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Abstract
Face clustering aims to group the face images without any label information into clusters,
and has recently attracted considerable attention in machine learning and data mining. Many
graph based clustering methods have been proposed and among which sparse representation
(SR) and low-rank representation (LRR) are two representative methods for affinity graph
construction. The clustering result may be inaccurate if the affinity graph is constructed
with low quality. In this paper, we propose a novel face clustering method via learning a
sparsity preserving low-rank graph (LSPLRG), where the initial affinity graph is derived
on the sparse coefficients without any a priori graph or similarity matrix. In addition, an
adaptive weighted matrix is imposed on the data reconstruction errors to enhance the role of
important features, while a constraint on the representation matrix is to reduce the redundant
features. By integrating the local distance regularization term into LRR, LSPLRG could
exploit the global and local structures of data simultaneously. These appealing properties
allow LSPLRG to well capture the intrinsic structure of data, and thus has potential to
improve clustering performance. Experiments conducted on several face image databases
demonstrate the effectiveness and robustness of LSPLRG compared with several state-of-
the-art subspace clustering methods.

Keywords Low-rank representation · Graph learning · Face clustering

1 Introduction

Clustering is a fundamentally important task to numerous applications, such as image clas-
sification [34], saliency detection [40], image segmentation [44] and motion segmentation
[31]. The goal of clustering is to simultaneously segment unlabeled data points into clus-
ters so that the data points in the same clusters are more similar to each other than those
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in different clusters [38]. Under the Lambertian assumption, the face images of a sub-
ject with a fixed pose and varying illumination approximately lie in a linear subspace of
dimension 9 [1]. Thus, the face clustering problem can be considered as image clustering
problem over a union of subspaces. In the past decades, a large number of clustering meth-
ods have emerged, such as k-means [26], spectral clustering [28], support vector clustering
[2], maximum margin clustering [37] and multi-view subspace clustering [42, 48, 49].

In the big data era, high-dimensional data is ubiquitous in many real applications such
as image processing [18, 20]. However, high-dimensional data not only results in high
computational cost of time and memory for related algorithms, but also degrades their per-
formances due to the inevitable noise and insufficient number of training samples [17,
19, 27]. Under the assumption that high-dimensional data almost lie in multiple low-
dimensional subspaces, subspace clustering has gained a lot of attention due to its capability
and efficiency in data clustering [33]. The key idea in subspace clustering is to construct a
weighted affinity graph matrix from the initial database. Thus, constructing an informative
graph to capture the essential relationship of data plays a key role for data clustering.

Many research studies on graph learning investigate how to better capture the intrinsic
structure information of data [41, 43, 46]. Generally speaking, the affinity graph can be con-
structed based on pairwise distance (e.g. Euclidean distance) or reconstruction coefficients.
Recent methods for learning the affinity graph are based on the self-expressiveness prop-
erty, which states a sample in a union of subspaces can be expressed as a linear combination
of other samples, i.e., X = XZ. Furthermore, a symmetric affinity graph matrix is induced
from the new representation Z (i.e. G = 1

2 (|Z|+|ZT |)), where Gij = Gji determines sam-
ples i and j belong to the same subspace. The main issue of existing graph learning methods
is that all features are treated equally in the graph construction even if many features are
redundant features or even noises.

Recently, sparse representation and low-rank representation have attracted much atten-
tion in data clustering due to their success in adaptively exploit the intrinsic representation
structures of data [15, 30]. We try to combine their advantages and address the issue in the
existing adaptive graph learning methods. In this paper, we propose a novel face clustering
method via learning a sparsity preserving low-rank graph (LSPLRG). Specifically, the first
step is to learn a sparse affinity graph by data self-representativeness and �1-norm. Then, a
weighted matrix on the data reconstruction errors is imposed to reduce the useless features
with large reconstruction errors. Moreover, a distance regularization term is imposed to pre-
serve local structure information of the data, and a constraint on the representation matrix
is added in the objective function to alleviate the relevance. These meaningful factors could
improve the effectiveness of the proposed model and encourage us to learn a graph to reveal
the intrinsic similarity relationships of samples.

The main contributions of this paper are listed as follows:

1. The proposed method learns a initial affinity graph on the sparse coefficients without
any a priori graph or similarity matrix. The sparsity could make the obtained graph
better capture the intrinsic structure of the data when they are suffered from noise.

2. An adaptive weighted matrix is imposed on the data reconstruction errors to enhance the
role of important features, while a constraint on the representation matrix is to reduce
the redundant features.

3. The proposed model could exploit the global and local structure of data by LRR and
distance regularization term, which ensures to learn a more effective graph for face
clustering.
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The rest of this paper is organized as follows. Section 2 reviews the related works includ-
ing low-rank representation and sparse subspace clustering. In Section 3, we introduce
the details of our proposed clustering method LSPLRG and its optimizing schemes.
Experimental results are presented for illustration in Sections 4 and 5 concludes this paper.

2 Related works

In this section, we briefly review the related work, such as low-rank representation (LRR)
and sparse subspace clustering (SSC) before introducing our model. Before reviewing the
related work, we define some notations. For a matrix X, xj is its ith column and xij is its
(i, j)th entry. The Frobenius norm and nuclear norm are denoted by ‖X‖F and ‖X‖∗ (the
sum of the singular values of X), respectively. � denotes the element-wise multiplication.
XT is the transpose of X and tr(X) is the trace of X.

2.1 Low-rank representation

Recently, theoretical advances on LRR enable us to explore low-dimensional subspace
structures embedded in data. Given a set of data, LRR aims at finding the lowest-rank rep-
resentation of all data jointly and preserving the membership of samples that belong to the
same subspace [23]. Thus, the data usually can be represented by other data that lie in the
same subspace when the subspace are independent and the data is noiseless. Generally, the
LRR problem can be formulated as follows:

min
Z

‖Z‖∗ subject to X = AZ (1)

where the columns of A are a set of known bases or dictionary items and Z is called the low-
rank representation of the data X. ‖Z‖∗ is the nuclear norm, which is the convex envelope
of the rank function [7].

In the real world applications, observation data often contain noise corruption, and data
matrixX itself is used as the dictionary. With the balance parameter λ, a more general model
version of (1) can be presented as follows:

min
Z

‖Z‖∗ + λ‖E‖l s.t. X = XZ + E (2)

Here, there are many strategies to define the error term E. For example, �0-norm
characterizes the random corruption, �2,1-norm generally characterizes sample-specific cor-
ruption, and F -norm is proposed for the small Gaussian noise. A number of methods have
been proposed for solving the above low-rank matrix problems, and the most commonly
used methods are Augmented LagrangeMultiplier (ALM) and its variants. The advantage of
LRR mainly comes from the low-rank component could reduce the influence of the outliers,
which means LRR has the ability to correct the corruptions in data automatically.

2.2 Sparse subspace clustering

In recent years, Sparse Representation (SR) [10] has attracted much attention due to
its effectiveness for representing and compressing high-dimensional signals. According
to Compressed Sensing (CS) theory [4], the minimum �1-norm solution to an underde-
termined system of linear equation is also the sparsest possible solution under general
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conditions. Inspired by SR, the standard sparse subspace clustering (SSC) algorithm [13]
has been proposed to cluster data points that lie in a union of low-dimensional subspace. By
exploiting the self-expressiveness property of the data X, the formulation of SSC is

min
Z

‖Z‖1 + λ‖E‖F s.t. X = XZ + E, diag(Z) = 0 (3)

where Z is the coefficient matrix. Each column of Z is the sparse representation vector
corresponding to each data point. E is the representation error and λ is a tradeoff parameter.

The main difference between LRR and SSC is the choice of the regularization term of Z.
As can be seen from problem (3), ‖Z‖1 is used as a convex surrogate of ‖Z‖0 to promote
sparsity of Z in SSC, and ‖Z‖∗ is used to seek a jointly low-rank representation of all data
in LRR. The element Zij in Z reflects the similarity between data pair xi and xj . Hence Z

is often used to define the affinity matrix (|Z| + |ZT |)/2 for final segmentation of the data.
The clustering results are obtained by applying a spectral clustering algorithm [25], such as
normalized cuts (NCuts) [32].

3 Learning a sparsity preserving low-rank graph

In the clustering task, we have a set of unlabeled data X = [x1, x2, ..., xn] ∈ R
d×n and aim

to group the data into c clusters. An effective affinity graph which could capture the intrin-
sic structures of data is essential to obtain better clustering performance. In this section,
we present the details of our algorithm including graph initialization and graph learning.
Then, an optimization scheme based on iterative updating rules is used to solve the objective
function.

3.1 Graph initialization

Recently, sparse coding becomes a widely adopted tool which supposes that any signal can
be composed by some basic signals. Different from the other graph learning methods that
learning a initial graph by the distances of data points, we attempt to learn a initial graph by
the sparse representation of data points. To construct a sparse graph, the objective function is
to calculate a representation matrix Z = [z1, z2, ..., zn], which is the solution to �1 problem

argmin
Z

‖X − XZ‖2F + λ‖Z‖1 (4)

where ‖ · ‖F is the Frobenius norm of the matrix and ‖Z‖1 is the �1 norm of the matrix Z.
The coefficient matrix Z can be regarded as an asymmetric graph matrix for a dictionary
learning problem in which the dictionary is already given by the data themselves. For each
data xi , the vector zi denotes the sparse coding vector required for constructing the sample
xi from the set of data points. As can be seen, the optimization of problem (4) seeks a sparse
graph matrix with a smaller reconstruction error. The sparsity could make the obtained graph
better capture the intrinsic structure of the data points when they are suffered from noises.

3.2 Graph learning

In the task of clustering, the learned similarity graph should match the true affinity between
data points, and capture the multi-subspaces structure information. To this end, many
researchers proposed to impose the graph regularization term in order to learn an affinity
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graph with high quality [6, 11, 35], and these methods are proved to be effective under
mixed conditions.

However, there is a severe problem that many methods treat the reconstruction errors
equally in the linear representation, which is harmful to capture the intrinsic structure
of data. A robust graph learning method should assign different weight adaptively on
the reconstruction error to reinforce its effect during graph learning. Specifically, larger
reconstruction error should be assigned smaller weight and important feature should be
assigned larger weight respectively. Thus, a weighted nonnegative low-rank representation
framework can be defined as

min
W,Z

‖W 1
2 � E‖2F + λ1

2
‖W‖2F + λ2‖Z‖∗

s.t. X = XZ + E,Z,W � 0,WT 1 = 1 (5)

where W is the weighted matrix with positive values of all elements, and W
1
2 is defined

as an element-wise square root of W . The constraint term WT 1 (1 ∈ R
d×1 is a vector that

all elements are 1) ensures the weight treats all samples equally. The second term in this
criterion is a regularization term given by the Frobenius norm, which provides a solution
with the majority of elements are not null. Minimizing the optimization sub-problem to

variable W , i.e., minW�0,WT 1=1 ‖W 1
2 � E‖2F + λ1

2 ‖W‖2F leads to a sparse weighted matrix
[36]. Boundary constraints W � 0,WT 1 = 1 can avoid trivial solution [47] and Z � 0
ensures the learned graph is interpretable and its each element reveals the similar degree of
the corresponding two samples.

Beyond low rank property, local similarity structure learned from data points is proved
to be very helpful for subspace clustering [22]. Intuitively, close (similar) data points should
have close (similar) representation coefficients. In order to exploit the local relationship
between the data points, a distance regularization term to constrain the affinity matrix Z is
imposed in the subspace clustering. Then the model can be written as

min
W,Z

‖W 1
2 � E‖2F + λ1

2
‖W‖2F + λ2‖Z‖∗ + λ3T r(DT Z)

s.t. X = XZ + E,Z,W � 0, WT 1 = 1 (6)

where parameter λ3 is set to control the weight of corresponding regularizing term and T r(·)
is the trace operation. By the definition that the ith row and j th column element of matrix
D is dij = ‖xi − xj‖22, then T r(DT Z) = ∑n

i,j=1 dij zij . Thus, the third term enforces
that the samples with small distance should have similar representations. By imposing the
distance regularization term, the local relationship between the points is preserved such that
the clustering performance can be improved.

Once obtaining the representation matrix Z, the graph learning methods usually obtain
the similarity affinity matrix from Z. In order to alleviate the relevance among the rows
of Z, a constraint on Z is added in the objective function. To avoid the sample is selected
to represent itself and the trivial solution, we constrain the affinity matrix Z such that the
values of its diagonal elements are zero and the sum of its each row is one. Our final graph
learning model of LSPLRG can be formulated as follows

min
W,Z

‖W 1
2 � E‖2F + λ1

2
‖W‖2F + λ2‖Z‖∗ + λ3T r(DT Z) + λ4T r(ZT LeZ)

s.t. X = XZ + E,Z,W � 0,WT 1 = 1, diag(Z) = 0, Z1̄ = 1̄ (7)
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where 1̄ ∈ R
n×1 and Le = 1̄1̄

T − I (I is identity matrix). In the optimization, we propose
an alternative method to update each variable. Thus, both the matrix factorization and the
graph learning are achieved in the learned subspace, and the merit of subspace clustering is
inherited.

3.3 Update rules

To find the solutions to (7), we use the alternating direction method of multipliers (ADMM)
[3] to obtain the local optimal solution of variables W and Z. We first introduce two auxil-
iary variables E = X − XZ and U = Z to make the optimization problem (7) separable,
and problem (7) is rewritten as

min
W,Z

‖W 1
2 � E‖2F + λ1

2
‖W‖2F + λ2‖U‖∗ + λ3T r(DT Z) + λ4T r(ZT LeZ)

s.t. X = XZ + E,Z = U, Z,W � 0,WT 1 = 1, diag(Z) = 0 (8)

The corresponding augmented Lagrangian function of (8) is as follows

L(Z,W,E,U, Y1, Y2) = ‖W 1
2 � E‖2F + λ1

2
‖W‖2F + λ2‖U‖∗

+λ3T r(DT Z) + λ4T r(ZT LeZ)

+μ

2

(

‖X − XZ − E − Y1

μ
‖2F + ‖Z − U − Y2

μ
‖2F

)

(9)

where Y1 and Y2 are Lagrangian multipliers, and μ is a scalar parameter. The augmented
Lagrangian is separable and can be minimized along one coordinate direction at each iter-
ation, i.e. minimizing the augmented Lagrangian with respect to one variable alternately
with others being fixed. We introduce the detailed procedures and the solution of each
subproblem in the following

Update W : Fix the other variables and update W by solving the following problem

min
W,WT 1=1

‖W 1
2 � E‖2F + λ1

2
‖W‖2F (10)

which can be updated by the element-wise strategy. Obviously, problem (10) is equivalent
to the following minimization problem

min
W,WT 1=1

d∑

i=1

n∑

j=1

(

wij e
2
ij + λ1

2
w2

ij

)

(11)

and it is equivalent to the following problem

min
W,WT 1=1

d∑

i=1

n∑

j=1

(

wij + e2ij

λ1

)2

(12)

Problem (12) is independent for different j , so we can optimize the following problem
separately for each column wj of W

min
wj ,wT

j 1=1

n∑

j=1

‖wj + 1

λ1
hj‖22 (13)

where hj is the j th column of matrix H = E � E.
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According to [29], problem (13) can be transformed into the following Lagrangian
function

L(hj , η, βj ) = 1

2
‖wj + 1

λ1
hj‖22 − ηj

(
wT

j 1 − 1
)

− βT
j wj (14)

where ηj and βj ≥ 0 are the Lagrangian multipliers.
The optimal solution wj should satisfy that the derivative of (14) with respect to wj is

equal to zero
∂L

∂wj

= wj + hj

λ1
− ηj1 − βj = 0 (15)

For the ith element of wj , we have

wij + hij

λ1
− ηj1 − βij = 0 (16)

By combining (16) and the Karush-Kuhn-Tucker(KKT) condition wijβij = 0 [29], we
will have

wj =
(

ηj1 − hij

λ1

)

+
(17)

where (v)+ = max(0, v), according to (17) and the constraint wT
j 1 = 1, we have

d∑

i=1

(

ηj − hij

λ1

)

= 1

⇒ ηj = 1

d
+ 1

dλ1

d∑

i=1

hij (18)

Therefore, we can obtain the optimal solution wj according to (17).
Update E: for updating E, we have the following minimization problem

min
E

‖W 1
2 � E‖2F + μ

2
‖X − XZ − E − Y1

μ
‖2F (19)

which can be further simplified to

min
E

‖W 1
2 � E‖2F + μ

2
‖E − S‖2F (20)

where S = X − XZ − Y1
μ
. By spanning the Frobenius norm and removing the irrelevant

terms, we have

min
E

d∑

i=1

n∑

j=1

(
wij e

2
ij + μ

2
(eij − sij )

2
)

⇔
d∑

i=1

n∑

j=1

min
eij

(

eij − μsij

μ + 2wij

)2

(21)

The optimal solution to each element eij of variable E is

eij = μsij

μ + 2wij

(22)
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Update U : for updating U , problem (9) is transformed as follows

min
U

λ2‖U‖∗ + μ

2
‖Z − U − Y2

μ
‖2F (23)

This problem has a closed-form solution by using the singular value thresholding (SVT)
operator [21], i.e.

U = �λ2
μ

(

Z + Y2

μ

)

= US λ2
μ

(�)V T (24)

where U�V T is the singular value decomposition of
(
Z + Y2

μ

)
, and S λ2

μ

(·) is the soft-

thresholding operator [21].
Update Z: when the other variables are fixed, the objective optimization problem (9)

with respect to Z is degenerated to the following problem

min
Z

λ3T r(DT Z) + λ4T r(ZT LeZ)

+μ

2

(

‖X − XZ − E − Y1

μ
‖2F + ‖Z − U − Y2

μ
‖2F

)

s.t. Z � 0, diag(Z) = 0, Z1̄ = 1̄ (25)

where 1̄ is the column vector with all elements except the ith element are one, and the ith
element is zero. We first calculate a latent solution Ẑ by solving the following problem

min
Z

λ3T r(DT Z) + λ4T r(ZT LeZ)

+μ

2

(

‖X − XZ − E − Y1

μ
‖2F + ‖Z − U − Y2

μ
‖2F

)

(26)

This problem (26) has a closed-form solution as

Ẑ = (λ4Le + XT X + I )−1
(

XT

(

X − E + Y1

μ

)

+ U − Y2

μ
− λ3

μ
D

)

(27)

The optimal solution Z can be calculated by minimizing the following problem

min
Z�0,diag(Z)=0,Z1̄=1̄

‖Z − Ẑ‖2F (28)

Similar to the optimization strategy of problem (13), we obtain each row of Z by

zi = (ξi 1̄
T + z̄i )+ (29)

where z̄i = [z̄i1, ..., z̄ii , ..., z̄in] is the ith row of Ẑ (obtained by (27)), and the element z̄ii is
set to zero. Similar to problem (13), the Lagrangian multiplier ξ is

ξi = 1 + z̄i 1̄
n − 1

(30)

From (29), we can obtain the optimal solution zi , which is the row of Z.

29186 Multimedia Tools and Applications (2020) 79:29179–29198



After we optimize variables W,E,U and Z, the ADMM algorithm also needs to update
the Lagrange multipliers Y1, Y2 as well as parameter μ for faster convergence. The details
of the optimization algorithm are exhibited in Algorithm 1.

Once obtaining the affinity graph Z∗, Normalized cut (Ncut) spectral clustering is
applied on (|Z∗| + |Z∗T |)/2 to group data into several groups.

4 Experimental results

In this section, we consider the face clustering problem, where the goal is to group the face
images into clusters according to their subjects. The clustering performance is evaluated on
four publicly available image data sets, namely ORL,1 Extended YaleB,2 AR,3 and LFW.4

The important statistics of these databases are summarized in Table 1. To evaluate the per-
formance of the proposed method, we conduct some experiments for face clustering, and
compare the experimental results with several representative methods, including K-means,
LRR [23], SSC[13], RLRR [9], BDR [24] and AWNLRR [36]. K-means serves as a base-
line and obtains the final clustering results without learning an affinity matrix. The other
six methods apply the same Ncut spectral clustering on the affinity matrix to obtain the
clustering results. For fair comparison in all experiments, we use the Matlab codes released
by the corresponding authors with the default or optimal parameter settings. The parameter

1http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html.
2http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
3http://www2.ece.ohio-state.edu/∼aleix/ARdatabase.html
4http://vis-www.cs.umass.edu/lfw/
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Table 1 Description of databases
Dataset Size(n) Dimensionality(m) # of classes

ORL 400 1024 40

Extended Yale B 2414 1024 38

AR 2600 19800 100

LFW 1251 1024 86

values of each method remain the same for all evaluation runs, and these values are set as
suggested as in the corresponding literature.

4.1 Evaluationmetrics

The clustering performance is evaluated by comparing the obtained label of each sample
with that provided by the databases. Two metrics are used to quantitatively evaluate the
clustering performance [5]. One metric is accuracy (AC) and the other is the normalized
mutual information metric (NMI).

Given a data sample xi , let ri and si be the cluster label obtained by applying differ-
ent algorithms and the label provided by the data set, respectively. The AC measures the
percentage of correctly classified data points in the clustering solution compared with the
ground truth class labels and is defined by

AC =
∑N

i=1 δ(ri , map(si))

N
(31)

where N is the total number of samples, and δ(x, y) is 1 if x = y and 0 otherwise. map(si)

is a mapping function which can map the labels obtained by the clustering methods to
the labels provided by the databases. The best mapping is usually fulfilled by the Kuhn-
Munkres algorithm [8].

The second metric used in clustering applications is the normalized mutual information
(NMI). It aims to measure the similarity of two clusters based on the amount of statistical
information shared by random variables. Given two sets of image clusters C = {c1, ..., ck}
and C ′ = {c′

1, ..., c
′
k}, their mutual information metric MI(C, C ′) is defined as:

MI(C, C ′) =
∑

ci∈C,c′
j ∈C′

p(ci, c
′
j ) · log

p(ci, c
′
j )

p(ci)· (c′
j )

(32)

where p(ci), p(c′
j ) represent the probabilities that an image arbitrarily selected from the

data set belongs to the clusters C, C ′, respectively, and p(ci, c
′
j ) represents the joint proba-

bility that this arbitrarily selected image belongs to both clusters simultaneously. MI(C, C ′)
takes values between zero and max(H(C),H(C ′)), where H(C) and H(C ′) denote the
entropy of the clusters C and C ′, respectively. MI(C, C ′) reaches the maximum when two
sets of image clusters are identical, while it equals to zero when the two sets are completely
independent. The advantage of MI(C, C ′) is that the value keeps the same for all kinds of
permutations. By dividing the mutual information by max(H(C),H(C ′)), NMI is derived
as follows:

NMI(C, C ′) = MI(C, C ′)
max(H(C),H(C ′))

(33)

Different from AC, NMI is invariant with the permutation of labels. Namely, it does not
require the mapping between two clusters in advance.
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Fig. 1 Sample face images from the ORL database

4.2 Clustering results

Given a collection of face images from multiple subjects, which have various illumina-
tion conditions and expressions. For each given clustering number k, the experiments are
repeated 20 runs on the randomly chosen clusters and the average clustering performance is
recorded as the final result. The accuracy (AC) and normalized mutual information (NMI)
are calculated by the predicted and given labels, and the best results for each database are
highlighted in bold in the tables.

4.2.1 ORL database

The ORL database has ten different images of each of 40 distinct subjects. For each subject,
the images are captured under different facial expressions and light conditions. The face
images used in this work are cropped and pre-resized to 32 × 32 pixels for computational
efficiency. Images are preprocessed in advance so that faces are located. The samples of
ORL database are depicted in Fig. 1. In order to evaluate the algorithm performances over
different sample sizes, different cluster numbers are selected in our experiments. We select
{10,15,20,25,30,35,40} clusters respectively from ORL database. Tables 2 and 3 show the
detailed clustering accuracy and normalized mutual information by seven methods, respec-
tively. Our proposed method outperforms all the other competing methods consistently, in
terms of AC, while SSC performs slightly better as the k = {35, 40} in terms of NMI. This
can be explained by that the sparsity has the same ability to characterize the structure of
data as that of low-rank.

Table 2 Clustering Performance on the ORL Database: AC (%)

k K-means LRR SSC RLRR BDR AWNLRR LSPLRG

10 66.20 69.40 72.45 70.15 60.40 73.90 74.55

15 60.80 66.50 70.23 66.60 51.73 70.83 73.47

20 57.12 67.88 66.15 66.83 48.80 64.65 70.23

25 55.14 66.02 66.20 67.18 46.84 58.50 69.42

30 54.78 66.52 66.58 66.33 44.77 52.58 69.08

35 52.60 64.79 67.03 67.01 46.54 48.63 68.63

40 51.76 64.19 66.54 65.29 46.40 45.12 69.83

Avg. 56.92 66.47 67.88 67.06 49.35 59.17 70.74
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Table 3 Clustering Performance on the ORL Database: NMI (%)

k K-means LRR SSC RLRR BDR AWNLRR LSPLRG

10 73.16 73.87 79.28 73.56 66.16 78.88 80.59

15 71.39 74.90 80.00 75.19 61.49 79.02 81.90

20 70.34 77.71 78.97 76.77 59.99 75.01 81.22

25 70.93 77.53 80.21 78.02 59.14 70.69 81.64

30 70.53 78.70 81.39 78.74 61.36 65.63 81.72

35 70.76 78.28 82.70 79.80 65.40 64.12 81.69

40 70.85 78.88 82.84 79.47 66.56 62.90 82.82

Avg. 71.14 77.12 80.77 77.36 62.87 70.89 81.65

4.2.2 AR database

The AR face database contains about 4000 face images of 126 subjects. For each subject,
there are 26 images are taken in two separate sessions with large variations in terms of facial
disguise, illumination and expressions. Some images of the same subject from the AR face
database are shown as in Fig. 2. Each data point is normalized to have a unit length. We then
construct the data matrix X from subsets which consist of different numbers of subjects
k ∈ {10, 12, 14, 16, 18, 20, 22, 24, 26}. The subspace clustering methods can be performed
on X and the performances are recorded in the Tables 4 and 5. It can be seen LSPLRG
achieves the competitive performance in most cases. One may notice that BDR distinctly
outperforms other methods in this database. This is because the relationship between the
data is more important in this database, which can be effectively exploited by block diagonal
representation. Thus, beyond the sparse vector, low-rank matrix, the block diagonal matrix
is another interesting structure of structured sparsity.

4.2.3 LFW database

The third database is the LFW face database, which consists of more than 13000 face images
from 1680 subjects pictured under the unconstrained conditions. In our experiments, we
select a subset including 1251 face images of 86 individuals for evaluation, and each subject
has only 10-20 images with an imbalanced number of samples. All the face images are
cropped and resized to 32 × 32 pixels. Figure 3 shows typical face images from LFW face
database. In our experiments, we select {10,20,30,40,50,60,70,80} clusters respectively and
the experimental results of different methods on this database are presented in Table 6 and 7.

Fig. 2 Sample images from the AR database
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Table 4 Clustering Performance on the AR Database: AC (%)

k K-means LRR SSC RLRR BDR AWNLRR LSPLRG

10 26.88 46.62 18.55 45.77 52.81 48.29 50.38

12 24.15 48.48 17.44 49.33 50.38 48.24 49.74

14 21.59 50.59 16.02 50.69 52.25 48.64 50.58

16 20.42 49.05 15.26 47.14 54.62 49.86 52.01

18 19.79 48.70 14.29 47.97 54.34 49.42 52.87

20 18.90 49.14 13.42 48.29 56.46 49.28 52.86

22 17.95 50.59 13.22 50.37 58.72 49.96 52.36

24 18.41 50.43 12.39 50.66 60.32 48.81 52.28

26 17.11 51.66 12.07 51.20 58.48 48.99 52.52

Avg. 20.58 49.47 14.74 49.05 55.38 49.05 51.73

We can see that the best clustering results are still achieved by our LSPLRG, which also
verifies the fact that the proposed method has particular potential for face image clustering.

4.2.4 Extended yale B database

The Extended Yale B face database contains 2414 frontal-face images of 38 subjects cap-
tured under different laboratory-controlled illumination conditions. For each subject, there
are 59-64 nearly frontal images which are manually aligned and cropped. In our experiment,
each image is resized to 32 × 32 pixels, and is vectorized to a 1024 vector as a data point.
Figure 4 shows some face images with various lighting condition. Each data point is nor-
malized to have a unit length. We construct the data matrix X from subsets which consist of
different numbers of subjects k ∈ {10, 15, 20, 25, 30, 35}. It should be noted that Extended
Yale B database is challenging for subspace clustering due to corruptions in the data caused
by specular reflections. According to the Tables 8 and 9, we can see that the proposed
LSPLRG once again achieves the best results on all cases. The average clustering accuracies
obtained by LRR, SSC, RLRR, BDR, AWNLRR, LSPLRG are 76.79%, 73.53%, 61.25%,

Table 5 Clustering Performance on the AR Database: NMI (%)

k K-means LRR SSC RLRR BDR AWNLRR LSPLRG

10 27.03 44.93 8.64 44.44 54.18 50.81 53.55

12 26.57 49.12 9.08 50.22 54.12 53.00 56.39

14 26.41 52.87 10.50 52.69 57.21 55.07 58.86

16 26.48 53.06 11.52 52.25 61.40 57.49 60.81

18 26.99 54.16 13.01 53.89 61.96 58.31 62.50

20 27.05 55.32 13.85 55.15 65.22 58.88 63.15

22 27.56 57.58 15.13 57.79 68.42 60.09 63.36

24 28.93 58.46 15.49 58.92 68.64 59.97 64.12

26 28.92 60.03 16.31 59.98 69.29 60.71 65.04

Avg. 27.33 53.95 12.61 53.93 62.27 57.15 60.86
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Fig. 3 Sample images from the LFW database

Table 6 Clustering Performance on the LFW Database: AC (%)

k K-means LRR SSC RLRR BDR AWNLRR LSPLRG

10 40.05 45.14 47.36 44.05 31.09 45.14 47.86

20 30.38 37.91 39.98 37.70 23.55 32.68 40.52

30 28.97 34.42 36.09 34.91 18.30 26.50 36.73

40 26.11 32.70 34.36 33.05 16.02 24.94 34.98

50 24.84 31.17 31.84 31.58 13.55 24.04 33.41

60 23.53 29.98 29.56 30.52 11.36 23.27 32.42

70 22.64 29.81 28.75 30.22 10.48 22.70 32.04

80 22.04 29.35 26.53 29.48 10.48 22.57 31.32

Avg. 27.32 33.81 34.31 33.94 16.85 27.73 36.16

Table 7 Clustering Performance on the LFW Database: NMI (%)

k K-means LRR SSC RLRR BDR AWNLRR LSPLRG

10 38.76 45.62 48.10 44.74 26.83 45.96 49.34

20 40.71 49.35 51.44 49.65 26.67 42.40 52.71

30 43.86 52.07 53.44 52.40 24.55 39.17 54.22

40 44.63 53.56 55.21 54.16 23.23 42.71 55.64

50 45.66 54.69 55.39 54.83 21.17 45.70 56.64

60 46.57 55.37 54.95 55.85 18.69 47.80 57.54

70 47.53 56.40 55.52 56.80 18.14 48.85 58.55

80 48.34 57.36 55.33 57.61 19.28 50.33 58.99

Avg. 44.51 53.05 53.67 53.26 22.32 45.37 55.45

Fig. 4 Sample images from the Extended Yale B database
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Table 8 Clustering Performance on the Extended Yale B Database: AC (%)

k K-means LRR SSC RLRR BDR AWNLRR LSPLRG

10 18.16 81.50 74.01 83.37 44.40 94.04 95.19

15 14.55 77.55 73.55 66.36 40.09 91.88 93.78

20 13.12 76.31 69.33 54.79 41.41 90.18 92.70

25 12.02 74.23 71.30 52.25 48.16 88.63 90.47

30 11.16 75.04 75.16 54.36 52.06 87.50 89.43

35 10.99 76.13 77.85 56.36 55.77 86.51 88.97

Avg. 13.33 76.79 73.53 61.25 46.98 89.79 91.76

46.98%, 89.79%, and 91.76%, respectively. In this database, AWNLRR and LSPLRG sig-
nificantly outperform the other methods in term of both accuracy and normalized mutual
information. This is because there is a graph manifold regularization to preserve the local
geometrical structure in these two methods. Moreover, the experimental results also validate
that our method has an outstanding capability on overcoming the challenges of illumination
variations and corruptions.

4.3 Visualization of the affinity matrices

To further demonstrate the effectiveness of LSPLRG, we evaluate the affinity matrices
obtained by different methods, which could qualitatively reflect the performance of affinity
learning. Figure 5 shows the visualization of these affinity matrices.

We use 10 classes of samples from ORL face database to visually present the affinity
matrices derived by SSC, AWNLRR and LSPLRG. From Fig. 5, we can see that the affinity
matrix designed by our method LSPLRG has more clear block-diagonal structure. Specif-
ically, in the case of ORL, due to the existence of noise produced by face expressions and
minor face poses, the main concern is the off-diagonal parts. Comparing the affinity matri-
ces of SSC and AWNLRR, there is fewer nonzero entries in off-diagonal blocks obtained
by LSPLRG and the entries within the diagonal blocks dominate the matrix in amplitude,
which implies that each subject becomes highly compact and the different subjects are bet-
ter separated. This demonstrates that LSPLRG not only take into account the global and
local structures of data, but also learns a sparse affinity matrix. Thus, the affinity matrix
learned by our method has more discriminative information and better for face clustering.

Table 9 Clustering Performance on the Extended Yale B Database: NMI (%)

k K-means LRR SSC RLRR BDR AWNLRR LSPLRG

10 8.68 80.32 69.60 80.36 42.38 93.16 94.45

15 9.84 77.57 71.98 67.29 42.80 92.88 94.16

20 11.09 76.53 69.42 58.23 45.83 92.08 93.39

25 11.89 75.42 71.99 57.08 52.86 91.48 92.38

30 13.10 76.84 75.79 58.96 57.28 90.95 91.97

35 14.39 77.93 78.49 60.48 60.93 90.22 91.49

Avg. 11.50 77.44 72.88 63.73 50.35 91.80 92.97
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(a) (b) (c)

Fig. 5 Affinity matrix comparisons on the ORL database. (a)-(c) are the affinity matrices obtained using
SSC, AWNLRR and LSPLRG, respectively

4.4 Convergence and parameter discussion

Convergence is the basic requirement for an excellent algorithm. In this subsection, we
mainly focus on analyzing the convergence property of the proposed method with ADMM
reported in Algorithm 1. In fact, the optimization scheme for problem (7) is equivalent to
a two-block optimization problem, which is similar to the classical ADMM [16, 39]. The
classical ADMM is intended to solve problems in the form

min
z∈�z,w∈�w

f (z) + h(w) s.t. Rz + T w = u (34)

where f and h are convex functions. �z and �w are the boundary constraints of variables
z and w. It is apparent that ADMM for problem (34) can be directly extended to solve the
matrix optimization problem as follows

min
Z∈�Z,W∈�W

f (Z) + h(W) s.t. RZ + T W = U (35)

where R, T , U are matrices. The augmented Lagrangian of problem (35), in the method of
classical ADMM, is formulated as

L(Z,W,C) = f (Z) + h(W) + μ

2
‖RZ + T W − U‖2F + 〈C, RZ + T W − U〉 (36)

where C is the Lagrangian multiplier, and μ is a penalty coefficient. ADMM updates two
primal variables in an alternating scheme, and iteratively solves problem (36) as follows

Zt+1 = argmin
Z

Lμ(Z,Wt , Ct ) (37)

Wt+1 = argmin
W

Lμ(Zt ,W,Ct ) (38)

Ct+1 = Ct + μ(RZt+1 + T Wt+1 − U) (39)

It should be noted that problem (7) is a special case of problem (35), and the pro-
posed optimization algorithm shown in Algorithm 1 has same optimization style of classical
ADMM. Therefore, the proposed optimization algorithm shown in Algorithm 1 is equiva-
lent to a two-block ADMM, the global convergence of which is theoretically guaranteed [12,
16]. Figure 6 shows the convergence curves on four different databases, i.e. ORL, AR, LFW
and Extended Yale B. It is obvious that the objective value decreases monotonously in each
iteration, and finally converges to a local optima. Meanwhile, the optimization algorithm
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Fig. 6 Convergence curves on different databases

Fig. 7 Clustering accuracy versus different values of parameters
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converges fast and within ten iterations, which also proves the fast convergence property of
the optimization.

There are several regularization parameters affecting the performance of our proposed
method LSPLRG. λ1 controls the values of weighted matrix W , which is used to avoid
trivial solution. λ2, λ3, λ4 are tunable parameters used to balance the importance of the
corresponding terms. We investigate their impacts on the final clustering performance. In
our experiments, we just change one parameter while fixing the other ones. Figure 7 shows
the clustering accuracies of the proposed method with respect to the four parameters on the
ORL database. Figure 7a shows the influence of the parameter λ1 on the clustering accuracy
of LSPLRG. Generally, larger λ1 leads to better clustering performance. From Fig. 7b, we
can see that the performance is not very well when λ2 is larger than 0.001. The performance
degeneration is due to the relatively weak regularization effect. From Fig. 7c, we can see
that LSPLRG performs well and stably when λ3 ≤ 0.01. If λ3 is relatively large, the local
geometrical structure of data may not be well preserved due to the reconstruction loss. From
Fig. 7d, it can be seen that the performance of LSPLRG is stable when λ4 is within the
range of {0.0001, 0.001, 0.01}. Based on these observations, we fix parameter λ1 = 100,
λ2 = 0.0001, λ3 = 0.01 and λ4 = 0.001 for all the experiments in this paper.

5 Conclusion and future work

In this paper, a novel face clustering method called learning a sparsity preserving low-
rank graph (LSPLRG) has been put forward. The proposed method jointly combines the
sparse representation (SR) and low-rank representation (LRR) to learn the optimal affinity
graph for clustering. In contrast with existing graph based methods, LSPLRG learns a initial
affinity graph on the sparse coefficients without any a priori graph or similarity matrix.
This is a critical step for reducing the influence of noise and outliers. Meanwhile, LSPLRG
introduces an adaptive weighted matrix to constrain the self-representation, and integrates
the distance regularization term into the low-rankness property of data representation to
exploit the global and local structure of data. To reduce the redundant features, a constraint
on the representation matrix to make our model learn a more discriminative graph for face
clustering. Extensive experiments on benchmark databases show that the proposed method
produce very competitive results for face clustering compared with several state-of-the-art
subspace clustering methods.

Similar to most clustering methods, we found the main limitation of our method may be
sensitive to some parameter initializations, which remains to our future study. Furthermore,
we will try to develop our framework based on more effective features, and we plan to utilize
the newly developed techniques including the block-level strategy [14] and the category-
agnostic technique [45] to obtain the salient edge features. In order to reduce the redundant
features and the influence of noise and outliers, the optimal affinity graph could be built
by the salient edge features which integrates the local edge information and global location
information.
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