and 7 ×
7 denote the 3 × 3 depth-wise convolution with dilation 3. We only use ACNet-B0 as

backbone. If bX is ticked, it denotes that we use the attention mechanism which is the output
of Adaptive Convolution unit, otherwise we only add up the feature maps without SoftMax
attention. Considering the efficiency of the model, we did not use a convolution kernel with
larger receptive field.

As shown in Table 2, we have the following conclusions: 1) When the number of branches
N increases, in general the F-measure increases. 2) When using the attention mechanism, the
performance is better than simple addition. 3) In the case of using the attention mechanism, the
performance gain of the model from N = 2 to N = 3 is slight. For better efficiency, N = 2 is
used.

The effectiveness of PEFPN We design a set of comparative experiments to verify the
effectiveness of PEFPN. Considering the fairness of the comparisons, we employ our own
designed network and ResNet-50 [9] as the backbone, then, we add the original FPN [23] and
PEFPN after these two backbones, respectively. From Table 3, we can see that the F-measure
can make improvement about 0.8%, 1.4% and 1.0%, 0.9% when using ACNet-B0 and
ResNet-50 [9], respectively. It indicates that no matter which backbone is used, the perfor-
mance of PEFPN is better than the original FPN [23].

The influence of the original feature maps In the PEFPN, we add the original feature map at
the same level to the fused feature map as the final output (i.e.Pi in Eq. 9). To verify the

Table 5 Result of model with different backbone, “F” means F-measure

Backbone CTW 1500 Total-Text
F F

ACNet-B0 79.5 79.7
ACNet-B3 80.8 80.9

Table 6 The single-scale results on CTW 1500

Method Ext Venue CTW 1500

P R F FPS

CTPN [43] – ECCV’16 60.4* 53.8* 56.9* 7.14
SegLink [39] – CVPR’17 42.3* 40.0* 40.8* 10.7
EAST [54] – CVPR’17 78.7* 49.1* 60.4* 21.2
CTD+ TLOC [24] – ICDAR’18 77.4 69.8 73.4 13.3
TextSnake [27] √ ECCV’18 67.9 85.3 75.6 –
PSENet [45] – CVPR’19 80.6 75.6 78.0 3.9
Ours (ACNet-B0) – – 82.3 76.8 79.5 5.2
Ours (ACNet-B3) – – 84.5 77.4 80.8 4.1

“P”,” R” and” F” represent the precision, recall and F-measure respectively. “Ext” indicates external data. *
indicates the results from [24]. ACNet-B0 and ACNet-B3 indicates the backbone network used
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influence of the original feature map on the detection results, we remove the original feature
map when fusing feature. We can find from Table 4 that without the original feature map, the
F-measure is decrease. Thence, in the final fusion stage, it is necessary to add the original
feature map, meanwhile, this operation will not bring too much extra computation cost.

The influence of the backbone To better analyze the capability of our model, we adopt
ACNet-B0 and ACNet-B3 as backbone, respectively. As shown in Table 5, keep the same
setting, it can obviously improve the performance by replace the deeper backbone. ACNet-B0
for faster inference and ACNet-B3 for better accuracy.

4.5 Comparisons with state-of-the-art methods

For efficiency, we just training on a single dataset and do not use the pre-training strategy
which training on extra datasets adopted by PSENet [45]. It is worth mentioning that only
comparing the detection results of training on a single dataset, our method has surpassed
PSENet [45].

Table 7 The single-scale results on Total-Text

Method Ext Venue Total-Text

P R F FPS

SegLink [39] – CVPR’17 30.3* 23.8* 26.7* –
EAST [54] – CVPR’17 50.0* 36.2* 42.0* –
DeconvNet [1] – ICDAR’18 33.0 40.0 36.0 –
TextSnake [27] √ ECCV’18 82.7 74.5 78.4 –
PSENet [45] – CVPR’19 81.8 75.1 78.3 3.9
Ours (ACNet-B0) – – 83.2 76.4 79.7 5.2
Ours (ACNet-B3) – – 85.0 77.2 80.9 4.1

“P”,” R” and” F” represent the precision, recall and F-measure respectively. “Ext” indicates external data. *
indicates the results from [27]. ACNet-B0 and ACNet-B3 indicates the backbone network used

Fig. 4 Some visualization results on CTW 1500
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Fig. 5 Some visualization results on Total-Text

Table 8 The single-scale results on ICDAR 2015

Method Ext Venue ICDAR 2015

P R F FPS

CTPN [43] – ECCV’16 74.2 51.6 60.9 7.1
EAST [54] – CVPR’17 83.6 73.5 78.2 13.2
SegLink [39] √ CVPR’17 73.1 76.8 75.0 –
DeepReg [11] – ICCV’17 82.0 80.0 81.0 –
SSTD [36] √ ICCV’17 80.2 73.9 76.9 7.7
WordSup [12] √ CVPR’17 79.3 77.0 78.2 –
RRPN [33] – TMM’18 82.0 73.0 77.0 –
PixeLink [6] – AAAI’18 82.9 81.7 82.3 7.3
TextSnake [27] √ ECCV’18 84.9 80.4 82.6 1.1
PSENet [45] – CVPR’19 81.5 79.7 80.6 1.6
Ours (ACNet-B0) – – 82.4 80.6 81.5 2.8
Ours (ACNet-B3) – – 83.7 81.9 82.8 1.9

“P”,” R” and” F” represent the precision, recall and F-measure respectively. “Ext” indicates external data.
ACNet-B0 and ACNet-B3 indicates the backbone network used
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Curve text datasets detection To evaluate the ability of curve text detection, we test our
model on CTW 1500 and Total-Text, which mainly include curve texts, during inference
stage, we re-scale the longer side of images to 1280 and evaluate the results using the same
evaluation method with [45]. We report the single-scale performance of our model on CTW
1500 and Total-Text in Tables 6 and 7, respectively.

On CTW 1500, without external data pre-training, our model with ACNet-B0 achieves the
F-measure of 79.5% and with ACNet-B3 achieves the F-measure of 80.8%. Especially, when
using ACNet-B3, the performance surpasses most of the counterparts, Notably, we can find
that the F-measure of our model with ACNet-B3 is 2.8% higher than PSENet [45], which was
published on CVPR 2019.

On Total-Text, similar conclusions can be obtained. Without external data pre-training, our
model with ACNet-B0 not only surpasses the PSENet [45] in F-measure (79.7%) but also
leads in speed (5.2 FPS). Another model with ACNet-B3 outperforms the previous state-of-
the-art method by 80.9%.



The performance on CTW 1500 and Total-Text demonstrates the solid superiority of our
method to detect arbitrary-shaped text instances. We illustrate several detection results in
Figs. 4 and 5. It is clearly demonstrated that our method can elegantly distinguish complex
curve text instances.

Oriented text datasets detection We evaluate our method on the ICDAR 2015 to test its
ability for oriented text detection. Same as previous experiments, we adopt the ACNet-B0 and
ACNet-B3 as the backbone of our model. In the test stage, we scale the long side of images to
2240. Table 8 show the results that compares with other state-of-the-art methods. Our model
with ACNet-B0 achieves the F-measure of 81.5% at 2.8 FPS, both F-measure and speed
surpass the PSENet. When using ACNet-B3, although the speed is not as well as some
methods, but our model has a significant improvement in F-measure over 2.2%. Moreover,
we demonstrate some test illustrations in Fig. 6, our method can accurately detect the text
instances with arbitrary orientations.

Fig. 6 Some visualization results on ICDAR 2015

Table 9 The single-scale results on MSRA-TD500

Method Ext Venue MSRA-TD500

P R F FPS

SegLink [39] √ CVPR’17 86.0 70.0 77.0 8.9
EAST [54] – CVPR’17 87.3 67.4 76.1 13.2
TextSnake [27] √ ECCV’18 82.7 74.5 78.4 –
PixeLink [6] √ AAAI’18 83.0 73.2 77.8 3.0
RRD [22] √ CVPR’18 87.0 73.0 79.0 10
Ours (ACNet-B0) √ – 86.6 77.1 81.6 2.8
Ours (ACNet-B3) √ – 87.5 78.3 82.6 1.9

“P”,” R” and” F” represent the precision, recall and F-measure respectively. “Ext” indicates external data.
ACNet-B0 and ACNet-B3 indicates the backbone network used
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MultiLingual text datasets detection To prove the robustness of our method to multiple
languages and long straight, we test our model on MSRA-TD500 dataset. Considering the
fairness of the comparisons, we also resize the longer edge of the test images to 2240 as
ICDAR 2015. As shown in Table 9, our model achieves the F-measure of 81.6% and 82.6%
with different backbone. Compare with other method, our model has a slight improvement
indeed. Therefor, this proves that our method is robust for multiple languages and long straight
text detection and can indeed be deployed in complex natural scenarios. We also shown some
results in Fig. 7.

Fig. 7 Some visualization results on MSRA-TD500

Fig. 8 visualization of the feature maps and binary maps from the network
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4.6 Effectiveness of ACPEPNet
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To demonstrate the effectiveness of our proposed method, Fig. 8 provides a visualization of
the feature maps from the network. In the encoding stage, due to the application of the
Adaptive Convolution Unit, the ability of aggregate multi-scale spatial information is enhance-
ment, and the response of the text areas are more sensitive. In the decoding stage, PEFPN
allows texts with different scales to be effectively retained, which indicates that the text
features have not lost in the bottom-up path.

5 Conclusion

In this paper, we focus on two design principles in text detection tasks: 1) larger receptive field
2) finer low-level features and proposed an efficiency detector for arbitrary shapes text
detection. Firstly, we design a set of feature extraction networks with EfficientNet as the
baseline, named ACNet-B0 and ACNet-B3. These backbones are embedded with the Adaptive
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fusion, this design to shorten the distance of the low-level feature to the top-level while adding
more original features. The experiment on scene text detection datasets demonstrate the
superior performance of the previous methods. In the future, we will continue to explore the
optimization problem of text detection from real-time and learnable post-processing.
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