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Abstract
3D non-rigid shape similarity is a meaningful and challenging task in deformable shape
analysis. In this paper, we present a 3D non-rigid shape similarity measure framework based
on Laplace-Beltrami operator which achieves the state-of-the-art performance in shape anal-
ysis tasks. The presented framework is used to measure 3D non-rigid shape similarity by
calculating the Fréchet distance between the shape spectral distances distribution curves
extracting geometry and topology information of shapes. Here, the wave diffusion distance
within shape spectral distances is selected because it can describe the shape with high accu-
racy and does not depend on the time parameter. In addition, our framework is more flexible
and computationally efficient: it can be generalized to any distance distribution curves and
different distances between the shape distances distribution curves. Experiment results show
that the proposed framework can measure 3D non-rigid shape similarity accurately and
robustly on benchmarks and have good performance in 3D non-rigid shape retrieval.
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1 Introduction

The 3D non-rigid shape similarity measure is a fundamental issue in many fields [10],
including shape recognition [12], shape retrieval [9], shape classification [19, 26] and shape
registration [2, 15]. At the same time, 3D non-rigid shape similarity measure also pro-
vides the theoretical datum and practical base for three-dimensional visualization [47], face
recognition [31, 46], and bioinformatics [49]. Especially in recent years, the application of
shape similarity in 3D protein model analysis [6, 17] has achieved effective results. Simi-
larity analysis between protein models has become an important topic in protein analysis,
through which the structure and function of proteins can be revealed. The basic idea of 3D
non-rigid shape similarity is as follows: first, the 3D non-rigid shapes are mapped into the
feature space, and the local or global features of the 3D non-rigid shapes or combination of
them are selected to replace the non-rigid 3D shape to be desired; second, a cost function
or distance function is selected to measure the distance between features as a pair of 3D
non-rigid shape similarity. The process can be summarized as two key steps: (1) extracting
effective shape features; (2) selecting an appropriate similarity measure. Shape descriptors
can capture the effectively features to describe the semantics and geometry information of
shapes [21, 25, 38]. The efficient shape descriptors should invariant to structure-preserving
non-rigid deformations, particularly isometric, topological and sampling deformation. At
the same time, the similarity measure between the captured shape descriptors should be
easy to define and calculate. In our paper, we propose a novel global 3D non-rigid shape
descriptor with isometric invariance, topological robustness and sampling robustness, can
be used to define a 3D non-rigid shape similarity measure. The local features of 3D shapes
are integrated into our proposed global descriptor vector using the cumulative distribution
curve based on the spectral method.

1.1 Related work

In the rapidly growing field of computer graphics, computer vision and pattern recogni-
tion, a number of methods have been proposed so far for defining shape descriptors. Shape
descriptors generally include four types: based on shape surface features [7, 14, 29], on
shape statistical features [22, 30, 32], on shape topology [40, 43, 45], and those based on
spectral analysis methods [33, 39, 42]. Among the above four descriptors mentioned, only
descriptors based on spectral analysis can maintain isometric invariance, topological and
sampling robustness at the same time. Isometric transformation refers to the transformation
in which the shape keeps the length of any curve on the surface unchanged, such as bending
the arm. The invariance of the shape after isometric transformation is isometric invariance
[41]. Descriptors based on spectral analysis are called spectral shape descriptors and the
spectral distance between any two spectral descriptors is defined as the spectral distance
[34]. Spectral shape descriptors are derived from the eigenvalues λi and eigenfunctions φi

of the Laplace-Beltrami operator (LBO) on the surface of a Riemannian manifold [23].
The global point signature (GPS) is a global spectral shape descriptor that maps the 3D

non-rigid shape into an infinite-dimensional space called global point signature embedding
dominant [33, 39]. In infinite-dimensional space, GPS(x) at point x on M is defined as
follows: GPS(x) = (

φ1(x)√
λ1

,
φ2(x)√

λ2
, ..., φn(x)√

λn
). The heat kernel signature (HKS), which incor-

porates a spectral method for constructing a shape descriptor, was proposed by Sun et al.
[42]. Assume a heat source μ0(x) on the manifold; HKSt (x, y) defines the heat transferred
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from point x to point y at time t : HKSt (x, y) =
∞∑
i=0

e−λi tφi(x)φi(y). HKSt (x, x) is the

amount of heat retained at point x after time t : HKSt (x, x) =
∞∑
i=0

e−λi tφi(x)2. To take into

account both the local and global features of shapes, the biharmonic signature (BS) was
researched by [28]; the BS balances the local and global features of shapes by regulariz-
ing the eigenvalues of the LBO, BS(x) = (

φ1(x)
λ1

,
φ2(x)

λ2
, ..., φn(x)

λn
), BS does not depend on

the time parameter and overcomes the shortcomings of HKS relying on the time parame-
ter. However, most of the above spectral shape descriptors use low-pass filters, which filter
out high-frequency information when describing shape features, the wave kernel signature
(WKS) uses a bandpass filter to clearly separate different sets of frequencies on the shape
and allows for access to high-frequency information and does not rely on the time parame-
ter [5]. Thus, in our paper, we choose WKS to define a novel descriptor not only inheriting
the advantages of WKS but also meeting the requirements mentioned below.

After shape feature extraction, researchers wish to calculate the distance between shape
descriptors of a pair of shapes as shape similarity; and they need to ensure that the number
of sampling vertices are the same and to find all corresponding points of a pair of shapes.
This task is challenging for researchers to perform. A shape distance distribution is a kind of
descriptor that extracts shape geometry information and topology by defining metrics on the
shape surface. Osada et al. [32] applied statistical methods to select a suitable shape metric
function such as the Euclidean distance and calculated the distribution histogram of the
shape metric function without finding all corresponding points of the pair of shapes. Other
works [18, 27] improved on this developed method, using the geodesic distance distribution
[8, 22] as a shape descriptor to compare shape similarity. However, the geodesic distance
is not robust to topological changes. In particular, we calculate the wave diffusion distance
cumulative distribution function (can be abbreviated as wdd(M)) of WKS on M as a novel
shape descriptor, which has isometric variance, is robust to topology and sampling and
does not require the corresponding points to be found before calculating the similarity. We
compare our method to the method with Bronstein [11], who proposed the diffusion distance
distribution and commute-time distance distribution using 3D non-rigid shape recognition.

1.2 Contributions

By defining the wdd(M), we map shapes into a new space, which is called the shape feature
space. In this space, each shape is mapped to its cumulative distribution function value of
the wave diffusion distance. In addition, we define the shape as a continuous curve in shape
feature space. The similarity assessment is calculated by adjusting the similarity threshold
such that similar shapes are placed in the same category, and dissimilar shapes are placed in
different categories. Common similarity measures include the Manhattan distance (L1), the
Euclidean distance (L2), the Chebyshev distance (Linf ), correlation coefficient, and cosine
distance. In our study, we map shapes to a 1D feature space. The Fréchet distance achieves
effective results in terms of curve similarity calculations relative to other approaches; there-
fore, we calculate the Fréchet distance between the wdd(M) and wdd(N) and define this
result as the similarity measure of a pair of 3D non-rigid shapes M and N .

The contributions of our research are:

– We present a theoretical and computational framework for 3D non-rigid shape simi-
larity using the shape spectral distances distribution curves based on Laplace-Beltrami
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operator. The framework is applicable to various shape distance distributions of dif-
ferent shape descriptors. At the same time, the distance between those curves can be
selected flexibly, in this paper, we choose the Fréchet distance and researchers can
choose other distances flexibly according to their application requirements;

– We propose a new concise shape descriptor called the wave diffusion distance cumula-
tive distribution function curve (wdd(M)) and give the discrete calculation of wdd(M)

in detail, the local features of shapes are integrated into global wdd(M) curve using the
cumulative distribution curve (CDF) based on the spectral method. It not only has the
stability of global statistical method but also inherits the invariance properties of local
wave diffusion distance;

– We map the 3D non-rigid shapes into a 1D feature space, and transform the problem
of measuring 3D non-rigid shape similarity into a computation of distance between
the curves wdd(M) and wdd(N). Compared with other shape similarity measures,
the effectiveness and robustness of our method are shown through a large number of
detailed comparative experiments on four different types of public databases (SHREC
2011, TOSCA, Bosphorus and SCAPE) and our method performs well in 3D non-rigid
shape retrieval based on SHREC2015 database.

The remainder of this paper is organized as follows. In Section 2, we introduce the fun-
damentals and pipeline of our framework. In Section 3, we construct the feature space and
present the definition and discrete calculation of the wdd(M), discuss the invariance of the
wdd(M) in detail. In Section 4, we introduce the Fréchet distance and give the calculation
method of curve similarity to measure the 3D non-rigid shape similarity, and we also give
the calculation for some common distances. In Section 5, we show our experimental results.
Finally, we draw conclusions regarding our study in Section 6.

2 Fundamentals and pipeline

In this section, we introduce the pipeline of shape distance distributions for 3D non-rigid
shape similarity. Our method is based on spectral analysis theory; in mathematics, the spec-
tral analysis method is derived from the Laplace-Beltrami operator (LBO) on the surface of
a Riemannian manifold. The LBO is a well-known intrinsic operator that is decomposed by
spectral decomposition, the eigenfunction and eigenvalue of the LBO can be used in dif-
ferent spectral shape descriptors and spectral distances. By calculating the spectral distance
distributions of a pair of shapes, the global matching of a pair of shapes can be compared,
and a similarity result between a pair of 3D non-rigid shapes is obtained. This section first
gives the definition, the discrete calculation and spectral decomposition form of the LBO
and then gives the general framework of the shape spectral distance distribution for 3D
non-rigid shape similarity. Finally, the pseudo code of our method is given.

2.1 LBO

To effectively represent the intrinsic information and geometric features of the shape, we
consider the 3D non-rigid shape as a manifold M . Let M be a two-dimensional smooth
compact manifold with boundary equipped with a Riemannian metric d , and let (M, d)

be a metric space. For a compact Riemannian manifold M , we apply the spectral distance
method to define shape features, which is closely connected with the notion of LBO. The
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Laplace operator is a differential operator defined by the gradient and divergence of a C2

real-valued function f (x, y, z) in Euclidean space:

�f = ∇ · ∇f = ∇2f = ∂2f

∂x2
+ ∂2f

∂y2
+ ∂2f

∂z2
(1)

By equipping the Laplace operator with a Riemannian manifold metric, we obtain the LBO.
According to the definition of Riemannian manifold gradient and divergence, if g is the
metric tensor on M , G is the determinant of the matrix gij , then the LBO can be expressed
as [48]:

�f = ∇ · ∇f = 1√
G

n∑

i,j=1

gij ∂

∂xi
(
√

Ggij ∂f

∂xj
) (2)

Since the LBO is self-adjoint and semipositive definite, the LBO on M is decomposed into
the matrix product of eigenvalue and eigenfunction: �Mφi = λiφi , where λi is the i − th

eigenvalue, and φi is the corresponding eigenfunction . If the Neumann boundary condition
is used in a closed region then the first eigenvalue is 0, and the smallest nonzero eigenvalue
is λ2 (λ1 < λ2 < ...λi). The LBO can be analytically calculated for some geometrical shape
(e.g. rectangular or cylindrical). The LBO eigenfunctions are intrinsic to the manifold, and
the ones related to smaller eigenvalues correspond to smooth and slowly varying functions.
For numerical computation, the shape M can be represented by a finite set of points. In
discrete mathematics, the finite-dimensional discrete LBO is typically called the discrete
Laplace-Beltrami matrix. On a triangular mesh with a vertex number of n, the discrete LBO
at the vi of the vertex on mesh can be calculated:

LBO(f (vi)) =
n∑

j=1

ωij (f (vi) − f (vj )) (3)

Equation 3 represents a triangular surface sketch of a vertex vi , where f (vi) and f (vj )

denote the scalar function values defined on M , wij are weights; for vertex vi , the discrete
LBO can be calculated by [48].

2.2 The Wave Kernel Signature

For each point on a shape, a shape descriptor called the wave kernel signature (WKS) oper-
ator is defined by measuring the average probability distribution of quantum particles with
different energy levels. The evolution of the quantum particles is governed by the wave
function, which is obtained by solving the Schrȯdinger equation [5]:

∂φ

∂t
(x, t) = i�φ(x, t) (4)

The wave function expresses the oscillation of energy, where x is a point in a shape, � is
the LBO, and i is the imaginary number; the product of the LBO and i ensures that the
energy will not decay after oscillating at different frequencies. φ(x, t) is the wave function,
when t is 0, the expectation of the function φ(x, t) is E, and the probability distribution is

fE(λk). φ(x, t) can be calculated as φ(x, t) =
∞∑

k=0
eiλktφk(x)fE(λk), where |φ(x, t)|2 is

the probability distribution of the particles at point x. The time parameter t has no direct
effect on the probability distribution. If we consider only the energy parameters, we define
the WKS as a particle whose energy at point x is E and can be measured as the average
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probability WKS(x,E) = lim
T →∞

1
T

T∫

0
|φ(x, t)|2. Since the functions of eiλkt are orthogonal

for the L2 norm:

WKS(x,E) =
∞∑

k=0

φk(x)2fE(λk) (5)

To facilitate calculation, the upper formula is concretely expressed, and the detailed deriva-
tion process can be observed [5]. When eN is the energy scale parameter, eN = log(E),

λk is the k − th eigenvalue of LBO, σ is the variance, and Ce = (
∑

k

e
- (eN −log λk)2

2σ2 )−1 is the

regularized WKS function, the wave function WKS(x, eN) of the particle is given by

WKS(x, eN) = Ce

∑

k

φ2
k (x)e

- (eN −log λk)2

2σ2 (6)

In this function, the time parameter has been replaced by energy, which is a very useful
aspect; because the energy is directly related to the eigenvalues of the LBO.

2.3 Pipeline

In this paper, we calculate the Fréchet distance between the cumulative distribution function
curves of the shape spectral distances as a shape similarity measure. Figure 1 schemati-
cally describes the generic framework for measuring the similarity of a pair of 3D non-rigid
shapes described by the shape spectral distances distribution curves. This paper selects the
wave diffusion distance as an example to illustrate this framework in detail. What’s more,
this framework is also adapt to other shape distances. Given a pair of shapes, we can cap-
ture some features to describe the shape properties, and researchers can choose other shape
features according to their own need, such as GPS, HKS, etc. We can calculate the shape
distances between shape features of any two points on a shape and obtain the cumulative
distribution function curve of the shape distances. The shape distances distribution curve as
a 3D non-rigid shape similarity measure is shown in Algorithm 1. The specific procedure is
shown in the following steps:

Calculate 

Shape LBO

(Ref Eq.2&Eq.3)

Feature Space Construction

wdd(David)

wdd(Dog)

Calculate

Shape Similarity

(Ref Eq.20-Eq.23)

Input

3D Shape

David

Dog

LBO(David)

LBO(Dog)

Calculate Shape

Descriptor

(Ref Eq.5&Eq.6)

Calculate Shape

Distance

(Ref Eq.10-Eq.12)

Calculate Shape Distance

Distribution Curve

(Ref Eq.18&Eq.19)

WKS(David)

WKS(Dog)

Wave Diffusion

Distance

D(David)

Normalize

D*(David)

Wave Diffusion

Distance

D(Dog)

Normalize

D*(Dog)

Fig. 1 3D non-rigid shape similarity calculation framework based on the shape spectral distance distribution
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A. Input 3D shapes: The first step is to select a pair of 3D shapes. There are a variety
of 3D shape storage methods, and this paper deals with triangle mesh models; for
example, we wish to compare the similarities between a dog model and a man model
named David.

B. Calculate Shape LBO: For 3D non-rigid shape, its discretion format is triangular
mesh. The real-valued function f is defined on its surface. The LBO can be obtained
by calculating the divergence value of the gradient value of the real value function. For
the calculation method of LBO operator, please refer to (2) and (3).

C. Calculate Shape Descriptor: According to the spectral decomposition of the LBO, we can
obtain the eigenvalue and corresponding eigenfunction of the LBO. And a shape spec-
tral descriptor can be defined at each point of the shape based on the eigenvalue and cor-
responding eigenfunction of the LBO; for example, in our paper, we select wave kernel
signature. For the calculation method of shape descriptor, please refer to (5) and (6).

D. Calculate Shape Distance: The shape distance is a geometric quantity that char-
acterizes the differences of any two points in a shape and indirectly reflects the
characteristics of a shape. We calculate the shape distance of shape spectral descriptor
values at any two points in a shape; in our paper, we select the wave diffusion distance.
D. For the calculation method of shape distance, please refer to (10) to (12).

E. Calculate Shape distances distribution curve: According to the statistical method,
the cumulative distribution function curve of the shape spectral distances is calculated,
and the curve is taken as the feature of the 3D non-rigid shape, and we map the 3D
non-rigid shapes into the feature space. For the calculation method of shape distances
distribution curve, please refer to (18) and (19).

F. Calculate Shape Similarity: In the feature space, we measure the similarity of those
two curves wdd(M) and wdd(N), which describe the similarity of the corresponding
pair of 3D non-rigid shapes. There are many ways to measure the similarity of curves,
such as the variance and standard deviation of discrete curves. In this paper, we calcu-
late the Fréchet distance between two curves as a similarity measure of them. For the
calculation method of shape similarity, please refer to (20) to (23).
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3 Feature space construction

To simplify the 3D non-rigid shape into a 1D vector distance, we construct a feature space
equipment the wave kernel distance distribution curves. Building the feature space is chal-
lenging, as there is intertwined various 3D shapes and topology variability yielding the
complex feature parameters of multiple correlated intrinsic properties. The basic method of
constructing the feature space is capturing the features from original shapes,then combina-
tion the features of original shapes into a new low-dimensional space. The feature in the
feature space is the abstraction of original shapes. In this paper, we extract the wave ker-
nel distance distribution function curves as the shape feature based on the method of shape
distribution.

3.1 Spectral distance

The spectral distance is induced by the spectral shape descriptor defined on the surface of
the shape.

d2(x, y) =
N∑

i=0

f 2(λi)|φ(x) − φ(y)|2 (7)

Where f (λi) is the filter used for different spectral shape descriptors, the discretization of
the spectral distance on the triangular patches is:

d2(p, q) =
N∑

i=0

f 2(λi)(vpi − vqi)
2 (8)

So we define the distance between WKS values of two points in a shape is the wave diffusion
distance. Defining a metric space on the manifold M , the wave diffusion distance is given
by

dwks
2(x, y) = Ce

N→∞∑

i=1

e

- (eN −log λi )
2

2σ2
(φ(y) − φ(x))2 (9)

For numerical calculation, vpi and vqi represent the i−th eigenfunction of the LBO applied
to the vertices p and q, respectively. Therefore, wave diffusion distance can be calculated
as the following discrete value:

dwks
2(p, q) = Ce

N∑

i=1

e
- (eN −log λi )

2

2σ2 (vpi − vqi)
2 (10)

Assuming that there are NumM vertices on the manifold M (vertex number starting from
1), if we seek the wave diffusion distance for any two vertices on M , the wave diffusion
distance matrix of the shape is an NumM ∗NumM symmetric matrix and the main diagonal
element is 0 ( dwks(x, x) = 0). The wave diffusion distance matrix DM is:

DM =

⎡

⎢
⎢
⎣

0 dwks(1, 2) . . . dwks(1, NumM)

dwks(2, 1) 0 . . . dwks(2, NumM)

. . .

dwks(NumM, 1) dwks(NumM, 2) . . . 0

⎤

⎥
⎥
⎦ (11)

If we use the distance matrix DM to calculate the shape similarity, the computational
complexity is very high, for example, when NumM is 10000, DM is a very large high-
dimensional matrix. Therefore, in the next section, we define the cumulative distribution
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function curve of the distance matrix as a new shape descriptor based on the method put
forward by Osada et al. [32].

3.2 Shape distance distribution curve

Due to the different sizes and styles of shapes, the cumulative distribution function curves
of the wave diffusion distance of different shapes are also different. So we first normalize
the distance before calculating the shape distance distribution curve.

3.2.1 Normalizing the distance matrix

To compare the similarities of different types of shapes and cluster the same type of shapes,
we normalize the distance. Normalizing the data can not only improve the calculation accu-
racy, but also ensure the reliability of the similarity calculation. In our study, we use Z-score
normalization, where μDM

is the mean wave diffusion distance of M and σDM
is the stan-

dard deviation of the wave diffusion distance of M , d∗
wks(x, y) denotes the wave diffusion

distance between x and y on M after normalization

d∗
wks(x, y) = dwks(x, y) − μDM

σDM

(12)

We normalize the distance matrix and remove the diagonal elements in the matrix as set D∗
follows:

D∗ = { d∗
wks(1, 1), d∗

wks(1, 2), d∗
wks(x, y), ..., d∗

wks((NumM,NumM)}. (13)

3.2.2 The wave diffusion distance distribution

For any shapes, δ is the distance threshold (the threshold is divided by the difference of
the distance and the number of frequency histograms, as given in (15)), μ is a norm metric
defined in M , and χ is the indicator function. Let the minimum value of D∗ is D∗

min, the
maximum value is D∗

max , and the interval [D∗
min,D

∗
max] is divided into I segments. To keep

the frequency positive, we shift the coordinate axis to D∗
min to eliminate negative values

caused by normalization. Therefore, the frequency histogram can be defined as

pM(i) =
I+1∫

1

χ((i−1)δ+D∗
min)<d∗

wks (x,y)≤(iδ+D∗
min

)dμ(x)dμ(y) (14)

δ = D∗
max − D∗

min

I
(15)

pM(i) defined this way is the measure of pairs of points with their distance no larger than
D∗

min + iδ and larger than D∗
min + (i − 1)δ. In probability theory and statistics, the

cumulative distribution function (CDF) is an integral of the probability density function
(PDF), which is used to fully specify the probability distribution of random variables. For a
manifold M , the CDF of a wave diffusion distance FM(δ) is calculated by

fM(i) = pM(i)

NumM ∗ (NumM − 1)
(16)

FM(i) =
I+1∫

1

fM(δ)dδ (17)

623



Multimedia Tools and Applications (2021) 80:615–640

The total number of D∗ is NumM ∗(NumM −1), where fM(i) is the PDF of wave diffusion
distance on M . By integrating fM(i), we obtain FM(i), and FM(i) defined this way is the
cumulative probability of pairs of points with distance not larger no larger than D∗

min + iδ.
In this paper, we take the CDF of wave diffusion distance on M as a new shape descriptor
and call it wave diffusion distance cumulative distribution function curve wdd(M).

3.2.3 Discrete computing of wdd (M )

Given the wave diffusion distance set D∗, for any wave diffusion distances after normaliza-
tion d∗

wks(x, y), δ is the distance threshold, and the discretization calculation of frequency
histogram for D∗ is:

pM(i) = num(D∗
L∩D∗

R)

NumM∗(NumM−1)
, 1 ≤ i ≤ NumM

D∗
L = {d∗

wks(x, y)|d∗
wks(x, y) − ((i − 1)δ + D∗

min) > 0, d∗
wks(x, y) ∈ D∗};

D∗
R = {d∗

wks(x, y)|(iδ + D∗
min) − d∗

wks(x, y) ≥ 0, d∗
wks(x, y) ∈ D∗}

(18)

Because the distance has been normalized, in Equation 12, it is necessary to add the trans-
lation value D∗

min, where num(D∗
L ∩ D∗

R) is the number of D∗
L ∩ D∗

R , D∗
L represents the

subset of D∗ for which d∗
wks(x, y) is larger than (i − 1)δ + D∗

min, and D∗
R represents the

subset of D∗ for which d∗
wks(x, y) is smaller than or equal to iδ + D∗

min. Because δ is the
distance threshold for any d∗

wks(x, y), the cumulative distribution function of d∗
wks(x, y) can

be calculated as discrete:

FM(i) =
I+1∑

i=1

fM(i), (19)

3.3 Invariance of wdd (M )

The framework we propose is very versatile, making it easy for researchers to choose different
filter functions. At the same time, the spectral distance cumulative distribution function inherits
the advantages of different spectral descriptors and has good invariances under different trans-
formation. According to this principle, the wdd(M) as a linear shape descriptor, inherits the
beneficial features of the wave kernel signature, which has the following characteristics:

Isometric invariance: The wave diffusion distance has many advantages, among which
is isometric invariance; this means that the wave diffusion distance is an intrinsic property
of the manifold. Therefore, if we calculate the wdd(M) before and after the isometric
change of the shape separately, the theoretical wdd(M) remains unchanged. In general,
we use the first 100 eigenvalues and eigenfunctions in the discrete computation of the
wave diffusion distance. At the same time, to improve the computational efficiency, we
choose 100 discrete points (namely I=99 in the Equation 15) in the wdd(M) to calculate
the shape similarity. Therefore, in practical experiments, the discrete wdd(M) is similar
to the theoretical wdd(M).

Topological robustness: In many real scenarios, the shape not only undergoes isometric
deformation but aso suffer from “topological noise”. WKS uses a bandpass filter for
higher stability. Due to the high robustness of the wave diffusion distance to topological
changes, the wdd(M) is also robust to topological changes, which is one of the reasons
we chose the distribution of the wave diffusion distance as the descriptor.

Sampling robustness: For the shape M , if the vertices of the triangular mesh model of M

are resampled (upsampling, downsampling), including upsampling and downsampling,
the resampled wdd(M) is very close to the original wdd(M). Because the wdd(M) is a
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cumulative distribution curve based on statistical ideas, the number of samples does not
affect the shape of the distribution curve.

4 Shape similarity

There are many methods to calculate the similarity of curves, and the most commonly used
methods are the Fréchet distance [1] and Hausdorff distance [4]. The Fréchet distance is
a similarity measurement between curves that was introduced by Fréchet; this measure is
typically explained as the relationship between a person and a dog connected by a leash
walking along the two curves and trying to keep the leash as short as possible. The Hausdorff
distance is a measure between two sets. Unfortunately, the Hausdorff distance considers
only each point in a group without considering how the same group of points interact.

Frédist distance [1]: Let the binary group (S, d) be a metric space, where d is the
metric function on S. Let A and B are two continous curves on S, A : [0, 1] → S, B :
[0, 1] → S, α and β are two reparameterization functions of the unit interval [0,1], namely
α : [0, 1] → S, β : [0, 1] → S. Set t be the time parameter, at time t , the sampling point on
curve A is A(α(t)), and the sampling point on curve B is B(β(t)). So the Fréchet distance
FD(A, B) of curve A and B is defined as:

FD(A,B) = inf max
α,β,t∈[0,1]

{
d(A(α(t)), B(β(t)))

}
(20)

In this paper, let the wdd(M): [0, 1] → S be a continuous, open curve representing a 3D
shape, the time parameter t is a constant value, so it is omitted in the calculation later. We
calculate the Fréchet distance between two curves wdd(M) and wdd(N) as the similarity
measure of a pair of 3D shapes DFrédist (M,N):

DFrédist (M,N) = FD(wdd(M),wdd(N))

= inf max
i∈[1,I+1]

{
(d(FM(i), FN(i))

} (21)

inf is the infimum. In order to calculate the discrete Fréchet distance [16], let wdd(M)

and wdd(N) be polygonal curves, wdd (M) = (u1, ..., up) and wdd (N) = (v1, ..., vq). A
coupling L between wdd (M) and wdd (N) is a sequence:

‖L‖ = max
i∈[1,I+1]

d(ui, vi) (22)

Given polygonal curves wdd(M) and wdd(N), their discrete Fr’echet distance is defined to be:

FD(wdd(M), wdd(N))=min
{‖L‖ | L is a coupling between wdd(M) and wdd(N)

}

(23)
The Fréchet distance satisfies the following properties:

– Nonnegativity: FD(M,N) >= 0
– Nullity: FD(M, N) = 0 if and only if M = N

– Symmetry: FD(M,N)= FD(N,M)

– Triangle inequality: FD(M, Q) + FD(Q,N) > FD(M, N)

Many classic distances have been studied, both in machine learning and shape analysis
and there are many ways to calculate the shape similarity, as shown in Table 1. The list of
distances between wdd(M) and wdd(N) are provided in Table 1 will be used in Section 5.
Since the discrete computation of Fréchet distance and Hausdorff distance choosing the
Euclidean distance, this article no longer compares Euclidean distances.
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Table 1 Other distance calculation methods

Distance Calculation formula

L1 Distance (Manhattan
distance)

DL1 (M,N) =
I+1∑

i=1
|FM(i, δ) − FN(i, δ)|

Linf Distance (Chebyshev
distance)

DLinf (M,N) = max
i

|FM(i, δ) − FN(i, δ)|

Hausdorff distance Dhausdroff(M,N) =
I+1∑

1
max (d(FM(i, δ), FN (i, δ), d(FN(i, δ), FM(i, δ))

Correlation distance Dcorr(M,N) =
∑

m

∑

n
(FM(i,δ)mn−FM(i,δ))(FN (i,δ)mn−FN (i,δ))

√

(
∑

m

∑

n
(FM(i,δ)mn−FM(i,δ)

2
)(

∑

m

∑

n
(FN (i,δ)mn−FN (i,δ)

2
)

Cosine Distance Dcos ine(M,N) =
I+1∑

i=1
FM(i,δ)FN (i,δ)

√
I+1∑

i=1
FM(i,δ)2

√
I+1∑

i=1
FN (i,δ)2

5 Experiments

We perform several experiments on 64-bit 32G memory, Win10 system Matlab2015 based
on the query sets of SHREC 2011 database, SCAPE database [3], Bosphorus database [50],
the TOSCA high-resolution database [13] and SHREC 2015 database [35]. The query sets
of SHREC 2011 include 13 shape classes. For each shape, transformations are split into
12 classes (isometric, topology, holes, scaling, noise, missing parts, sampling, and so on).
In each class, the transformation appears in five different strength levels. This database
provides the robustness benchmark for 3D non-rigid shape matching/retrieval algorithms.
SCAPE is a 3D non-rigid human database with realistic muscle deformation; the database
contains 71 registered meshes of a particular person in different poses. The Bosphorus
Database is intended for research on 3D and 2D human face processing tasks including
expression recognition, facial action unit detection, facial action unit intensity estima-
tion, face recognition under adverse conditions, deformable face modeling, and 3D face
reconstruction. There are 105 subjects and 4666 faces in the Bosphorus database. TOSCA
high-resolution database contains a total of 80 objects with a variety of poses, including
11 cats, 9 dogs, 3 wolves, 8 horses, 6 horses, 4 gorillas, 12 females, and 2 different male
images; the typical vertex count is approximately 50000. SHREC 2015 contains a training
and testing sets (there are 10 different types of models in each set, 10 models in each class,
totaling 100 models.) and is made by combining a selection of models from the SHREC’11
non-rigid dataset [24], and the SHREC’14 non-rigid humans dataset [36]; some of the mod-
els contain holes, such as eyes and mouth, and some contain self intersecting triangles.
Selected shapes of the above databases are shown in Fig. 2.

5.1 Experimental set

We perform several experiments to compare the robustness, invariance and high efficiency
of wdd(M) and other three spectral distance CDF curves, including commute-time distance
(cd(M)) between GPS(x), diffusion distance (dd(M)) between HKS(x), biharmonic
distance (bd(M)) between BS(x) and wave diffusion distance (wdd(M)).
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(b) Some shapes from TOSCA high-resolution

(d) Some shapes from SCAPE

(a) Some shapes from SHREC 2011

Null             Isometric               Noise              Sampling           Holes              Topology           

Centuar0          Centuar1              David1            David2             Dog1                 Dog2           

(e) Some shapes from SHREC 2015

Gorilla 3             Gorilla 9               Pliers 3             Pliers 7              Male 1             Male 6        

(c) Some shapes from Bosphorus

bs104NN0   bs104 PRSD0    bs104EHAPPY    bs104UFAU2    bs104LFAU12    bs104LFAU27           

Fig. 2 Shapes from SHREC 2011, TOSCA 2010 high-resolution, Bosphorus, SCAPE and SHREC 2015

First, we select the query sets of SHREC 2011 database including isometric, sampling,
topology, holes, noise and scale which is suitable for comprehensive comparison of differ-
ent distance distribution curves performance. Second, we select the SCAPE database which
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focus on human with realistic muscle deformation to compare in detail the topological
robustness of wdd(M) and other distance distribution curves. Third, selected six expres-
sions collected by all 105 subjects based on Bosphorus database to show the robustness of
the proposed operator wdd(M) to approximately isometric deformations (general expres-
sions) and non isometric deformations (laughter, etc.). Last, we select the TOSCA database
which includes various isometric transformations of different shapes to show the isomet-
ric invariance and sampling robustness of different spectral distance distribution curves in
detail; and compare the DVI with different shape similarities which are combined by dif-
ferent spectral distance distributions and different distances; the results are shown seen in
Figs. 2 to 7, Tables 2 to 4. Fourth, we conduct non-rigid 3d shape retrieval on SHREC2015
database to show the high efficiency of wdd(M), the results are shown seen in Fig. 8 and
Table 5.

5.2 Experimental results

5.2.1 SHREC 2011 results

Table 2 shows the different robustness of shape similarity by calculating the Euclidean dis-
tance between the original shape and deformable shapes (including isometric, sampling,

Table 2 Robustness of shape similarity using the spectral shape distance CDF curves applied on SHREC
2011 shapes

Isometry Resampling Topological Scale Noise

Stallion

cd(M) 0.0248 0.2057 0.0458 0.0248 0.0105
dd(M) 0.0548 1.7275 0.0560 0.3343 0.1615

bd(M) 1.1186 0.3146 0.8359 0.8012 0.2296

wdd(M) 0.0213 0.1496 0.0201 0.0213 0.1972

Cat

cd(M) 0.0425 0.0423 0.0492 0.0444 0.0441

dd(M) 0.1237 0.7637 0.1348 0.7637 0.1875

bd(M) 0.2991 0.1735 0.4393 0.3222 0.2515

wdd(M) 0.0389 0.0301 0.0382 0.0389 0.0437
Horse

cd(M) 0.1002 0.0664 0.8340 0.0644 0.0644

dd(M) 0.1492 0.2627 0.0560 0.7468 0.1937

bd(M) 0.3639 0.7295 0.0610 0.6132 0.4836

wdd(M) 0.0638 0.0300 0.0483 0.0484 0.0484
Dog

cd(M) 0.0381 0.0550 0.1927 0.0387 0.0339

dd(M) 1.9607 0.3882 1.8384 1.9822 0.4327

bd(M) 0.1057 0.0707 0.1217 0.6847 0.1627

wdd(M) 0.0222 0.0506 0.0302 0.0221 0.0236
Lion

cd(M) 0.1374 0.1700 0.1739 0.0374 0.0324
dd(M) 0.3774 0.1503 0.0960 0.7772 0.3339
bd(M) 0.2689 0.2859 0.2463 1.8912 0.0467
wdd(M) 0.0977 0.1457 0.0564 0.0044 0.0129
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topology, scale, and noise) by using the four spectral shape distance CDF curves based
on SHREC 2011 (we randomly choose five examples: stallion, cat, horse, dog and lion).
In the Table 2, the minimum values of the Euclidean distance between the original shape
and the changed shapes by using the four spectral shape distance CDF curves are bold.
Among the most deformations, wdd(M) has good robutness than other spectral shape dis-
tance. For noise, the wdd(M) can achieve a better robustness in most instances, cd(M) is
second only to MD and those value is very close. As seen in the Table 2, the robutness
of wdd(Stallion) is weaker than that of cd(Stallion) and because there are individual dif-
ferences in SHREC2011. And we can see from the Fig. 3, the wdd(stallion) curve is not
completely close to wdd(stallion with noise) curve, the model show that the noise deforma-
tion of the stallion is relatively large. We found that most of the results (including isometric,
sampling, topology) by using the wdd(M) are smallest. This shows that the wdd(M)

is more robust than other three spectral shape distances CDF curves, particularly in the
isometric, resampling, topological and scale deformations.

5.2.2 SCAPE results

To compare the topological robustness of the four spectral distance CDF curves in detail, we
first calculate the Fréchet distances of the 71 shapes and the benchmark shape by using the
four spectral distance CDF curves and clustered the 71 shapes. Then the Fréchet distance
between any two shapes was calculated as the distance matrix and the DVI [20] of the cluster
of the four spectral CDF curves were calculated. In our paper, we choose DVI to evaluate
the classification accuracy of using different similarity methods:

DV I =
min

0<m �=n<K

{

min∀xi∈�m,xj ∈�n

{∥∥xi − xj

∥
∥}

}

max
0<m≤K

max∀xi ,xj ∈�m

{∥
∥xi − xj

∥
∥
} (24)

�m and �n are the m−th and n−th clusters, K is the number of clusters, DVI characterizes
the minimum value of the smallest distance between any two clusters (between classes)
divided by the maximum value of the largest distance of the two points in any cluster (within

Stallion with noise

Stallion 

Fig. 3 The CDF curves of wdd(stallion) and wdd(stallion with noise)
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DVI =1.0882 DVI =1.3470 DVI =1.0428 DVI =1.5677

(a) cd(M) (c) bd(M)(b) dd(M) (d) wdd(M)

Fig. 4 Clustering results of the Fréchet distances by using four different shape spectral distance curves on
the SCAPE database

classes). The larger the DVI, the larger the distance between the classes of the shape and the
smaller the distance within the class. Therefore, we hope that the DVI of the selected shape
similarity is as large as possible.

Figure 4 shows the clustering results and DVI results. The clustering results of wdd(M)

are more concentrated, indicating that the topological robustness of wdd(M) is higher than
the other three spectral distance distribution curves. DVI of wdd(M) is the biggest one
among the four shape spectral distance CDF curves, this shows that when using wdd(M)

to describe the shape, the distance within the class is small, and wdd(M) has strong
topological robustness.

5.2.3 Bosphorus results

After verify the isometric, resampling, topological, scale and noise robustness of four CDF
curves, we focus on show the robustness of wdd(M) to approximately isometric defor-
mations (different expressions) based on Bosphorus database. There are 105 subjects with
different expressions in the Bosphorus database, but not all of them have the same expres-
sions. Some expressions are only collected by some subjects, such as fear, anger, disgust,
etc. In order to compare the robustness of different expressions of 105 subjects(bs001-
bs104), we selected six expressions collected by all 105 subjects for the experiment. We
transform the model format(.bnt to .txt), encapsulate it into triangle mesh structure (.obj),
remove the self intersection inside the model, denoise and manifold it. Finally, we get 630
mesh models as experimental models. We calculate the wdd(M) robustness of five expres-
sions and the initial model (bs***NN0 models). Last, we give the violin plot for wdd(M)

robustness of five expressions.
Table 3 shows the robustness of wdd(M) by calculating the euclidean distance between

the original model (NN0 models) and five models with different expressions (including
EHAPPY, PRSD0, UFAU, LFAU12, LFAU27) based on Bosphorus database. From the
Table 3, we can see that the wdd(M) has strong robustness to approximate isometric
transformation (different expression changes of 3D face).

In order to clearly see the distribution of the robustness of five expressions of 105 sub-
jects, we draw the violin plot according to the data in Table 3. Violin plot is used to display
data distribution and its probability density, which combines the characteristics of box plot
and density plot. The middle blue line is the median, and the blue line running through
the violin plotting represents the range from the minimum value to the maximum value.
Figure 5 shows the violin plotting for five expressions in Bosphorus database.
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Table 3 The robustness of five expression models of 105 subjects and their original models based on
Bosphorus database

Number PRSD0 EHAPPY UFAU LFAU12 LFAU27

bs000 0.3375 1.0109 0.3830 1.2526 0.7811

bs001 0.5614 0.9842 1.4449 1.7643 1.7121

bs002 1.2365 1.8991 2.0249 1.5114 1.7927

bs003 1.0178 0.9647 0.4123 1.1876 2.0836

bs004 1.1283 0.7630 1.5276 1.6340 1.0152

bs005 0.3644 1.2812 0.3545 1.7715 2.1569

bs006 1.3049 1.5499 1.1470 1.8776 2.2089

bs007 0.8703 0.9442 1.2340 0.7230 1.2666

bs008 0.8332 1.4566 1.3914 1.1876 0.8067

bs009 0.0848 2.2753 0.2697 0.9836 1.7212

bs010 1.9760 0.9202 0.6132 0.3427 0.7617

bs011 0.5055 1.9124 0.4341 0.6571 0.7851

bs012 2.4535 0.2215 2.3517 0.5038 0.0580

bs013 0.1037 1.7885 0.3135 1.9896 1.7535

bs014 0.9761 1.8530 1.5907 1.3514 0.4579

bs015 1.1668 0.3084 0.8190 1.6123 0.9803

bs016 0.3136 0.3399 1.7087 1.3419 1.2797

bs017 0.6200 1.1824 0.9916 1.5060 1.1378

bs018 1.4302 0.3816 0.5163 0.3263 0.9084

bs019 0.6802 1.8243 1.0559 1.6401 0.4080

bs020 1.1370 1.7477 0.8435 1.2157 0.7401

bs021 1.5592 1.0770 2.0499 1.9002 0.3858

bs022 1.4758 1.0160 1.8121 0.8358 2.0298

bs023 2.2112 2.2407 0.8850 2.0816 2.2617

bs024 2.1579 2.2433 1.8517 1.8988 2.4325

bs025 1.2869 0.7774 1.7634 0.8505 1.1198

bs026 0.6290 2.0554 0.9554 2.1656 1.6579

bs027 1.0193 0.3464 0.6421 0.5881 0.5023

bs028 1.0898 1.4320 2.1087 2.0505 0.5238

bs029 1.7504 1.6763 1.9464 0.5818 0.4212

bs030 1.9399 1.3892 1.2688 1.5595 1.2042

bs031 1.0322 1.4013 0.3631 1.1401 0.8065

bs032 0.8200 1.5629 1.1514 0.9131 0.9275

bs033 1.7148 2.1115 0.4323 0.6214 0.3457

bs034 0.6373 1.1795 1.2351 0.2867 1.4123

bs035 0.2186 1.9501 1.7798 0.9564 0.7696

bs036 2.0885 2.5984 1.9293 2.6081 2.2001

bs037 2.2164 2.3233 1.8597 2.4929 2.3253

bs038 0.9246 0.6471 2.0295 2.0242 1.3726

bs039 0.7701 0.6356 0.8943 0.7934 0.5316

bs040 1.6732 2.2930 1.6564 0.5699 1.7160

bs041 0.3087 0.6663 0.5655 0.5776 0.7737
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Table 3 (continued)

Number PRSD0 EHAPPY UFAU LFAU12 LFAU27

bs042 0.3694 0.7148 0.6510 0.5840 1.6664

bs043 1.1352 1.2473 1.3013 1.0332 1.3835

bs044 2.0736 0.7531 1.3404 0.5140 1.8122

bs045 2.1719 1.7100 1.6755 2.1877 0.5381

bs046 0.3945 0.3650 0.9708 0.5976 0.7442

bs047 0.4720 0.8228 1.0551 1.4094 1.9844

bs048 1.3323 2.1031 0.4959 0.7398 1.5307

bs049 1.4380 0.7093 1.0776 1.2166 0.5712

bs050 0.5074 1.5612 1.3309 0.6712 1.2119

bs051 0.9297 1.6394 0.9631 0.6245 1.9657

bs052 1.4161 1.7460 0.9088 1.8506 1.7243

bs053 1.0331 1.0490 0.6569 1.0889 0.5197

bs054 1.3442 2.1587 1.4034 1.3151 0.4441

bs055 0.3421 1.6726 0.3566 0.6752 0.5960

bs056 1.1174 0.4450 0.5873 0.7918 1.7136

bs057 0.8784 0.6507 0.3373 1.3424 1.0872

bs058 1.2474 0.7724 2.1526 0.8255 1.1503

bs059 0.3273 1.2867 0.6816 0.9286 2.0416

bs060 0.2793 1.1351 1.4158 2.5519 0.1389

bs061 0.4601 2.0549 1.6863 1.1285 1.5519

bs062 0.4188 2.0830 0.3229 1.1551 2.0625

bs063 0.5468 1.5707 1.3376 0.9891 0.8334

bs064 1.5542 1.4047 0.7604 0.9905 0.8793

bs065 0.5282 1.9829 1.5649 0.5177 1.7021

bs066 0.9178 0.3489 1.2582 0.7185 1.0824

bs067 0.7017 0.1717 0.8446 1.8616 0.6728

bs068 0.2101 1.8654 2.4359 0.7856 0.0514

bs069 0.3324 0.6807 0.6556 1.7069 0.3304

bs070 0.8564 0.2470 0.0246 0.5565 1.1269

bs071 1.6758 1.6020 2.0231 1.8737 2.0413

bs072 1.9384 0.3554 0.8099 1.5307 0.4831

bs073 1.2912 0.2856 0.3216 1.1236 1.2834

bs074 1.1356 0.6647 0.3012 1.6417 1.3291

bs075 1.4239 1.6610 2.2215 1.4040 2.0455

bs076 0.6331 0.8838 0.9171 0.4207 0.5282

bs077 0.6640 1.7039 1.8046 1.0312 1.4544

bs078 1.5652 1.6572 1.9155 0.9349 0.4024

bs079 1.4372 2.0929 0.7956 1.2854 0.5913

bs080 1.6711 0.3722 0.8012 0.7822 1.6097

bs081 1.5643 1.6988 0.6451 0.5232 0.3230

bs082 2.1507 0.1305 0.0215 0.9213 2.3316

bs083 2.2241 2.1666 1.8416 2.1604 2.2391
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Table 3 (continued)

Number PRSD0 EHAPPY UFAU LFAU12 LFAU27

bs084 0.4015 1.9520 0.9698 0.5760 1.6126

bs085 0.9847 1.6541 0.4669 1.0516 0.2731

bs086 0.7411 0.6670 0.6345 0.4699 1.9707

bs087 0.3885 0.7433 0.3435 0.8426 0.5128

bs088 0.2749 2.0145 0.3565 0.8771 0.9264

bs089 0.3281 1.5357 0.3264 0.8160 0.3926

bs090 1.9023 1.4101 1.3074 2.1294 1.5991

bs091 0.4200 1.3687 0.4091 0.3165 0.4378

bs092 0.3329 1.4859 1.7678 0.3883 1.2126

bs093 1.0718 0.2856 1.2466 1.1419 0.4726

bs094 0.3222 1.6802 0.4261 1.5221 0.3981

bs095 0.8267 0.5860 1.1744 0.5176 0.2835

bs096 1.6957 0.4131 1.0512 0.7088 0.3951

bs097 0.5594 1.7515 0.5880 1.8875 0.9688

bs098 0.8345 1.0458 1.6876 0.5958 0.7859

bs099 0.4177 1.6664 0.7729 1.3214 0.6934

bs100 0.3158 1.5941 1.4529 0.9650 2.3890

bs101 0.2979 0.8893 0.8619 1.4278 1.8490

bs102 2.0919 2.0369 1.2461 1.6107 0.5567

bs103 0.3500 0.2990 0.3994 0.4252 0.8008

bs104 1.7964 1.8974 0.6864 0.8684 0.3257

Average 1.0256 1.2803 1.0805 1.1555 1.1350

Maximum 2.4535 2.5984 2.4359 2.6081 2.4325

Minimum 0.0848 0.1305 0.0215 0.2867 0.0514

From the Table 3 and Fig. 5, The median and average values of EHAPPY models are
the largest among the five expression models, which indicates that EHAPPY models have
relatively large deformation. At the same time, the median value of EHAPPY models is
greater than the average value, indicating that its overall distribution is in an up (left) skew;
unlike EHAPPY models, the median value of other four groups of expression models is less
than the average value, indicating that its overall distribution is in a down (right) skew. This
shows that the robustness of 105 EHAPPY models is slightly lower than that of the other
four expression models, and this conclusion is also consistent with the property of spectral
distance. In a word, the overall data above show that wdd(M) is robust to approximately
isometric changes.

5.2.4 TOSCA results

In order to compare the sampling robustness and isometric invariance of different shape
similarities and quick calculation, we downsample the vertices of shapes of the TOSCA
database to 50 percent of original shapes and performed several experiments with these
based on TOSCA database. We first display CDF curves of wave diffusion distance of
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Fig. 5 The violin plot for five expressions in Bosphorus database

shapes from the TOSCA database (the result is shown in Fig. 6). Second, we use a ther-
modynamic diagram to demonstrate the results of shape similarity: the more similar two
shapes are, the blacker the color; the more dissimilar, the redder the color. When similarity
equals the mean value, the color is white. The aim is that the color of each class in the ther-
modynamic diagram is as distinct as possible and that the color differences between classes
are as large as possible to show that the similarity measure method can measure different
classes of shapes (the result is shown in Fig. 7). Last, we calculate the DVI for different
shape similarities (the result is shown in Table 4).

Figure 6 displays CDF curves of wave diffusion distance distributions of shapes from the
TOSCA database. As shown in Fig. 6, the CDF curves of the isometric shapes can be easily
clustered and curve separation is large for different types of shapes, but David and Michael
are both models taken from humans; thus, their curves are very close. Researchers can use
CDF curves efficiently to calculate the similarity.

Figure 7 displays different shape similarities of four spectral distance distribution CDF
curves of shapes from the TOSCA database (the more similar two shapes are, the blacker
the color; the more dissimilar, the redder the color. When similarity equals the mean value,
the color is white.). We use six similarity measures to measure the similarity of six different
equidistant shapes: david, dog, cat, horse, centaur, and michael. In this experiment, we do
not need to consider how the same group of points interact, so Hausdorff distance can obtain
the same discrete results as the Fréchet distance. Figure 7a shows that using the cd(M), it is
difficult to separate the six types of shapes. The distance between different classes is small.
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Fig. 6 Wave diffusion distance distribution CDF and PDF of selected TOSCA database shapes

Figure 7b shows using the dd(M), six kinds of similarities can well distinguish six kinds of
shape. In addition, the Fréchet distance and Hausdorff distance perform better than the other
four kinds of similarity measure. We find that using the Fréchet distance and Hausdorff dis-
tance, the DV I of each type is higher, and we obtain the best performance. Figure 7c shows
using the bd(M), the six kinds of measures cannot distinguish the six kinds of shapes well.
Here, the Linf distance performance is the worst, the results of the other five shape mea-
sures are consistent. Figure 7d shows that using the wdd(M), all six kinds of measures can
accurately distinguish six kinds of shapes. Fréchet distance, Hausdorff distance, correlation
distance, and cosine distance perform better than the other two kinds of similarity measure.
The above analysis indicates that in the four spectral distance distributions, the overall per-
formance of the wave diffusion distance distribution is better than the other distances, and
the Fréchet distance and Hausdorff distance are better than the other four types of similarity
measure.

Further we calculate the DVI of different shape similarities. As shown in Table 4, when
wdd(M) is selected, the DVI of the six distances is relatively high, the DVI of the Fréchet
distance and the Hausdorff distance is the largest. As can be seen from the Table 4, the DVI
of the Linf distance is larger than the ones evaluated by cosine and correlation, because the
intra-class distance of the shape using the Linf distance is very small. At the same time,
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(a) cd(M) (b) dd(M)

Fréchet Distance Cosine Distance Correlation distance

L1 Distance Linf DistanceHausdoff Distance
(c) bd(M)

Fréchet Distance Cosine Distance Correlation distance

Linf DistanceHausdoff Distance
(d) wdd(M)
L1 Distance

Fréchet Distance Cosine Distance Correlation distance

L1 Distance Linf DistanceHausdoff Distance

Fréchet Distance Cosine Distance Correlation distance

Linf DistanceHausdoff Distance L1 Distance

Fig. 7 Shape similarities of 6 shape classes using different similarity measure

DVI of bd(M) are relatively small, and this result is also consistent with section 5.2.1, the
isometric invariance of bd(M) is relatively worse than other spectral distance CDF values.

5.2.5 SHREC 2015 retrieval results

After showing the robustness, invariance of wdd(M) we proposed by comparing to other
five distances between four spectral distance CDF curves, we conduct 3D shape retrieval
by our proposed shape similarity using wdd(M) and compare the effectiveness to some
retrieval methods including eleven different canonical forms using the CM-BOF method
given in paper [35, 37], which proposed SHREC 2015 database and gave the 3D non-
rigd shape retrial benchmark results on SHREC 2015. For canonical forms’ retrieval
performance analysis, we can refer to paper [35, 37].

Table 4 Dunn validity index of resampling the TOSCA shape similarity using different shape descriptors

Dunn Validity Index

Fréchet Cosine Correlation Hausdorff L1 Linf

cd(M) 0.3540 0.0746 0.0757 0.3540 0.3493 0.3580

dd(M) 0.4065 0.1701 0.2002 0.4065 0.4328 0.4573

bd(M) 0.3392 0.0713 0.0452 0.3392 0.3914 0.2392

wdd(M) 0.5290 0.2814 0.2235 0.5290 0.5249 0.3736
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Table 5 Retrieval accuracy on different methods using the NN, FT and ST

Methods NN FT ST

Original meshes 0.500 0.567 0.702

Class MDS 0.730 0.597 0.741

Fast MDS 0.660 0.59 0.718

Least-Squares MDS 0.750 0.694 0.829

Non-Metric MDS 0.770 0.687 0.811

GPS 0.720 0.556 0.697

Eucildean Random 0.540 0.64 0.783

Euclidean Normalised 0.610 0.673 0.796

Least Squares MDS B 0.660 0.662 0.788

Skeleton-Canonical(simplified meshes) 0.740 0.682 0.791

Skeleton-Canonical(full meshes) 0.770 0.714 0.824

Our methods 0.790 0.733 0.830

Table 5 shows the retrieval accuracy of our method and eleven different canonical forms
using the CM-BOF retrieval algorithm on three evaluation criteria: the nearest neighbour
(NN), first tier (FT), second tier (ST) [44]. The measurement ranges of the three different
evaluation criteria are 0 to 1. The higher the measurement, the better the performance of
the retrieval method. The bold numeric values show the highest performance. Among all

Fig. 8 Precision-Recall curve performance comparison on SHREC 2015 database
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the evaluation criteria, our method depicts the highest value and the table thus demonstrates
that search performance of our method is superior to the canonical forms.

Figure 8 shows the PR curves for our method and the CM-BOF retrieval algorithm on the
ten different sets of canonical forms. The precision-recall (PR) curves reflects the relation-
ship between precision and recall. The higher the curve is, the more effective the feature is.
Figure 8 shows that our method improved the precision for both low and high recall values,
indicating that our method is better than these canonical forms.

Both Table 5 and Fig. 8 show that our method is effective for non-rigid shapes because it
employs global statistics based on local feature(WKS) which describes the details of shapes.
Through conducting non-rigid 3D shape retrieval which is an application of shape similarity,
it is shown again that the method proposed in this paper has good performance.

5.3 Discussion

cd(M) curve can accurately reflect the context of all points of the shape information, but
its ability to describe the local characteristics is weak. The dd(M) curve is sensitive to time
parameters, so the local and global attributes of the shape cannot be represented at the same
time. The bd(M) curve balances the large-scale distance (reflecting the global property)
and the small-scale distance (reflecting the local property), but it lose some robustness. The
greatest advantage of wdd(M) is not interaction with time parameters; the wdd(M) uses a
band-pass filter that clearly separates the different sets of frequencies in the shape. At the
same time, the wdd(M) has multiscale characteristics by selecting different energy levels.
If the quantum particles with higher energy level are selected, the shorter the wavelength
distribution, the closer the distribution is to the shape point and the local characteristic of
the shape; in contrast, low-energy quantum particles reflect the global property of the shape.

6 Conclusions

We propose a framework for measuring the 3D non-rigid shapes similarity by combining the
geometric properties and statistical characteristics of shapes. In our method, we measure the
3D non-rigid shape similarity using shape spectral distance distribution curves. Our method
extends the invariance properties to non-rigid deformation and could not find the corre-
sponding vertices of shapes in advance. Compared to the framework proposed by Bronstein
[11], our framework is more ubiquitous for measuring the similarity of 3D non-rigid shapes,
which allows users to flexibly apply this framework according to their needs. In this paper,
we choose the wave diffusion distance within the spectral distances and experiment results
show the wave diffusion distance could describe the shape properties well and improve the
accuracy of shape similarity measure by calculating the Fréchet distance between wave dif-
fusion distance cumulative distribution function curves of shapes. At the same time, as an
application of shape similarity, our method performs well in 3D non-rigid shape retrieval.
Through this paper, we profound the theoretical significance and engineering practicality of
our method in 3D non-rigid shape similarity calculations.
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50. ÇeliktutanBerk GökberkBülent SankurLale Akarun ASAD (2008) Bosphorus database for 3d face
analysis. Biomet Ident Manage 1:47–56

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

640


	3D non-rigid shape similarity measure based on Fréchet distance between spectral distance distribution curve
	Abstract
	Introduction
	Related work
	Contributions

	Fundamentals and pipeline
	LBO
	The Wave Kernel Signature
	Pipeline

	Feature space construction
	Spectral distance
	Shape distance distribution curve
	Normalizing the distance matrix
	The wave diffusion distance distribution
	Discrete computing of wdd(M) 

	Invariance of wdd(M)

	Shape similarity
	Experiments
	Experimental set
	Experimental results
	SHREC 2011 results
	SCAPE results
	Bosphorus results
	TOSCA results
	SHREC 2015 retrieval results

	Discussion

	Conclusions
	References


