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Abstract
Packet loss and error propagation induced by it are significant causes of visual impairments in
video applications. Most of the existing video quality assessment models are developed at
frame or sequence level, which can not accurately describe the impact of packet loss on the
local regions in one frame. In this paper, we propose an error sensitivity model to evaluate the
impact of a single packet loss. We also make full use of the spatio-temporal correlation of the
video and analyze a set of features that directly impact the perceptual quality of videos, based
on the specific situation of video packet loss. With the aid of the support vector regression
(SVR), these features are used to predict the error sensitivity of the local region. The proposed
model is tested on six video sequences. Experimental results show that the proposed model
predicts sensitivity of videos to different packet loss cases with certain reasonable accuracy,
and provides good generalization ability, which turns out outperform the state-of-art image and
video quality assessment methods.

Keywords Packet loss . Spatial and temporal features . Error sensitivity . Regression

1 Introduction

With the development of video applications, video has become more and more important in
daily life. The demand for high quality video is still increasing, which means more capacity
and bandwidth are needed. Due to the unstable bandwidth and complex transmission

https://doi.org/10.1007/s11042-020-09407-2

* Ran Ma
maran@shu.edu.cn

1 School of Communication and Information Engineering, Shanghai University, 99 Shangda Road,
Baoshan District, Shanghai 200444, China

2 Shanghai Institute for Advanced Communication and Data Science, Shanghai University, 99 Shangda
Road, Baoshan District, Shanghai 200444, China

3 Global Big Data Technologies Centre, University of Technology Sydney, NSW, Sydney 2007,
Australia

Multimedia Tools and Applications (2020) 79:31913–31930

Published online: 25 August 2020
/

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-020-09407-2&domain=pdf
http://orcid.org/0000-0002-6181-1240
mailto:maran@shu.edu.cn


environment, packet loss often occurs in streaming video, resulting in the degradation of
perceived video quality. According to the characteristics of codec system, a frame subject to
packet loss may cause some impairments in the successive frames. Even in the same frame,
packet loss appearing in different regions (e.g., the regions with intense or slow movement),
causes the video quality degradation at different degrees [4, 33]. Therefore, how to accurately
measure the influence of packet loss faces challenges.

Many research works have been devoted to measure the impact of packet loss on video
quality [16]. The most reliable way is to collect the judgements from many viewers, since
humans are the final receivers of videos, such as the works [11, 17]. At the same time such
subjective methods consume large time and human resource, which makes objective quality
evaluations popular. Considering the diversity of lost packets, numerous studies have been
explored quality change of video under some specific conditions, which mainly refer to
different packet loss rates [6], different distributions of lost packets [5, 25], packet loss with
different frame types (e.g., I, P, and B frame) [12, 27], packets lost in different Group of Pictures
(GOP) patterns [31] and videos with different resolutions [3]. These works usually analyze the
relationship between packet loss and traditional objective metrics, e.g., peak signal-to-noise
ratio (PSNR) and structural similarity index (SSIM). It is noteworthy that traditional objective
metrics are simple and easy to calculate, usually need the complete original video. Unfortu-
nately, the original video is not always available. Especially when packet loss occurs, much of
the information in the video is lost. There is the need for the development of no-reference (NR)
methods, which estimate the influence with limited available input information.

During the past years, several NRmethods have been proposed. In general, it is consisted of
two main steps: analyzing the characteristics of corrupted video stream and predicting video
quality. The prediction models are usually established by formulation and learning-based
methods. The former incorporates the analyzed characteristics into explicit formulations, such
as works [7, 21, 29, 30] and the latter uses machine learning techniques for deriving the quality
from a set of features. Since the selected characteristics determine the accuracy of the prediction
model, how to choose effective characteristics is a key point for NRmethods. There are several
features extracted from bit stream level [8, 28, 34, 35], such as the bit rate, the frame type,
packet length, and the packet loss rate. These bit-stream based features can be easily obtained
after a decoding of the packet and the video frame header. But sometimes using these
parameters cannot exactly capture the impact of packet loss on a specific video, since for
different video contents, the same parameters may have different impacts on video quality [1].
In that case, pixel level features are analyzed by utilizing the decoded video information.
Because of the multidimensional nature of video, pixel-based techniques usually take into
consideration both spatial and temporal features. For example, 3D shearlet transform and 3D
discrete cosine transform is used in [19, 20], respectively. And the statistical analysis of
transform coefficients can characterize the spatiotemporal statistics of videos in different views.
Spatial features come from the statistical analysis of spatial activity and edge discontinuity
indices, and temporal features are derived from the motion vector (MV) information [18]. A
quality model based on time-domain characteristics was proposed to statistically analyze the
residual diagram of adjacent frames of video to predict video quality [22]. Literature [2]
extracted features from spatial domain and frequency domain: Canny operator was used to
extract edge information in spatial domain; In the frequency domain, the Discrete Cosine
Transform (DCT) was applied to the video frames to obtain the frequency domain features.

Up to now, most of the existing NR methods focus on the impact of packet loss on the
whole frames or the video sequence, and rarely study the impact on the local regions in one
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frame. Unfortunately, not all packet loss artifacts are the same, that is, the sensitivities of video
to packet loss artifacts vary widely. Valenzise et al. [32] shows that after using error
concealment (EC), some packet loss artifacts can be significantly alleviated, whereas the other
may still be visible. More or less effective performance of EC depends on several factors, e.g.,
motion complexity and local texturing of the lost region. In addition, because of the temporal-
prediction characteristic of codec system, errors in one frame may be spread to the following
frames, which is called error propagation. Thus, packets lost in different regions with different
coding patterns may cause various results. So, exploring the impact of packet loss on local
regions can be of great importance. Korhonen [17] focuses on the visibility of packet loss
artifacts appearing in spatially and temporally limited regions of a video sequence. The
corrupted macroblocks (MBs) are combined into error clusters by using a methodology. A
subjective test is then implemented to obtain the visibility of error clusters. This work narrows
the region into partial spatiotemporal space, but the results significantly depend on the division
of error clusters. A recursive distortion model [7] is proposed by analyzing the propagating
behavior of transmission errors due to packet loss. Although the model has a good accuracy at
the MB level, it entails recursive operation for every pixel in a MB, which increases the
computational complexity.

In this paper, an error sensitivity model is proposed to measure the video quality affected by
various packet losses. Different from the traditional methods that evaluate the quality on basis
of the whole frames or the video sequence, the proposed model focuses on measuring the
impact of a single lost packet on the local region. Once a block is lost, its internal information
is also completely lost, which means the impact of the packet loss on the region is unknown.
We firstly describe the error sensitivity index, based on the number of error pixels that still
exist after using EC algorithm. Then, inspired by the spatiotemporal relativity of video
sequences, we extract available features from the correctly received blocks in spatial and
temporal domain. Finally, machine learning technology is applied to learn a mapping from
feature space to error sensitivity of videos. Our model can give some guidance on feature
selection in related fields, and at the same time, it can provide directions for error concealment
algorithm improvement. Moreover, most of the existing methods are based on whole video
frames, which cannot provide theoretical support for local region improvement, and our
approach complements this nicely. Due to the complex factors that will affect the video
quality (compression, blur, packet loss, etc.), unless otherwise noted, the error mentioned in
this paper refers to packet loss. In H.265/HEVC, numerous largest coding units (LCUs) can be
packetized into one packet for transmission. For simplifying the problem, we assume that each
LCU is considered as a separate packet, and the packet loss in this paper refers to loss in the
form of blocks. The major contributions of this paper are summarized as follows.

1) Considering the specific situation of video packet loss, we extract a collection of
calculated features from the spatial and temporal domain. Most of these features are
simple but closely quality related.

2) The proposed error sensitivity model pay attention to the levels of severity of damage in
the local regions of the video, and can accurately predict the sensitivity of videos to
different packet loss cases. The proposed model is appropriate to applications such as
video processing and transmission, alleviating the impact of packet loss on video quality.

The rest of this paper is organized as follows. The theory of error sensitivity is introduced in
Section 2. In Section 3, we describe details of the extraction process of the spatial and temporal
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features. The error sensitivity prediction process from the extracted features is also presented in
this section. Experiment results are shown in Section 4. Finally, conclusions are drawn in
Section 5.

2 The theory of error sensitivity

As we all know, the quality impact of packet loss on local regions can be considered as a
combination of quality degradation directly due to packet loss and that induced by error
propagation. When a packet loss is detected, the decoder usually uses some EC algorithms to
mitigate the degradation. However, there exists local differences in video sequences, leading to
different performances of the EC algorithms. It is difficult to accurately measure the effect of
packet loss on local region quality. Not all the lost information can be reconstructed intact, and
errors in some areas are still very obvious, affecting the video viewing quality. Due to the
diversification of the content characteristics of the video area (such as diversification of motion
or diversity of texture), packet loss at different positions within the same video frame has a
great difference in the impact on video quality [15]. What is the impact of different packet loss
on video quality is an important issue to be solved urgently in the research field of video
compression and processing. In this paper, error sensitivity, reflecting the sensitivity of the
damaged region to errors, is used to evaluate the impact of packet loss. The regions with high
sensitivity are more susceptible to errors, and the distortion in these regions usually remains
quite noticeable even after simple EC operations. Thus, the error sensitivity can be obtained by
counting the number of error pixels that still remain after concealing [10]. Since packet loss is
loss in the form of blocks, the error sensitivity of a corrupted block yB can be described as:

yB ¼ n=NB ð1Þ
where n is the number of error pixels within the block, and NB is the total number of pixels in
the block. The more error pixels, the higher error sensitivity of the block.

Figure 1 illustrates the highly sensitive regions of the Traffic and Cactus sequences.
Figure 1(a) and (b) are the original frames of Traffic and Cactus respectively. After subject
to random packet loss at the rate of 20%, the damaged frames are shown in Fig. 1(c) and (d),
where the black blocks refer to the lost regions. It is assumed that when the value of error
sensitivity is higher than 10%, the damaged region is considered to be a highly sensitive
region. In Fig. 1(e) and (f), the blocks left in lost regions are highly sensitive regions, and other
white regions are low sensitive regions. It is worth noting that the regions containing objects or
their boundaries are usually more sensitive to errors, whereas background or the regions where
video content is consistent are not.

3 The proposed error sensitivity model

Since the original undistorted videos are not always accessible in many practical applications,
it is not straightforward to obtain the sensitivities of regions to errors. Our proposed error
sensitivity model predicts the sensitivity based on the quality-related features. The flowchart is
given in Fig. 2. Numerous lost blocks in video sequences constitute the sample set. For every
lost block, the related spatial and temporal features are extracted. After concealing the lost
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block in training set, error sensitivity of the block is calculated, as described in Section 2. Then,
the features and error sensitivity are used to train a regression module. Lastly, the trained
model is used to map the features in testing dataset to error sensitivities.

3.1 Selection of spatial features

When a block is lost, it means that all the information about the block is also lost. Fortunately,
natural videos possess substantial spatiotemporal regularities, in the sense that video frames at
different times and spatial positions are highly correlated. According to this property, we extract
the features from adjacent blocks in spatiotemporal domain. Selection of temporal features will
be detailed in the next subsection. In this section, some spatial features are mainly discussed.

Fig. 1 The highly sensitive regions of the Traffic and Cactus sequences. (a) the 12th frame of Traffic; (b) the
11th frame of Cactus; (c), (d) the random packet loss results of (a), (b) with packet loss ratio: 20%; (e), (f) the
highly sensitive regions in the lost regions of (c), (d)
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3.1.1 Correctness of adjacent blocks in spatial domain

As a source of information for feature extraction, the correctness of adjacent blocks matters a
lot. The number and locations of adjacent blocks may affect the video quality in different
extent. Therefore, the eight surrounding blocks of current lost block, whose size is the same as
that of current lost block, are considered. The relation of lost block and its adjacent blocks is
demonstrated in Fig. 3, where B0 is the lost block and Bk (k = 1–8) is the surrounding block of
B0 in spatial domain. It is assumed that the loss probability of each block is independent, and
we come up with (2) to judge the blocks’ correctness. Since there are eight adjacent blocks,
each lost block corresponds to an eight-dimensional feature to characterize the correctness of
adjacent blocks in spatial domain.

Ck ¼ 1; Bk is correct
0; Bk is lost

k ¼ 1−8ð Þ
�

ð2Þ

3.1.2 Textural features

Texture is one of the important characteristics for picture, describing the surface properties of
the object in the region. When the region with detailed texture is corrupted, the performance of
a normal EC method may not be satisfactory, since the surrounding texture information used is

Fig. 2 The flowchart of error sensitivity model

Fig. 3 The relation of lost block and its adjacent blocks
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not reliable. On the other hand, for the region with simple texture, it is much easier to
reconstruct region with good quality by using surrounding information. Hence textural features
directly affect the sensitivity of regions to errors. In this work, textural features are calculated
with the help of gray-level co-occurrence matrix (GLCM). GLCM is the representation of
statistical joint probability of two pixels (I, j) held at distance d in direction θ, which reflects the
characteristics of texture [9]. Various GLCMs can be calculated for different distances and
directions, in order to reduce computational complexity, for each adjacent block received
correctly, we only compute the GLCM matrices with a pixel distance of 1 in the directions 0°
and 90°. These two matrices are then averaged and normalized to mitigate the effect of the
direction on the results, expressed as Pd(i, j). Considering the correlation of textural descriptors
derived from GLCM, we focus on one of the descriptors, namely entropy, which measures the
regularity versus disorder of pixel values in the block. The calculating formula of entropyHk as
follows:

Hk ¼ − ∑
L−1

i¼0
∑
L−1

j¼0
Pd i; jð ÞlogPd i; jð Þ ð3Þ

where L is the gray level, and in this work L is set to 128. When all elements in co-occurrence
matrix are equal or have the maximum randomness, the entropy becomes larger, which means
the block has higher texture complexity. After computing the entropy features of all the
available surrounding blocks, the texture complexity of the lost block Ec is defined as:

Ec ¼
∑8

k¼1HkCk

∑8
k¼1Ck

; if ∑8
k¼1Ck≠0

0; otherwise

8<: ð4Þ

In particular, when all the adjacent blocks are lost, the texture complexity of the lost block is
fixed to 0.

Ec reflects the average level of the texture complexity of the regions around the lost block.
However, when the texture complexity of the surrounding regions varies widely, using the
mean values alone cannot reflect the textural features effectively. Therefore, we also analyze
the differences in the texture of available surrounding blocks, called texture consistency:

Ec
0 ¼ std Hk ; k ¼ 1−8 and Ck≠0ð Þ; if∑8

k¼1Ck≠0
0; otherwise

�
ð5Þ

where std(∙) indicates the standard deviation operation.

3.1.3 Spatial activity

Spatial activity indicates the amount of detail of a video in spatial domain. It is derived from
the gradient, describing the structural information of the video. As described in Fig. 1, regions
with rich structural information, like edge regions, are more likely to be highly sensitive
regions. Taking spatial activity into account can enhance the prediction accuracy of our model.
In this paper, we use the definition of spatial activity [14] and modify it slightly. After Sobel
operator, the spatial motion of the video frame calculates its standard deviation for all pixel
values of the filtered image:

SA ¼ stdM ;N Sobel Fð Þð Þ ð6Þ

Multimedia Tools and Applications (2020) 79:31913–31930 31919



where F is the video frame, and Sobel(∙) means Sobel filter operation on F. stdM, N(∙) means
standard deviation for all pixel values of a 5 × 5 size image, respectively.

After converting the video frame to grayscale image, the spatial activity of the available
adjacent blocks SAk can be calculated as:

SAk ¼
stdH ;W Sobelx Bkð Þð Þ þ stdH ;W Sobely Bkð Þ� �

2
ð7Þ

where H is the height of the block, and W is the width of the block. Sobelx(Bk) and Sobely(Bk)
means applying the Sobel operator to Bk with the horizontal and vertical mask, respectively.
Considering the computational complexity, 3 × 3 masks of Sobel operator are adopted. After
obtaining the spatial activity values of all the available adjacent blocks, the spatial activity of
the lost block ESA can be calculated by:

ESA ¼
∑8

k¼1SAkCk

∑8
k¼1Ck

; if∑8
k¼1Ck≠0

0; otherwise

8<: ð8Þ

3.2 Selection of temporal features

It is not enough to only consider spatial features in our model. The degradation of video quality
is not only because of impairments caused by packet loss, but also owing to error propagation
along the direction of inter prediction. Packet loss artifacts may spread from frame to frame.
Since temporal information plays an important role in error sensitivity estimation, in this paper
some temporal features are analyzed.

3.2.1 Correctness of the corresponding block in temporal domain

According to the characteristics of inter prediction, if the reference blocks in previous frames
are damaged, the probability of errors occurring in the current block increases, which means
current block has higher sensitivity. Analyzing correctness of reference blocks is necessary. To
simplify the problem, suppose the current frame only refers to its previous frame. The
corresponding block in previous frame, which is in the same position as the lost block in the
current frame, is taken into consideration, as shown in Fig. 4. Correctness of the corresponding
block B9 can be obtained by (2).

3.2.2 Motion features

Motion features reflect the motion activity of video content. Generally, temporal ECs work
well if the video content is of low motion activity, but often cause noticeable errors in regions

Fig. 4 The relation of lost block and its corresponding block in temporal domain
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with high motion activity. In order to further explore the relationship between the motion
characteristics of the region and the impact of packet loss in the region on the video, Fig. 5
shows the scatter plots of motion vector (MV) amplitude and error sensitivity of image blocks
in BQMall sequence and BasketballPass sequence. It can be seen from the scatter plots of the
two sequences that as the MV amplitude increases, the error sensitivity corresponding to the
image block also shows an upward trend, that is, the two have a positive correlation. Therefore,
it is necessary to analyze the motion characteristics of the video.

To capture the motion features of the lost block, we make full use of the spatio-temporal
correlation of the video, and analyze the motion characteristics of related regions in spatial and
temporal domain. For a lost block, the motion information of 4 surrounding blocks in spatial
domain (B2, B4, B5, and B7 in Fig. 3.) and the corresponding block in temporal domain (B9 in
Fig. 4.) is considered. Firstly, the motion vectors of the related blocks Vk can be calculated as:

Vk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MVx kð Þj j2 þ MVy kð Þ�� ��2q

;Ck ¼ 1
0; Ck ¼ 0

(
k ¼ 2; 4; 5; 7; 9ð Þ ð9Þ

whereMVx(k) andMVy(k) are the x-axis and y-axis components of the average motion vector of
all pixels in the kth block, respectively. Then, the motion intensity of the lost block EV can be
estimated by those motion vectors:

EV ¼
∑VkCk

∑Ck
; if∑Ck≠0

0; otherwise

8<: k ¼ 2; 4; 5; 7; 9ð Þ ð10Þ

In addition, by analyzing the motion differences of the related regions, we can obtain the
motion consistency of the lost block:

EV
0 ¼ std Vk ; k ¼ 2; 4; 5; 7; 9 and Ck≠0ð Þ; if∑Ck≠0

0; otherwise

�
ð11Þ

Finally, the motion features of the lost block are characterized by the motion intensity and the
motion consistency.
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(a)Scatter plot of BQMall sequence (b) Scatter plot of BasketballPass sequence

Fig. 5 Scatter plot of MV amplitude and error sensitivity of image blocks
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3.2.3 Temporal randomness

Temporal randomness measures the temporal regularity of video content. Packet loss occurring
in regions with regular and unregular motion can result in different visual impairments.
According to [13], we can obtain temporal randomness by using previous frames to predict
the current frame, which can be written as:

r ¼ j f t2 þ 1ð Þ−CbAX t2
t1 j ð12Þ

where f(t2 + 1) represents the current frame. C, bA, and X t1
t2 are the related parameters of Ft1

t2

(a sequence from the t1th frame to the t2th frame), carrying the information of previous frames.
They come from the theory that there are some connections between frames, and the video
signal can be modeled as a dynamic system:

Ft2
t1 ¼ CX t2

t1 þWt2
t1 ð13Þ

X t2
t1 ¼ AX t2−1

t1−1 þ Vt2
t1 ð14Þ

where X t1
t2 and X t2−1

t1−1 are the state sequence of Ft1
t2 and Ft2−1

t1−1, respectively. A is the state
transition matrix reflecting the regularity of motion, and C is a metric to encode the regularity
of spatial information. Wt1

t2 and Vt1
t2 are the noise that cannot be represented by C and A,

respectively. By conducting the singular value decomposition on Ft1
t2 , we can obtain the

parameter C and X t1
t2 in (13). Since A reflects the motion information and can be used to

predict next frames, the optimal A is expected to represent information as much as possible,
which can be calculated as:

bA ¼ X t2
t1þ1 X t2−1

t1

� �−1
ð15Þ

where X t2−1
t1

� �−1
is the pseudo inverse of X t2−1

t1 . Once the related parameters of Ft1
t2 are

obtained, we can calculate r by using (12). It is not hard to see that r reflects the unregular
information that cannot be predicted from previous frames, which indicates temporal
randomness.

In this paper, the temporal randomness is obtained by using the previous frame to predict
the current frame. If the motion structures between adjacent frames are similar to each other,
the temporal randomness should be small. To further visualize temporal randomness, by
following [13], we transform the values of temporal randomness between 0 and 255, gener-
ating the temporal randomness map. The brighter the point in the map, the stronger the
temporal randomness. Figure 6 shows the temporal randomness map for the Traffic sequence.
Figure 6(a) and (b) are two consecutive frames in the sequence, and Fig. 6(c) shows the
corresponding temporal randomness map. As seen in Fig. 6, the motion in background is
regular, and its temporal randomness is rather small. But for the cars, the motion is unpredict-
able, corresponding to large temporal randomness.

Since the temporal randomness describes the regularity of video content between frames,
the information from the temporal domain is as important as the information from the spatial
domain when estimating the temporal randomness of the lost block. In fact, the temporal
randomness represents the intensity of changes corresponding to the local region, and temporal
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randomness is large when the movement is intense, otherwise, it is small. Therefore, the
temporal randomness can well reflect the error sensitivity, which is also the reason for using
this feature in this paper. For every lost block, we analyze the temporal randomness of its eight
surrounding blocks and the corresponding block in the previous frame. After calculating the
temporal randomness of available related blocks, we get the sum of temporal randomness of
each block rk, and then define the average value as the temporal randomness of the lost block
Er. The detail process is expressed as follows.

rk ¼ ∑H
i¼1∑

W
j¼1 r i; jð Þj j ð16Þ

Er ¼
∑9

k¼1rk
∑9

k¼1Ck
; if ∑9

k¼1Ck≠0

0; otherwise

8<: ð17Þ

where r(i, j) is the temporal randomness of the pixel at position (i, j).

3.3 Module regression

As the original video signals are not always available, we cannot directly calculate error
sensitivity according to (1), which means how much it is sensitive to errors is unknown.
Fortunately, machine learning methods have been widely used to derive the index from
numerous features. They usually divide the sample dataset into a training dataset and a testing

Fig. 6 The temporal randomness map for the Traffic sequence. (a)-(b) Consecutive frames in Traffic; (c) The
corresponding temporal randomness map
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dataset, as depicted in Fig. 2. For the training dataset, the above extracted features and their
corresponding ground truth are used to train the model. So far, a total of 15 features are
extracted for each lost block, including 11 spatial features and 4 temporal features, which are
Ck (k = 1 − 9), Ec, Ec

′,ESA, EV, EV
′, and Er, respectively. We listed these features in Table 1. To

get the ground truth of error sensitivity of the lost block in training dataset, we assume that the
lost block is concealed by the simplest temporal EC method, where the lost block is directly
replaced with the corresponding block in previous frame. Error sensitivity of the region is then
obtained by using (1). In this paper, SVR is adopted to learn the relationship between the
features and error sensitivity index. Specially, the LibSVM package is utilized to implement
the SVR with the Radial Basis Function (RBF) kernel. The task of SVR is to train a regression
model such as (18) so that f(x) and y are as close as possible.

f xð Þ ¼ wTxþ b ð18Þ
where wTand b are the parameters of the model. Here x is the feature set of the missing block,
f(x) is the predicted error sensitivity.

For the testing dataset, the extracted features are fed into the trained SVR model, and its
corresponding error sensitivity is then predicted.

4 4Experiment results

In this section, some experiments have been carried out to evaluate the performance of the
proposed error sensitivity model. The experiment settings are introduced firstly, then the
details of experimental results are reported.

4.1 Experiment settings

In our work, all the experiments are conducted in HM-16.9 and MATLAB R2016a. We use
six video sequences (Traffic, Cactus, Kimono, BQMall, BasketballPass and FourPeople) to
evaluate our model. These sequences have different spatial and temporal complexity. Detailed
information of these sequences is summarized in Table 2. All the video sequences are firstly
compressed using the H.265/HEVC encoding standard (HM-16.9), encoded in IPPP… se-
quence format with a fixed QP (32). 20% packet loss rate is considered to study the effect at
worst channel conditions. The packet loss is simulated block wise, and each loss block size is
64 × 64 pixels.

Table 1 Features and feature description

Features Feature description

C1~C8 Correctness of adjacent blocks in spatial domain
C9 Correctness of the corresponding block in temporal domain
Ec Texture complexity
Ec

′ Texture consistency
ESA Spatial activity
EV Motion intensity
EV

′ Motion consistency
Er Temporal randomness
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For each database, 80% of samples are randomly selected as training set and the remaining
20% samples are used as test set. To avoid any performance bias, we repeat the training and
test cycle using 10 different random splits, and the mean values are reported as the final
performance score.

There are three criteria employed in this study to quantitatively measure the performance of
the model: Pearson’s linear correlation coefficient (PLCC), Spearman’s rank-order correlation
coefficient (SROCC), and root mean-squared error (RMSE). PLCC and RMSE are utilized for
measuring prediction accuracy, whereas SROCC is used for measuring prediction monotonic-
ity. Higher PLCC and SROCC values, and RMSE value closer to zero, indicate good
correlation with the ground truth.

4.2 Performance comparison

In order to investigate the effectiveness of the proposed model, we conduct some experiments
to compare the proposed model (donated as Proposed) with existing, state-of-art NR quality
assessment models. These models are DIIVINE [23], NOREQI [24], VBLIINDS [26] and
NR_VQA [18]. Among them, DIIVINE and NOREQI are good at evaluating the frame level
quality, for convenience, called as type A models in the following. They use spatial or
frequency features and do not consider any temporal features. In order to verify the effective-
ness of the spatio-temporal feature selection in this paper, we also select two general video
quality assessment model (VBLIINDS and NR_VQA), both of which analyze many charac-
teristics of videos in spatial and temporal domain. These two models and the proposed model
are collectively referred to as type B models. For the fair comparison, we extract the features
from these models at block level, then train the SVR model with these features to predict error
sensitivity. Moreover, the SVR parameters have been all optimized to achieve their best
performance.

Table 3 lists the performances of all the methods on the six video sequences, where the best
performance is highlighted in bold. From Table 3, the PLCCs and SROCCs of the proposed
model are larger than other models in all the six video sequences, and the RMSEs are smaller
than others, which means the proposed model can predict error sensitivity with higher
accuracy. It is worth noting that, in most cases, the PLCCs and SROCCs of type B models
considering video characteristics in spatio-temporal domain are larger than those of type A
models only considering spatial or frequency features, and the RMSEs of the type A models
are smaller than those of the type B models, which highlights the importance of the temporal
information. Especially for the FourPeople, which has simple content and low motion activity,
type B models is significantly superior to type A models, increasing the PLCCs and SROCCs
at least by 0.06. This is due to the fact that these type B models extract temporal features more

Table 2 Information of video sequences

Sequence Class Resolution Frame numbers Frame rate

Traffic A 2560 × 1600 60 30
Cactus B 1920 × 1080 100 50
Kimono B 1920 × 1080 100 24
BQMall C 832 × 480 100 60
BasketballPass D 416 × 240 500 50
FourPeople E 1280 × 720 100 60
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accurately when the motion of the video is slow. However, for the sequences with intensive
motion, such as Kimono and BasketballPass, it is more difficult to predict error sensitivity for
all the models. The PLCCs and SROCCs are all below 0.7, and the RMSEs are larger than
0.094. To visualize the statistical significance of the comparison, we take the Traffic as an
example and show the box plots of PLCC, SROCC, and RMSE distributions of different
models over 10 trails in Fig. 7(a), 6(b), and 6(c), respectively. It is clear that the proposed
model works well among all the NR models under consideration.

As we know, generalization capability is a significant problem for all learning-based
methods. To evaluate the generalization capability of our model, we implement cross-dataset
experiments, where models are trained and tested on different datasets. Six video sequences
are divided into two parts. Considering the balance of sample size, three video sequences
(Traffic, BasketballPass and FourPeople) are used for training, and the remaining sequences
(Cactus, Kimono and BQMall) for testing. The results are exhibited in Table 4. It can be
observed that, compared with the results in Table 3, the cross-dataset experiments have
reduced the prediction accuracy of both the proposed model and the other four models. Even
so, our model maintains the stable performance across most sequences, showing better
robustness. In addition, compared with the performances of type B models, the performances
of type A models are comparatively low. Because the motions of different sequences vary
widely, using spatial or frequency features alone cannot predict the error sensitivity well,
which indicates the validity of the combination of spatial and temporal features.

4.3 Contributions of features

In the paper, 15 features are extracted to train the error sensitivity model. To further investigate
their individual or combined contributions to the performance of the model, the following test
is conduct. In our experiment, 15 features are classified into five categories: correctness of the
related blocks (both in spatial and temporal domain), textural features, spatial activity, motion
features, and temporal randomness, donated by I, II, III, IV, and V, respectively. The

Table 3 Performances of the proposed model and the other four models on the six video sequences

Sequence Criterion DIIVINE NOREQI VBLIINDS NR_VQA Proposed

Traffic PLCC 0.6636 0.6456 0.6934 0.7240 0.7580
SROCC 0.7211 0.7188 0.7436 0.7671 0.7812
RMSE 0.0725 0.0740 0.0699 0.0669 0.0633

Cactus PLCC 0.6561 0.6776 0.7370 0.7521 0.7679
SROCC 0.7459 0.7593 0.8157 0.8250 0.8424
RMSE 0.1044 0.1017 0.0935 0.0912 0.0886

Kimono PLCC 0.6155 0.6006 0.6496 0.6258 0.6757
SROCC 0.6288 0.6086 0.6650 0.6332 0.6857
RMSE 0.1014 0.1029 0.0978 0.1003 0.0948

BQMall PLCC 0.7186 0.6864 0.7430 0.7172 0.8044
SROCC 0.7357 0.7130 0.7741 0.7535 0.8359
RMSE 0.0990 0.1038 0.0955 0.0995 0.0848

BasketballPass PLCC 0.5330 0.5669 0.6333 0.5916 0.6941
SROCC 0.5491 0.5770 0.6408 0.6020 0.6952
RMSE 0.1128 0.1098 0.1031 0.1075 0.0959

FourPeople PLCC 0.5222 0.5554 0.6321 0.6186 0.7474
SROCC 0.5032 0.4841 0.5843 0.5811 0.6320
RMSE 0.0436 0.0425 0.0396 0.0401 0.0340
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performances of different combinations of feature types on the BasketballPass is shown in
Fig. 8. First, we test on each feature type in isolation and rank them in terms of PLCC (SROCC
or RMSE can also be used): feature V (0.5393) > feature IV (0.5168) > feature I (0.3908) >
feature II (0.3555) > feature III (0.2028). It can be observed from the rank that feature V is the
most contributing feature. However, the prediction accuracy of the model using only one
feature type is still unsatisfactory, reflected by the PLCCs below 0.6. Second, to find the most

(a)   (b)

(c)

Fig. 7 Box plot of PLCC, SROCC, and RMSE distributions of the models over 10 trails on the Traffic. (a) Box
plot of PLCC distribution; (b) Box plot of SROCC distribution; (c) Box plot of RMSE distribution

Table 4 Results of cross-dataset experiments

Sequence Criterion DIIVINE NOREQI VBLIINDS NR_VQA Proposed

Cactus PLCC 0.1784 0.0792 0.6107 0.7188 0.6941
SROCC 0.2334 0.1216 0.7182 0.8194 0.8051
RMSE 0.1372 0.1390 0.1105 0.0970 0.1004

Kimono PLCC 0.3124 0.2261 0.4093 0.5057 0.5281
SROCC 0.3425 0.1849 0.4043 0.5070 0.5361
RMSE 0.1214 0.1244 0.1166 0.1103 0.1086

BQMall PLCC 0.3354 0.1919 0.3841 0.6697 0.7847
SROCC 0.3729 0.2195 0.4003 0.7168 0.8238
RMSE 0.1325 0.1378 0.1299 0.1045 0.0872
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effective combination of feature types, we fix the best feature V and add each of the other four
feature types individually. The new rankings are obtained: feature I + V (0.6414) > feature II +
V (0.5762) > feature IV +V (0.5554) > feature III + V (0.5387). It is evident that the perfor-
mance is much better if two feature types are used. Then, we fix the optimal feature I + V and
add each of the other three feature types, and so on. Finally, the contributions of several
combinations of feature types are evaluated.

As demonstrated in Fig. 8, all the five feature types play important roles in the performance
of the error sensitivity model. With the addition of feature types, the values of PLCC or
SROCC are on the rise, whereas the RMSE values reveal a trend of gradual decrease. When all
the five feature types are utilized together, it achieves the best performance, indicating the
feasibility of our model.

5 Conclusions

In this paper, a novel error sensitivity model, aiming to explore the impact of different packet
losses on local regions, is presented. To solve the problem of missing information when packet
loss appears, the available information from adjacent regions is further studied. Spatial and
temporal features, which relate to error sensitivity, are considered comprehensively. We detail
the features extracted, and then map it into error sensitivities using the SVR. The results of
experiments conducted show that our model provides high accuracy for prediction of error
sensitivity and is robust to different datasets as compared to state-of-the-art NR quality
assessment models. Moreover, we demonstrate the effectiveness of feature selection of our
model. More importantly, our error sensitivity model can give some guidance and improve-
ment direction to the error concealment algorithm. Because improving the algorithm for high
sensitivity region can greatly improve the error concealment effect.

However, the prediction accuracy for videos with high motion activity is still not encour-
aging. In the future, we will focus on the temporal characteristics and investigate other features
to improve the prediction accuracy.
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