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Abstract
Early classification on time series has emerged as an active research area in the field of
machine learning. It covers a wide range of applications in agriculture, medical and multi-
media systems, including drought prediction, health monitoring, event detection, and many
more. The early classification aims to predict the class label of a time series as soon as
possible without waiting for the complete series. A critical issue in early classification is
the learning of decision policy that determines the adequacy of the collected data required
for reliable class prediction. It is more challenging for Multivariate Time Series (MTS)
data, where the decision depends on multiple variables to achieve a trade-off between earli-
ness and accuracy. Therefore, this work proposes an optimization-based early classification
model for MTS data based on optimal decision rule learning. The proposed model adopts a
two-layered approach. The first layer employs the Gaussian process probabilistic classifiers
for each variable in MTS that provides the class probabilities at the successive time steps
in the series. The second layer defines Early Stopping Rule (ESR) that performs the class
prediction task. The ESR learns its parameters through the particle swarm optimization by
simultaneously minimizing the misclassification cost and delaying the decision cost. This
work has utilized publicly available MTS datasets to validate the proposed early classifi-
cation model. The experimental results show that the proposed model achieves promising
results in terms of accuracy and earliness compared to existing methods.
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1 Introduction

Time series (TS) is a temporal sequence of data points obtained from sequential mea-
surements, recordings of natural processes, or human activities. With the proliferation of
multimedia technology, more and more TS data have appeared, including an audio stream,
video sequences, and sensory information. Thus, numerous applications have been bene-
fited from TS-based data-driven approaches under the purview of data mining and machine
learning [1, 17, 30]. Among these approaches, an early classification of TS is one of the
emerging research topics and it investigates the possibility of early class prediction using
partially observed data [26, 32]. Moreover, an early classification is highly essential in appli-
cations where the cost of data collection is high or time-bound class prediction is required.
For example, in agricultural monitoring [31], timely prediction of droughts and shortage of
multiple resources would enable the implementation of necessary measures for preventing
famine and determining sustainable policy. In robotics and vision-based multimedia systems
[1], early assessment of human activity aids to take the required steps in advance during a
real-time interactive session with humans.

Early classification aims to predict the class label of TS at the earliest without waiting
for full-length series as compared to traditional approaches that focus only on maximizing
the accuracy regardless of earliness [2]. However, early classification raises two challenges:
(i) To define a good decision policy that can determine whether the partially observed TS
data is sufficient for reliable class prediction. (ii) To find the balancing trade-off between
the two objectives: accuracy and earliness. In view of these challenges, several approaches
have been proposed in the literature [9, 23, 25, 26, 37, 38] for early class prediction. For
example, Xing et al. [37], put forth a remarkable work for early classification on time series
(ECTS) by introducing the concept of the minimum required length for class prediction
based on learning nearest-neighbor relationship in the training dataset. In [38] and [9], the
authors presented shapelet-based approaches for early classification. The shapelets are the
distinguishable features of TS. Therefore, in these methods, shapelet-threshold needs to be
defined carefully to determine if TS has a specific shapelet for classification. However, if
time series belonging to different class groups do not have a distinguishable pattern, then it
is difficult to determine the threshold [39]. As a result, in such scenarios, the shapelet-based
methods are not completely effective. Mori et al. [25] proposed the model-based approach
for early classification on TS that follow the learning of probabilistic classifiers and relia-
bility threshold. Recently in another work, Mori et al. [26] presented an optimization-based
framework for early classification on TS by using a set of probabilistic classifiers and defin-
ing stopping rules for early decision making. Moreover, the stopping rules were optimized
by employing Genetic Algorithms.

The methods mentioned above were designed for Univariate Time Series (UTS) and are
not suitable for Multivariate Time Series (MTS) data directly. It has to be noted that the
early classification on MTS is a challenging task as compared to UTS because of the pres-
ence of multiple variables (For instance, each variable in MTS represents a UTS). Often,
these variables are of different lengths and have hidden interconnected relationships. Pre-
vious studies in this regard have provided only a few solutions for early classification on
MTS data, including the notable work accomplished using shapelet-based methods [10, 14,
16, 22]. Ghalwash and Obradovic [10] proposed a multivariate shapelet detection (MSD)
method and applied it on gene expression data. They extracted multivariate shapelets by
employing a sliding window on MTS and selected the key shapelets for early classification
using weighted information gain. He et al. [14] pointed out the limitation of this prior work
by arguing that the informative pattern in each variable of MTS (UTS) can lie in different
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parts of the variable. But in MSD, all segments of multivariate shapelet should have the
same starting and endpoint. To address this issue, He et al. [14] developed a method for early
classification on MTS by extracting the core shapelets from each variable independently.
Moreover, they defined two classifier query by committee and rule-based classifier to clas-
sify incoming MTS. Lin et al. [22] introduced a reliable early classification approach for
MTS, which may contain numerical as well as categorical variables. They also ensured the
accuracy stability of early classification as compared to full-length MTS. In [16], the authors
introduced the confidence-based early classification on MTS with multiple interpretable
rules. This method estimates the cumulative confidence on incoming MTS and classifies the
MTS only when a certain requirement of confidence is satisfied. In short, these methods uti-
lize the local shapelets as interpretable features that are extracted from MTS in the training
dataset. Thus, irrespective of its interpretability, these methods demand intensive compu-
tation to extract informative shapelets [22]. Moreover, the existing approaches for early
classification on MTS have not adequately addressed both the challenges of early classifi-
cation problem. Hence, in this work, we propose an optimization-based early classification
approach for MTS data in order to address the above mentioned challenges.

Motivation and significant contributions: To the best of our knowledge, this is the first
work to address the problem of early classification on MTS from an optimization point
of view. The motivations behind this work include: (i) Early classification on MTS has
many real-world promising applications besides being a challenge due to its variabil-
ity and complexity. (ii) Earliness in class prediction is always achieved at the cost of
accuracy. Therefore trade-off between accuracy and earliness always exists. But exist-
ing early classification approaches for MTS do not optimize accuracy in prediction and
earliness simultaneously for learning decision rules. Hence, in this work, we propose an
optimization-based early classification model for MTS data by extending the framework
[26] defined for UTS. The novelty of this work lies in the way the proposed model uses
ensemble-based classification on MTS data and defines the ESRs to provide a reliable
class prediction based on probabilistic outputs of underline classifiers. The significant
contributions of this work are as follows:

– The proposed early classification model for MTS captures temporal information
from each variable to make an early decision on MTS. The model follows a two-
layered approach in which the first layer defines a set of probabilistic classifiers
(PCs) and the second layer defines the decision rules.

– In the first layer, the model employs the majority voting scheme with tie resolution to
provide the class label as well as probabilistic output to the second layer. Moreover,
the probabilistic information of each class is extracted by executing PCs on each
variable (dimension) of MTS separately with respect to time.

– In the second layer, the model defines two ESRs for an early classification on
MTS and learns its parameters by considering the misclassification cost and delay-
ing decision cost simultaneously in its cost function. Moreover, the particle swarm
optimization method is used to learn the parameters of ESRs.

– The proposed model has been evaluated on six publicly available MTS datasets to
validate its applicability.

The rest of the paper is organized as follows: Section 2 provides the basic definitions and
related works. The proposed early classification model for MTS is described in Section 3,
and it is followed by a brief description of the classifier as well as the optimization
method, provided in Section 4. Section 5 and Section 6 present the experimental setup
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and result analysis respectively. Finally, Section 7 provides the conclusion of the work
along with future directions.

2 Background and related work

Definition 1 A univariate time series (UTS) is the ordered sequence of values, collected
over time, defined as x = 〈x1, x2, . . . , xt , . . . , xT 〉 where xt ∈ R, t ∈ [1, T ] and T is the
length of UTS. Additionally, a UTS or simply called TS, is considered a sequence, if its
values are from a finite set.

Definition 2 A multivariate time series (MTS) is a column vector, defined as X =
〈x1, x2, . . . , xv, . . . , xV 〉τ where each component of MTS xv = 〈xv,1, xv,2, . . . ,

xv,t , . . . , xv,T 〉 is a raw vector (UTS) of length T. This MTS is V-dimensional and each
variate xv (vth dimension of MTS) may be of different length.

Definition 3 A incoming MTS (incomplete MTS) contains the data points up to the
time t (t ≤ T ) from initial point. It is defined as Xt = 〈〈X1,1, X1,2, X1,t 〉,
〈X2,1, X2,2, X2,t 〉, . . . , 〈Xv,1, Xv,2, Xv,t 〉〉τ where Xv,t ∈ R and Xt ∈ R

V ×t .

Definition 4 Early classification on time series is a supervised learning task that classifies
the incoming TS X when enough data points are collected in the series for reliable class
prediction. The early classification model is presented in Fig. 1. The model processes the
incoming X at defined time points and at each time point t , Xt is presented to classifier.
Further, the output of the classifier is analyzed by the decision criterion. If the criterion is
satisfied, the model predicts the class label. Otherwise the model waits for more data points
to be added in the series. This process is continued until the model satisfies the decision
criterion or the end of the series is encountered.

2.1 Related work

In the last few decades, various traditional time series classification methods have been
studied [2], whereas, in recent times, early classification on TS data has received great
research interest [12, 23, 25, 39]. Thus, several methods have been reported in the litera-
ture to address an early classification problem such as instance-based learning [5, 24, 37],
shapelet-based methods [10, 14, 38], model-based approaches [7, 21, 26], and other meth-
ods [12, 18]. The majority of these prior works have considered UTS data only, and very

Fig. 1 Early classification model
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few of them have taken MTS data into account. Initially, the methods for early classification
on TS were developed by considering a fixed set of time points to train the set of classifiers
and predict the class label of the test sample based on the incomplete TS [11]. Bregón et al.
[5] used a case-based reasoning method for early fault classification in the laboratory plant.
The method utilizes the K- nearest neighbour classifiers with different distance measures
for analysis. The above mentioned methods classify the TS at prefixes of TS and as a result,
no adaptive decision policy has been designed for early classification.

Xing et al. [37], formally defined the early classification of TS problem and presented a
1-NN based early classification approach that analyses the nearest neighbour stability rela-
tionship in the training set. This paper presents the concept of minimum prediction length
(MPL) that learned for each TS in the training set. This approach classifies the new TS
based on the MPL of matching TS in the training set. It also tries to achieve a decent early
classification accuracy in comparison to the conventional 1-NN approach on full-length TS.
A similar approach for MTS, namely Multivariate Time Series Early Classification based
on Piecewise aggregate approximation (MTSECP), has been presented in [24] by includ-
ing two additional pre-processing steps. First, MTS is converted into UTS by computing
center sequence and then, dimensionality reduction is performed with the help of the piece-
wise aggregate approximation technique. MTSECP does not utilize variable’s information
in MTS effectively. These instance-based methods basically define the MRL for each TS in
the training set and do not consider the earliness in their learning.

Shapelet-based methods for early classification are highly adopted, notably in the domain
of medical and health informatics, due to its interpretability. Basically, shapelets are the sub-
sequences of TS that have the discriminating power to differentiate among multiple classes.
Moreover, shapelets represent the distinct class patterns, and hence, they are called as inter-
pretable features. The baseline of this type of approach for early classification on UTS is
presented in [38] and is denominated as Early Distinctive Shapelet Classification (EDSC).
Firstly, EDSC adopted two methods, namely kernel density estimation and chebyshev’s
inequality, for learning the shapelet threshold. Then they mined the best local shapelets
using defined utility measure, which are highly effective for early classification. Ghalwash
et al. [9] proposed an extension of the EDSC with an additional uncertainty estimation prop-
erty since EDSC does not have any assessment of the uncertainty while making a decision
on the class prediction. Furthermore, Ghalwash and Obradovic [10] extended the concept
of shapelets for early classification on MTS and proposed a method named Multivariate
Shapelet Detection (MSD). The MSD extracts the local key shapelets from N-dimensional
MTS in the training set and classifies the new incoming MTS based on best matching key
shapelet. The limitation of this method lies in the employment of a sliding window in min-
ing the shapelets. As an effect, all the sub-sequences in a multivariate shapelet have the
same start and endpoint. However, in many realistic scenarios, the informative patterns in
the variable can lie in a different part of MTS and need not be synchronous. He et al. [14]
have tackled this issue and introduced a method called Mining Core Feature for Early Clas-
sification (MCFEC). The MCFEC method at first extracts the shapelets for each variable
independently and then selects the core shapelets by proposing a utility measure termed
generalized extended F-measure. Finally, two classification strategies were proposed (query
by a committee and rule-based) to classify the incoming MTS.

Lin et al. [22] developed a reliable early classification method for heterogeneous MTS
data, including categorical and numerical attributes. This method builds an early serial
classifier that ensures accuracy stability compared to the full-length time series classifier.
Data imbalance is a common problem in many real-world applications. In this regard, an
ensemble-based early classification framework is presented in [15], called early prediction
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on imbalanced MTS, that can effectively handle inter and intra class imbalance for early
classification. Later, He et al. [16] extended this work by considering confidence estima-
tion for reliable early class prediction on MTS. Recently, Zhao et al. [40] developed an
early classification approach for patient monitoring in ICU. They extracted multivariate
early shapelets called MEShapelet and predicted asynchronous MTS with interpretability.
The above given literature reveals the fact that the shapelet-based methods are highly inter-
pretable for class prediction. However, two critical issues exist with regard to this approach.
Firstly, the shapelet’s threshold is very hard to define if the class-wise patterns are not
well distinguishable. Secondly, the process of extracting informative shapelets is highly
time-consuming and complex. As a result, shapelet-based methods are computationally
expensive.

A simple and effective model-based early classification approach has been presented in
[25], based on discriminating the classes over time. This model develops the set of prob-
abilistic classifiers at different timestamps and computes the reliability threshold for each
class label. Moreover, the model also defines the discriminative safeguard point for each
class. It classifies the incoming TS only if the reliability threshold (the difference between
the two highest class probabilities) and specified safeguard point for the predicted class
level are satisfied. A similar approach is adopted in [33], in which the reliability threshold
is defined based on uncertainty information in class prediction. Lv et al. [23] developed a
relatively similar framework, in which the confidence threshold was defined by fusing the
classifier’s true prediction probabilities at successive time steps. This framework is adapt-
able for both probabilistic as well as discriminative classifiers. A distance transformation
based framework for early classification on TS was put forth by Yao et al. [39]. They
transformed the TS into distance space using interpretable sub-sequences and trained the
probabilistic classifiers. Finally, the confidence area was proposed as a criterion for early
decision making on incoming TS. Li et al. [21] applied an early classification approach for
human activity recognition, based on partially observed activity information. They modelled
the 3D action recognition problem as a stochastic process called a dynamic marked point
process. The early activity recognition problem was also tackled by employing the prob-
abilistic graphical model [1]. The model captures the high-label description of the human
body as skeletons from low-cost depth sensors and is able to classify the activity by con-
sidering partially observed multivariate data. Hsu et al. [18] proposed deep learning-based
early classification on MTS through attention mechanism, which helped in identifying best
performing segments in variables of MTS. Finally, the authors in [12] presented a meta-
algorithm for early classification on MTS sensory data in the application of road surface
detection. They learned the MPL class-wise and employed an ensemble-based approach that
classified incoming MTS which had an unequal sampling rate of sensor’s data.

The above-discussed approaches have demonstrated good results for early classification.
However, they did not optimize the two conflicting objectives, i.e., accuracy and earliness,
simultaneously. In this regard, Dachraoui et al. [7] proposed a meta-algorithm for early
classification on TS that is non-myopic in nature. The authors included the misclassification
cost and delaying decision cost in its optimization function for balancing the accuracy and
the earliness.Thus, during testing, incoming TS was classified only if the estimated cost at
the current timestamp is less than the estimated cost at all future timestamps. However, this
method used a clustering approach for evaluating future costs, which caused a lack of clarity
in the overall process. Later, Tavenard and Malinowski [35] introduced two new strategies
(NoCluster and 2Step) by eliminating the clustering step for further improvement. Mori
et al. [26], introduced a framework for early classification on TS by defining the stopping
rules as decision criteria and learned the rules by optimizing the accuracy as well as earliness
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simultaneously. In this line, Recently, Sharma and Singh [34] presented an optimization-
based approach for early malware detection by learning early decision rule through particle
swarm optimization.

There are certain limitations in the existing approaches that have been identified from
the literature discussed so far. Firstly, most of the early classification methods have been
developed for UTS, with a few for MTS. Secondly, the majority of early classification
approaches for MTS are the features-based methods. They are highly expensive compu-
tationally even for a moderate training set. Moreover, these methods perform well only if
time series belongs to a class group, have distinct patterns from other class groups. Finally,
existing methods for MTS do not consider the trade-off between the objectives accuracy
and earliness, which is a desirable property for early classification problems [26, 37].
Early classification on MTS data is also more challenging due to its complexity and size,
such as unequal length variables and heterogeneity of data, etc. Therefore, by consider-
ing all the above limitations, this work proposes an optimization-based early classification
model for MTS data, which takes accuracy and earliness into consideration while learning
decision rule. Moreover, the effect of the trade-off parameter is analyzed with several pub-
lically available MTS datasets. A detailed description of the proposed model and results are
provided in the following sections.

3 Model description

This section provides a complete description of the proposed early classification model for
MTS. Figure 2 depicts the model in two phases: the training phase and the prediction phase.
In the training phase, the model performs the two tasks (i) Learning the optimized ESRs
from training data, (ii) Training the PCs at all defined time points with the full training
set. For determining the ESRs, K-fold cross-validation process is adopted. In each iteration,

Fig. 2 Block diagram of the proposed model for early classification on MTS
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ad-hoc PCs are trained using (K-1) folds training data and generate the class probabilities
for the other remaining fold (e.g., the fold that is not used for training the ad-hoc classifiers).
In this way, class probabilities for a complete training set are generated at all defined time
points. Moreover, this probabilistic output of each variable in MTS is utilized to learn the
ESRs through the optimization process. In the prediction phase, incoming MTS at each time
point t is presented to corresponding PCs, which return the probabilistic output. Moreover,
this output is analyzed by the ESR to take the final decision regarding whether to predict
the class label or to wait for more data points in the MTS. The training steps in detail are
provided in the following subsections.

3.1 Training phase

The objective of this phase is to train the early classification model for MTS using training
set D = {(Xi , yi), 1 ≤ i ≤ m} where y is the class label of corresponding X, and m is the
number of samples in the dataset. The proposed phase is divided into four steps. The first
step demonstrates the learning process of a series of PCs, which provides the probabilistic
output for MTS, and the second step defines the ESRs which helps in decision making
for early classification. The third step defines the cost function that considers the delaying
decision cost and misclassification cost in order to optimize the accuracy as well as the
earliness. Moreover, this cost function is used to learn ESRs. Finally, in the fourth step, the
learning procedure of ESR is presented.

Step 1: Classifier training: A set of PCs Ht = {{hv
t }, 1 ≤ v ≤ V } are trained at every time

point t or explicitly defined by the user based on the knowledge of application
domain. Figure 3 illustrates that for a given D, Ht is trained using the truncated
training set Dt , at each time point t . Thus, at every time point, V number of
classifiers are learned. If the number of time points are T , then total V ∗ T PCs
are learned from the D. Further, Ht is used to get the posterior probabilities of
unlabelled MTS at any given time point t .

Step 2: ESRs definition: ESRs are one of the vital steps in the proposed early classification
model for MTS, since they provide support in the decision making process of early

Fig. 3 Training a set of classifiers for MTS
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classification. In the proposed model, two ESRs (R1� and R2�) are defined, and
the first ESR R1� is expressed as

R1�(�t , t) =
⎧
⎨

⎩

0 if �0(
t
T

) + ∑V
v=1�2(v−1)+1�

t
v,1 + �2(v)(

�t
v,1

�t
v,2

) ≤ 0

1 otherwise

(1)

where � = (�0,�1, . . . , �2V ) is a vector of parameters of R1�. Each param-
eter takes the real value between -1 and 1. The parameters are learned through the
optimization process, which is discussed in step 4. �t ∈ R

V ×K is the set of pos-
terior probabilities of a MTS X at time t , returned by corresponding Ht , where K

is the number of classes in the dataset. �t
v,1 and �t

v,2 denote the first and second

highest posterior probabilities of vth variable of MTS at time t .
The ESR, defined in (1), consists of three components: (i) The ratio of current

time point t and length of the series T, (ii) The highest probability of each variable
of MTS, and (iii) The ratio of highest and second-highest probabilities of each
variable of MTS. The first component is included to support the earliness factor
in the decision process. Because, as time t progresses, the corresponding delaying
cost increases. The last two components are utilized to assist the reliability of
the decision. If the ratio of the two highest class probabilities is more, then the
prediction will be more reliable.

The second ESR R2θ extends the intuition of SR2 [26] for MTS. The ESR
R2θ considers all the class probabilities for each variable in MTS X, return by Ht

at time t. ESR R2θ is formally defined as

R2�(�t , t) =

⎧
⎪⎨

⎪⎩

0 if �0
(

t
T

) + ∑V
v=1 �K(v−1)+1�

t
v,1 + �K(v−1)+2�

t
v,2+

· · · + �K(v−1)+K�t
v,K ≤ 0

1 otherwise

(2)

where � = (�0,�1, . . . , �V K) is a vector of parameters and �t
v,k is the pre-

dicted probability of vth variable for kth class at time point t . This R2θ leverages
the complete probabilistic output of an MTS for performing the decision task.

Step 3: Cost function (CF) definitions: The aim of defining the cost function is to learn
the � parameters of ESRs. The learning of � depends on the shape of ESR and
CF. Therefore, CF includes misclassification costs and delaying decision costs to
attain the objectives of accuracy and earliness simultaneously. Moreover, the α

parameter is used to assign the relative weight between these objectives. As the
value of α lies between 0 and 1, there are two extreme cases. If α = 0 then the
accuracy factor becomes 0 and if α = 1 then the earliness factor becomes 0. The
proposed cost function for learning ESR is defined as

C(D,R�) = 1
m

∑m
i=1(α Cmiss(Xi ,R) + (1 − α)Cdelay(Xi ,R)) + λ lr(�)(3)

where α is a balancing parameter between accuracy and earliness, Cmiss is mis-
classification cost of a MTS and Cdelay is cost of delaying the decision to classify
the MTS. λ ( ≥ 0) is a regularization parameter and lr(�) is a regularization
term [27]. When lr(�) = 0, it indicates no regularization and therefore, it is the
standard CF. In addition, both regularization l1 and l2 are operated in the CF to
reduce the effect of overfitting. l1 regularization is defined by lr(�) = ‖�‖1 =
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∑len(�)
j=1 |�| and l2 regularization is defined by lr(�) = ‖�‖2 = ∑len(�)

j=1 �2.
Thus, the variants of a cost function are denoted as Cno(no regularization), Cl1

(l1-regularization), Cl2 (l2-regularization) and effect of variants are analyzed in
Section 6.

Delaying decision cost: The delaying decision cost increases as the number of
sample data points increases. It is scaled between 0 and 1. If ith MTS in training
set is classified at time point t (denoted by t∗) then delaying decision cost is
defined as:

Cdelay(Xi ,R) = t∗

T
(4)

Misclassification cost: It is evaluated based on (0-1) loss. If the predicted output
is equal to true output, then cost is considered 0, otherwise 1. The Cmiss for ith

MTS in training set is calculated as:

Cmiss(Xi ,R) = �

(
majority

v∈[1,V ]
(

argmax

k∈[1,K]
(
�t∗

v,k

)

v∈[1,V ]

)

	= ŷ

)

(5)

where,

– argmax

k∈[1,K]
(
�t∗

v,k

)
returns the class corresponding to the maximum probabil-

ity of vth dimension of MTS.
– majority

v∈[1,V ] (.) returns the class having highest majority in voting. If the
majority voting ties, then class is being returned, which has the highest
probability among them. It is explained with example, later in this step.

– �(.) returns 0, if the predicted class is equal to true class label otherwise
returns 1.

Majority voting tie resolution: Lets consider two scenarios of probabilities �′
and �′′ where V = 4 and K = 3.

�′ =

⎡

⎢
⎢
⎣

0.54 0.34 0.12
0.84 0.12 0.04
0.35 0.46 0.19
0.05 0.17 0.78

⎤

⎥
⎥
⎦ , �′′ =

⎡

⎢
⎢
⎣

0.54 0.34 0.12
0.84 0.12 0.04
0.06 0.89 0.05
0.02 0.87 0.11

⎤

⎥
⎥
⎦

In the first scenario �′, argmax function returns a class vector (1,1, 2, 3). Now
in the vector, 1 has the highest frequency of occurrence, and therefore majority

function will return 1 as an output class. In the second scenario �′′, argmax

function returns class vector of (1, 1, 2, 2). Now, in this vector, all the classes
have a similar frequency of occurrence and thus the decision is a tie. To handle
this deadlock, the probability vector (0.54, 0.84, 0.89, 0.87) which contains the
variable wise highest class probability corresponding to class vector (1, 1, 2, 2) is
accessed. Now, in this case, majority function will return 2 as the output class
label, based on the corresponding highest class probability (0.89) in the probability
vector.

Step 4: ESRs learning: In this step, the learning procedure of ESR is discussed in detail. It
requires two-parameters (�,�) to make a decision (eg. whether the prediction is
reliable or not) at any time point t , as defined in (1) and (2). This step aims to learn
�, by minimizing the cost function, defined by (3) through optimization methods.
The proposed CF is non-convex and and non-differentiable [26]. Therefore, the
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1

0

Fig. 4 Cost evaluation process for a MTS X

population-based optimization methods are the best choice. Hence, in this work,
PSO is selected for performing optimization exercise [29]. It is worth noting that
the PSO is computationally effective, as compared to the other population-based
methods such as Genetic Algorithm (GA) [13].

In this process, Cmiss and Cdelay are calculated for each MTS in the training set and the
average over all the MTS is recorded as defined in (3). This cost needs to be minimized to
learn �. The process of cost evaluation is illustrated in Fig. 4. In this process, initially, t

starts from 1 and passes the subsequence of X into corresponding ad-hoc Ht . Further, the
(�t ) at time t is passed into ESR and if ESR returns 0 (unsatisfied) then it increments the
t and repeat the process. If ESR returns 1 (satisfied), then the current time point t∗ and
corresponding �t∗ are used to calculate Cdelay and Cmiss using (4) & (5) respectively.

To bring more generality in learning the ESRs, K-fold cross-validation is used. It is also
explained at the starting of this Section 3. At each time point t , training data is truncated
and partitioned into K-folds. Each time K-1 folds are used for training the ad-hoc Ht , and
remaining fold is utilized to generate the class probabilities. Thus it aids to reduce over
fitting in the learning of ESRs parameters.

3.2 Prediction phase

The proposed model has learned two components, a set of classifiers H and ESRs. A set of
classifiers Ht at each time point t is trained using a complete training dataset, and ESR’s are
learned through the optimization process. Finally, the trained model is used for early pre-
diction on unseen MTS, as shown in Fig. 5. The Xt is provided to corresponding classifiers
Ht , which returns the class probabilities. Further these probabilities are presented to ESR. If
ESR returns true, model halts and predicts the class level, or otherwise waits for more data.

Fig. 5 Prediction process for a incoming MTS X
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4 Classifier and optimizationmethod

This section provides a brief description of Gaussian process classifier and particle swarm
optimization, used underline the proposed model.

4.1 Gaussian process classifier

A Gaussian process (GP) is a collection of random variables (RVs) such that the joint
distribution of every finite subset of RVs is multivariate Gaussian [36].

f (x) ∼ GP(m(x),k(x, x′)), (6)

where m(x) and k(x, x′) are the mean and covariance functions. GPs are the natural gener-
alization of Gaussian distributions and defined over functions. Moreover, GPs are worked
as priors for bayesian interference and do not depend on training data. Basically they spec-
ify the properties of latent functions. GPs can be utilized for regression as well as for
classification problem. For classification task, first GP prior is defined over latent function
f (x) and then the output of latent function is squashed by logistic or probit functions to
obtain the prior on π(x) which is used for class prediction [36]. For given training data
D = (X ,Y) = {(xi, yi)|1 ≤ i ≤ m}, the prediction of test sample (x∗) is naturally divided
into two steps. The first is to compute the distribution of latent variable for test sample,
defined as:

p(f ∗|X ,Y, x∗) =
∫

p(f ∗|X , x∗, f)p(f|X ,Y)df, (7)

where p(f|X ,Y) = p(Y |f)p(f|X )/p(Y |X ) and then produce a probabilistic prediction by
using distribution over the latent f ∗, defined as:

π̄∗ = p(y∗ = +1|X ,Y, x∗)

=
∫

σ(f ∗)p(f ∗|X ,Y, x∗)df ∗ ,
(8)

4.2 Particle swarm optimization (PSO)

PSO is a kind of evolutionary computation technique which is used for global optimization.
It is inspired by the social behaviour of fish schooling or birds flocking [29]. Moreover,
PSO is population-based optimization and the group of particles in the population is known
to be a swarm. Every particle in the swarm shares the information cooperatively to achieve
the desired goal. Swarm particles update its path in the direction of the global best position,
and the local best position, which is attained by any neighborhood particle. In this way,
PSO utilizes the complete range of potential solutions, named as population set. Moreover,
PSO determines the best optimal solution from the potential population via cooperation and
competition.

Suppose the number of particles in the swarm is s with d-dimensional search space. Then
each particle in the swarm P = (p1, p2, . . . , ps) is defined by d-dimensional vector for
position as well as for velocity separately. The position and velocity of the ith particle are
represented as pi = (pi1, pi2, . . . , pid) and vi = (vi1, vi2, . . . , vid ) respectively. At every
iteration, PSO updates the particle’s positional vector and particle’s velocity vector using
(10) and (9) respectively by considering local best solution pbi = (pbi1, pbi2, . . . , pbid)
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and global best solution pgi = (pgi1, pgi2, . . . , pgid) [29]. The velocity and position of
particles is calculated as

vn+1
i,j = wvn

i,j + c1r1j

(
pbn

i,j − pn
i,j

)
+ c2r2j

(
pgn

j − pn
i,j

)
(9)

pn+1
i,j = pn

i,j + vn+1
i,j (10)

where i = 1, 2, . . . , s; j = 1, 2, . . . , d; w is inertia weight; c1 and c2 are the positive real
numbers, called as the acceleration constant. The variables r1 and r2 have the random value
between 0 and 1; and n = 1, 2, . . . , denotes the iteration number.

5 Experimental setup

This section provides the details of evaluation methods, datasets description and various
parameter settings for analyzing the results. The simulation of this model is performed in R
on a Personal Computer having Intel Core i7 processor with 3.6 GHz clock frequency and
16 GB main memory.

5.1 Evaluationmetrics

The literature informs that there are two performance measures, generally used for early
classification models. They are accuracy and earliness. As per given definition of these
performance measures by (11) and (12) in the proposed work, the accuracy value should
be high and earliness value should be low to select a better performing model. However,
accuracy and earliness are conflicting measures and hence the selection the best performing
model is difficult. Therefore we have used one more evaluation metric called harmonic
mean (HM) of accuracy and earliness, defined in (13).

Accuracy: It is the standard measure to evaluate the performance of the model. It is
defined as the ratio of truly classified MTS and the total number of MTS in the test set.

Accuracy =
∑N

i=1(ŷ
i = yi)

N
(11)

where N is the number of MTS in test set. ŷi is the predicted class label of ith test MTS
and yi is the corresponding true class label. In (11), the value is count 1 if ŷi matched
with yi and 0 otherwise.

Earliness: It is another measure to evaluate the performance of early classification model
on MTS. This is the average percentage of predicted length (t∗) to full-length of MTS, It
is defined as:

Earliness = 1

N

N∑

i=1

t∗i
T

× 100 (12)

Harmonic Mean (HM): It computes the combined score of accuracy and earliness. HM
will be 1 when earliness is 0% and accuracy 100%.

HM = 2 ∗ (Accuracy) ∗ (1 − Earliness)

Accurcay + (1 − Earliness)
(13)
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5.2 Dataset description

The proposed model is evaluated using six real-world publicly available MTS datasets
including Wafer [28], ECG[28], Character Trajectories [8], Libras [8], CMUsubject16 [3],
and uWaveGestureLibrary [6]. Moreover, we considered the pre-specified training and test-
ing sets of these datasets from Baydogan’s archive [3]. To show the applicability of proposed
model, the considered datasets are diversified in nature. Therefore, the number of classes
ranges from 2 to 20, and the number of variables ranges from 2 to 62. In the pre-processing
step, initially, z-score normalization is performed on each MTS in the dataset. The detailed
characteristic information about the datasets is provided in Table 1.

5.3 Parameter selection

Firstly, we need to define the set of time points at which classifiers are trained. We have used
different types of datasets in our experimental work. These datasets have variable length
MTS, which varies from 45 to 580. Therefore, twenty equidistant time points have been
considered at an interval of 5%. These points are defined as 5%, 10% 15%, up to 100% of
full-length TS.

Next, the CF defined in the proposed model requires two parameters α and λ. In this
experiment, the four values of α have been considered as 0.6, 0.7, 0.8, and 0.9. The value of
α is assumed above 0.50 to give more weight to accuracy. The effect of these α values are
analyzed in Section 6.2. The considered value set for regularization parameter λ is {0.001,
0.003, 0.01, 0.03, 0.3, 0.1, 1,3}. Further, to learn the ESR parameters, the optimization
method PSO [4] is used by considering population size 100, max iteration 100 and inertia
weight 0.9. The PSO follows stochasticity. Therefore, we took fifteen iterations for each
combination of α and λ. The result of λ is considered corresponding to the median of CF
values in all fifteen iterations, similar to [26]. For given α, � parameter of ESR is considered
corresponding to the best results for λ. Finally, the probabilistic classifier GP [20] has been
utilized with inner product kernel and convergence threshold (1e−8).

In the proposed model, GP classifier considers distance-based features as input, in place
of raw time series, which has demonstrated good performance in [19, 25]. The distance fea-
ture vector of a raw time series contains the pairwise distance from all the time series in the
training set. For example, at a particular time step t, the train and test sets are defined as
Dtrain

v,t ∈ R
m×t , Dtest

v,t ∈ R
n×t respectively, where v represents the vth dimension of MTS,

m and n represents the number of samples in train and test sets. Then Dtrain
v,t and Dtest

v,t are
transformed into distance-based features matrix Pv,t ∈ R

m×m and Qv,t ∈ R
n×m respec-

tively. In matrix Pv,t , Pv,t [i, j ] represents the distance measure between ith and j th sample

Table 1 Datasets description

Dataset Min length Max length Classes Variables Train samples Test samples

Wafer 104 198 2 6 298 896

ECG 39 152 2 2 100 100

Character trajectories (ChT) 109 205 20 3 300 2558

CMUsubject16 (CMU16) 127 580 2 62 29 29

Libras 45 45 15 2 180 180

uWaveGesture library (UWave) 315 315 8 3 200 4278
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in train set. In matrix Qv,t , Qv,t [i, j ] represents the distance measure between ith sample
in the test set and j th sample in the train set. In this experiment, the standard Euclidean
distance measure is considered to transform raw TS into the distance-based feature vector.

6 Results and discussion

This section provides the analysis of the experimental results on six real-world datasets
considering different parameter settings of the proposed model. Furthermore, the results are
compared with traditional methods as well as other methods for early classification on MTS.

6.1 Effect of parameter α

The trade-off between accuracy and earliness is achieved through α parameter by assigning
the relative weight to each component in CF. Figure 6a plots the average value of accuracy
and earliness for α ∈ (0.6, 0.7, 0.8, 0.9). It is observed that the accuracy and earliness val-
ues are increasing with α, while ranging from 0.5 to 0.9. Thus, it intuitively supports the
hypothesis of CF that higher the value of α assigns more weight to accuracy and less weight
to earliness. Thus, it can be said that increasing the value of α improves the accuracy of
prediction but at the same time, it also increases the average prediction time. However, it is
not true for all individual datasets. It can be visualized in Fig. 6b that the accuracy is not
improved for ECG dataset while increasing the value of α from 0.6 to 0.9. However, it can be
seen that the accuracy improves for other datasets e.g., Libras, UWave. For Libras dataset,
accuracy improves from 0.49 to 0.60 (11%) and for UWave dataset, accuracy improves from
0.68 to 0.77 (9%) for the value of α changing from 0.6 to 0.9. Similar effect is also visible
on earliness. As observed in Fig. 6b, the rate of change in earliness for Libras dataset 49%
(35%-84%) is higher compared to ChT dataset 12% (23%-35%) with increasing the value
of α from 0.6 to 0.9. Further, it has been analysed that the above changes in the behaviour
of the accuracy and earliness measures depend on the accuracy pattern of individual
datasets.

The accuracy pattern of datasets has been demonstrated in Fig. 7. These patterns can be
categorised into three groups. In the first category, the accuracy gradually increases with
increase in the series length, as seen for Libras, UWave and ChT datasets. For Libras dataset,

15 20 25 30 35 40
Earliness (%)

0.76

0.78

0.80

0.82

Ac
cu

ra
cy

 

α

(a)

20 40 60 80
Earliness (%)

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Wafer
ECG
ChT
CMU16
Libras
UWave

(b)

Fig. 6 Effect of α parameter : a Scattered plot between Accuracy and Earliness by taking average over all
the datasets b Earliness v/s Accuracy plot for individual dataset
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Fig. 7 Accuracy plot at increasing length of MTS on different datasets

the accuracy changes from 0.28 to 0.64. Similarily for UWave and ChT datasets, the accu-
racy improves from 0.34 to 0.80 and from 0.44 to 0.94 respectively. This denotes the general
convention that adding more data point in the series improves the accuracy. In the second
category, the accuracy becomes stable after an interval of data points in the series. Further-
more, the addition of more data points does not significantly improve accuracy e.g., ECG
and Wafer datasets. It may be possible that after some time points, added data points in TS
are either redundant or not informative. In the third category, the accuracy trend becomes
unstable or shows unusual behavior, for example CMU16 dataset. The accuracy on this
dataset increases upto 20% of the series length. After that, unstable trends are visible up to
60% of the series length before it becomes stable.

Further, it has been observed that the accuracy pattern of datasets also influenced the α

trends. As it can be seen in Fig. 6b, the first category datasets such as UWave and Libras,
have shown high rate of change in accuracy as well as in earliness when α changes from
0.6 to 0.9. Whereas, the second category datasets such as Wafer and ECG have shown small
changes in values of the accuracy and earliness, as compared to the first category of datasets.
However, the proposed model is adaptive in nature. However, the proposed model is adap-
tive in nature. Therefore, based on the requirement, the user can choose any value of α

between 0 and 1.
Furthermore, the behaviour of α is also analyzed over the combinations of ESRs and CF

which is shown in Fig. 8. It displays the box plot for accuracy and earliness parameters over
six datasets. The dots in this figure indicate the extreme low or high accuracy value, obtained
with respect to one of the datasets. It has been noted that earliness is gradually increasing for
all the combinations of ESRs and CF while changing α from 0.6 to 0.9, except R2� − Cl1 .
As shown in Fig. 8k, median of earliness at α = 0.7 is higher than α = 0.8. However, this
behaviour of accuracy is a little bit different for different combinations of ESRs and CF.
R1� − Cl1 displays the best accuracy on α = 0.9 as compared to α = 0.8 as shown in
Fig. 8b. Moreover, R2� − Cl1 and R2� − Cl2 display similar performance for α = 0.8
and 0.9 , which can be seen in Fig. 8h and i respectively. Based on the above observations,
it is notified that 0.8 is the more appropriate value of α to give balancing trade-off between
accuracy and earliness.
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Fig. 8 Effect of α parameter on different combination of ESRs and CF

6.2 Effect of regularization

In this section, the effect of different variants of cost function Cl0 , Cl1 and Cl2 are analyzed.
Figure 9 illustrates the average accuracy and earliness over the different values of α. It is
seen that the R1� with Cl2 improves both the accuracy and earliness on Libras dataset, as
shown in Fig. 9a and c respectively. R1� with Cl1 slightly improved the results as compared
to Cno and Cl2 on CMU16 as well as on UWave datasets. Moreover, no significant effect
of regularization has been observed on ECG and Wafer datasets. R2� with Cl2 improves
the earliness on CMU16 by maintaining similar accuracy with Cno, as shown in Fig. 9b
and d. Hence, the above analysis indicates that the ESRs R1� and R2� with regularization
improve the results on ChT, CMU16, Libras and UWave datasets.

In addition, the analysis of ESRs with all variants of CF are given for α ∈ {0.8, 0.9}.
Figure 10 demonstrates the performance of R1� −Cl0 , R1� −Cl1 , R1� −Cl2 , R2� −Cl0 ,
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Fig. 9 Regularization effect on ESRs R1� and R2�

R2� − Cl1 and R2� − Cl2 over six datasets. It is observed that none of the combinations
shows its superiority over all the datasets. However, it is noticeable over individual datasets.
As shown in Fig. 10a and b, R1� − Cl2 provides the best earliness on Libras dataset while
attaining similar accuracy with R1� −Cl0 and R1� −Cl1 . Whereas, R1� −Cl0 attains the
best earliness on UWave dataset. For α = 0.9, R1� − Cl1 achieves the highest accuracy on
CMU16 dataset and lowest earliness value on UWave dataset as shown in Fig. 10c and d. It
shows that R1� with Cl1 outperforms in one of the objectives without degrading other. R2�

with regularization provides more balanced performance as compared to no regularization.
As clearly demonstrated in Fig. 10e and f, for CMU16 dataset, R2�−Cl0 is the best in terms
of accuracy but worst in terms of earliness. Similarly, on Wafer dataset, R2� −Cl0 is best in
terms of earliness but worst in terms of accuracy. In Fig. 10g and h, R2� − Cl1 and R2� −
Cl2 achieve the best accuracy and earliness on CMU16 and UWave datasets respectively.
Thus, based on above observations, it is concluded that ESRs with regularization provide
more balanced performance.

6.3 Comparison to other methods

To validate the proposed model, MCFEC[14] and MTSECP [24] methods are used for com-
parison by considering three real MTS datasets as shown in Table 2. For comparative study,
results for MCFEC and MTSECP are taken from original source. Moreover, the value of
earliness for MCFEC method has be transformed as per given definition in the proposed
model. On ECG dataset, the proposed method has performed better than MCFEC, in terms
of both accuracy and earliness. However, MTSECP provides better accuracy than the pro-
posed model on the ECG dataset. Moreover, on the Wafer dataset, the proposed model
outperforms the other methods in terms of earliness and score comparable accuracy. Further,
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Fig. 10 Accuracy and earliness plot of ESRs for α ∈ {0.8, 0.9}

the comparison based on HM metric clearly shows that the proposed model is the best per-
forming one compared to MCFEC and MTSECP. It is also observed that MCFEC beats the
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Table 2 Comparison of proposed models with other methods

Dataset ECG Wafer ChT

Method Acc Ear HM Acc Ear HM Acc Ear HM

MCFEC-QBC[14] 77 24 0.76 90 23 0.83 — — —

MCFEC-Rule [14] 78 26 0.76 97 27 0.83 — — —

MTSECP [24] 94 54 0.62 98 57 0.59 97 70 0.46

R1�-Cl1 82 8 0.87 94 14 0.90 91 26 0.82

R1�-Cl2 83 7 0.88 94 13 0.90 90 25 0.81

R2�-Cl1 83 9 0.87 91 5 0.93 90 26 0.81

R2�-Cl2 84 10 0.87 91 5 0.93 89 28 0.80

MTSECP with 12% and 24% margin on ECG and Wafer datasets respectively. Whereas, the
proposed model scores HM with high marginality about 11%, 10% and 36% respectively
on ECG, Wafer and ChT datasets, compared to other methods. It has also been noticed that
the MTSECP is more centric towards accuracy and poorly centric towards earliness for all
the datasets. It can be concluded that the proposed model provides a decent performance by
balancing between accuracy and earliness.

Besides this comparative analysis on three datasets ECG,Wafer and ChT, the detailed
experimental results are provided in Table 3. This table presents the accuracy and earliness
values of all the variations of the proposed model over six datasets. R1�-Cl1 on Wafer
dataset, archives the accuracy value 0.91 for α = {0.6, 0.7, 0.8} with earliness about 5.12%.
At α = 0.9 R1�-Cl1 gets the accuracy value 0.92 with earliness 12.90%. Thus, for R1�-
Cl1 , α = 0.9 is not a good choice on Waf er dataset. However, for R2�-Cl2 , α = 0.9
is a good choice on Wafer dataset as it provides the accuracy value 0.95 with earliness of
16.75%. On ECG dataset, all variants of the proposed model record similar performance
in terms of accuracy and earliness. In contrast, the unusual behaviour of α is perceived
on CMU16 dataset. As it is seen in Table 3 R2�-Cl1 shows best performance in terms of
accuracy and earliness both at α = 0.6, while R2�-Cl2 gets best accuracy 0.86 at α = 0.9
and best earliness 6.03 at α = 0.8. This unusual behaviour of α on CMU16 is directly
influenced by the accuracy pattern of the dataset, as shown in Fig. 7. As a result, it can be
summarized that the variant of the proposed model provides best result at α = 0.9 for Wafer,
ChT and UWave datasets whereas for ECG and Libras datasets at α = 0.8. On CMU16, the
selection of α varies among the variants of the proposed model. However, selection of α

completely depends on the user’s need.

6.4 Comparison of the proposedmodel with GP-full

In this section, the different variations of the proposed model are compared with the tradi-
tional approach. Figure 11a and b illustrate the accuracy and earliness of various datasets.
GP-Full indicates the GP classifier which is trained using full-length TS as per the con-
ventional classification approach. Figure 11 shows that R1�-Cl1 , R1�-Cl2 , R2�-Cl1 ,and
R2�-Cl2 , have achieved decent accuracies over all the datasets as compared to GP-full by
utilizing approximately 37% of full-length MTS. R2�-Cl2 achieves similar or even higher
accuracy on Wafer, ChT and CMU16 datasets while the average prediction lengths are
14.67%, 34.18% and 10.34% respectively. On Libras and UWave datasets, the proposed
model is behind 3% and 2% respectively, in terms of accuracy. However, the proposed model
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Fig. 11 Comparison of the proposed model with GP-full by considering α = 0.9

requires approximately 86.18% and 64.76% length of MTS for Libras and UWave datasets,
as compared to GP-full. Thus, from the above observation, It can be clearly seen that the
proposed model required very fewer data points to classify the MTS as compared to the

Table 3 Accuracy and earliness of proposed model over six MTS datasets

Wafer ECG ChT CMU16 Libras UWave

α Acc Ear Acc Ear Acc Ear Acc Ear Acc Ear Acc Ear

R1�-Cl1 0.6 0.91 5.07 0.83 8.30 0.86 24.02 0.72 5.69 0.42 41.81 0.69 29.94

0.7 0.91 5.13 0.83 8.25 0.89 24.26 0.83 6.38 0.49 55.06 0.72 36.19

0.8 0.91 5.14 0.83 8.85 0.90 25.72 0.76 7.41 0.58 80.06 0.73 58.39

0.9 0.92 12.90 0.83 15.90 0.91 34.56 0.86 6.72 0.59 88.69 0.76 67.65

R1�-Cl2 0.6 0.91 5.08 0.83 7.90 0.87 25.04 0.76 6.21 0.53 36.64 0.69 38.92

0.7 0.91 5.12 0.83 8.10 0.90 24.08 0.76 7.07 0.58 54.44 0.70 34.36

0.8 0.91 5.11 0.84 10.10 0.89 27.73 0.69 10.17 0.59 60.67 0.73 57.20

0.9 0.92 12.08 0.83 16.00 0.93 33.55 0.76 10.00 0.59 89.00 0.77 72.43

R2�-Cl1 0.6 0.92 7.14 0.83 7.10 0.87 22.16 0.86 7.41 0.52 32.69 0.70 32.03

0.7 0.91 5.80 0.82 7.80 0.88 24.48 0.86 30.00 0.57 39.92 0.76 43.30

0.8 0.94 14.21 0.82 7.80 0.91 26.00 0.72 14.48 0.59 65.03 0.76 45.32

0.9 0.94 16.96 0.82 9.50 0.93 33.81 0.72 13.45 0.59 76.36 0.79 55.97

R2�-Cl2 0.6 0.90 5.25 0.83 7.05 0.87 21.32 0.86 11.90 0.53 32.81 0.69 29.32

0.7 0.90 5.73 0.83 6.95 0.90 25.77 0.69 7.76 0.51 36.19 0.77 44.53

0.8 0.94 13.39 0.83 6.95 0.90 25.42 0.83 6.03 0.60 65.06 0.75 42.63

0.9 0.95 16.75 0.83 11.50 0.93 34.82 0.86 11.21 0.60 77.67 0.78 60.97

R1�-Cno 0.6 0.91 5.11 0.83 6.60 0.88 23.80 0.74 8.45 0.41 35.13 0.65 34.51

0.7 0.91 5.15 0.82 9.73 0.89 26.04 0.76 7.84 0.49 53.14 0.72 39.47

0.8 0.91 5.07 0.83 9.70 0.90 30.91 0.78 7.59 0.60 85.18 0.72 47.98

0.9 0.93 12.50 0.84 16.10 0.92 36.70 0.81 7.76 0.61 87.81 0.77 73.90

R2�-Cno 0.6 0.91 6.70 0.83 6.95 0.89 23.86 0.83 7.59 0.54 33.65 0.67 29.36

0.7 0.91 6.40 0.83 6.95 0.90 24.59 0.74 6.21 0.57 42.32 0.75 40.30

0.8 0.91 6.89 0.83 6.78 0.90 25.15 0.88 20.26 0.61 63.83 0.75 41.05

0.9 0.95 17.47 0.83 10.55 0.93 34.16 0.81 14.05 0.60 86.79 0.78 59.79

GP NA 0.96 100 0.86 100 0.94 100 0.83 100 0.64 100 0.80 100
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traditional TS classification approach. Also, the proposed model is able to provide very early
decision on the four datasets (Wafer, ECG, ChT, CMU16) as compared to Libras, UWave
datasets. As shown in Fig. 7, accuracy on these four datasets (Wafer, ECG, ChT, CMU16)
improves by utilizing approximately upto 20% series length and after that, it becomes nearly
stable. But for Libras and UWave datasets, accuracy improves with increasing the series
length. Thus, it clearly shows that the proposed model for early classification on MTS is
adaptive to the accuracy pattern of datasets and able to provide early classification with high
reliability.

7 Conclusion

In this paper, we proposed an optimization-based early classification model for MTS data
by learning optimal Early Stopping Rules (ESRs). The ESRs continuously examine the out-
put of probabilistic classifiers and predict the class label when enough data points become
available in the incoming MTS. The ESRs have been learned through particle swarm opti-
mization by minimizing the cost of accuracy and earliness. Besides, the proposed model has
employed the Gaussian process probabilistic classifier at each variable of MTS and adopted
the ensemble-based approach for assigning the class label to MTS. In the proposed model,
the balancing between accuracy and earliness is obtained by parameter that can be chosen
based on the requirement of the user. The proposed model has been evaluated on publically
available datasets and has outperformed state-of-the-art methods by providing balancing
trade-off between the objectives accuracy and earliness.

In future work, more complex weighted ESRs can be designed by assigning the higher
weight to more informative components in MTS. Furthermore, the proposed model can be
optimized for specific multimedia time-series applications such as early voice detection,
gait recognition by customizing cost function, ESR, and other parameters of the proposed
model.
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