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Abstract
A novel voxel-based occlusion-invariant 3D face recognition framework
(V3DOFR) based on game theory and simulated annealing is proposed. In
V3DOFR approach, 3D meshes are converted to voxel form of sizes 43, 83,
and 163. After that, locality preserving projection-based embeddings are computed
for removing the sparseness of voxels and generating consistent linear embedding
per mesh with size 64 × 3, 128 × 3, and 256 × 3, respectively. The generator of
triplets provides the triplets of sizes 64x3x3, 128x3x3, and 256x3x3. The simu-
lated annealing is used to check the threshold value of adversarial triplet loss
generated after ensembling losses of different grid sizes. The proposed framework
is compared with four well-known methods using three face datasets, namely,
Bosphorus, UMBDB, and KinectFaceDB. The performance evaluation has been
done using four different cases of experimentations, viz. voxel based face recog-
nition, occlusion invariant face recognition, landmarks based 3D face recognition,
and 3D mesh based face recognition. Seven evaluation metrics are used to
compare the proposed technique with other methods. The proposed method
provides better accuracy and computation time over the other existing techniques
in the majority of cases.
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1 Introduction

3D face recognition is widely used throughout the world due to the availability of easily
collectable 3D data and capabilities of computation with the availability of highly economical
graphical processing units (GPUs). However, acquiring 3D images are harder as compared to
2D scans. Therefore, the number of images is limited in public databases [25, 86, 90]. In [90],
a high resolution spontaneous 3D dynamic facial expression database is presented. This work
supports 3D spatiotemporal features exploration in subtle face expression. In [86], high
resolution data acquisition is done using 3D dynamic imaging system setup. There are total
of 101 number of subjects, six unique expressions, 606 number of 2D texture videos, 606
number of 3D model sequences, and approximately 60,600 3D models. In [25], 3D face
recognition is improved using multi-instance enrollment representation. The experiments were
performed on ND-2006 3D face dataset [57], that consists of 13,450 3D images. There are
various techniques available in the literature for handling 3D mesh data, RGB-D image, or
point cloud data [23, 64, 99]. ElSayed et al. [23] presented a robust method for detection of
skin using 3D colored point clouds. This method is extended to solve 3D face detection
problem by building a weighted graph for the initial 3D colored point clouds. A linear
programming algorithm is used for predicting model using data mining approach and classi-
fying the graph regions of skin versus non-skin regions. Zhou et al. [99] presented a dense 3D
face decoding method using a non-linear 3D morphable model (3DMM) by training over joint
texture and shape autoencoders using direct mesh convolutions. It is shown in [99] that how
these autoencoders are usable in training very light weight models performing Coloured Mesh
Decoding (CMD) at speed of over 2500 FPS. Pham et al. [64] presented a novel robust hybrid
3D face tracking framework from RGBD videos. It is capable of tracking head pose and face
actions without any intervention or recalibration from a user.

Some well-known methods for handling 3D features are slower in computation time as
compared to deep learning techniques [48, 50, 76]. Spreeuwers [76] presented a 3D face
registration technique based on intrinsic coordinate system of the face. Principal Component
Analysis and Linear Discriminant Analysis (PCA-LDA) is used for feature extraction along
with matching score of likelihood ratio. The overall method takes 2.5 s per image, which is too
slow as compared to the technique proposed in this paper. Li et al. [50] presented 3D face
recognition technique by extending SIFT-like matching framework to mesh data. Lei et al. [48]
represented the facial scan using keypoint-based multiple triangle statistics (KMTS), which is a
robust method to partial facial data, pose variations, and facial expressions. An approach called
two-phase weighted collaborative representation classification (TPWCRC) is used. Experi-
ments were performed on Bosphorus [71], UMBDB [17], GavabDB [55], SHREC 2008 [82],
BU-3DFE [85], and FRGC v2.0 [66] datasets. There are various challenges in 3D face
recognition viz. pose, occlusion, expression, lighting, etc. These variations affect intra-class
recognition capabilities of 3D face recognition system [41].

Based on the above mentioned issues, a voxel-based 3D face recognition system is
proposed that utilize the basic concepts of locality preserving projections (LPP), triplet loss,
simulated annealing, and game theory. The reason behind the use of LPP is to remove the
sparseness of meshes with a non-uniform number of voxels. LPP is chosen over PCA due to
representing high dimensional data in low dimension, LPP is computed by optimal linear
approximation to eigenfunctions of Laplace Beltrami operator on the manifold whereas PCA
projects the data along with maximal variance directions [33]. The triplet loss training reduces
the distance between the intraclass faces and maximizes the distance between different class
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faces. It helps in increasing the reliability of the system in face identification. Simulated
annealing is used for minimizing the error rate by using the probability-based random
threshold value. Generator and discriminator are part of game theory that helps in the correct
selection of triplet generated based on simulated annealing. The combined effect of these
techniques makes the proposed method robust towards the occlusion in 3D face recognition.

The main contributions of this paper are as follows.

1. The proposed approach utilizes generator and discriminator for voxel-based face
recognition.

2. A deep learning and simulated annealing based framework is proposed for voxel-based
3D occlusion invariant face recognition (V3DOFR).

3. The proposed approach is validated using three standard datasets with a significant
amount of pose and occlusion variation.

4. The proposed technique is compared with other state-of-the-art methods for voxel-based
face recognition, occlusion invariant face recognition, 3D landmarks based face recogni-
tion, and 3D mesh-based face recognition.

The remaining structure of this paper is organized as follows. Section 2 presents the back-
ground work done in the field of face recognition. The proposed research framework is
presented in Section 3. Section 4 discusses the experimental results in detail. Section 5 presents
the future work. The concluding remarks are drawn in Section 6.

2 Background

In this section, the basic concepts of deep learning-based face recognition, voxelization,
locality preserving projections (LPP), triplet loss, game theory, and simulated annealing are
discussed. Thereafter, the related work is discussed.

2.1 Preliminary

2.1.1 Deep learning-based 3D face recognition

Training and testing are the two main phases of deep learning-based 3D face recognition (see
Fig. 1). There are two sub-phases in training phase namely, pre-processing and deep learning.
During pre-processing, 3D face acquisition is made by three methods such as RGB-D depth
image, 3D face mesh image, and 3D point cloud image [61]. Once 3D face is acquired, face
alignment as well as registration is done for maximum utilization of the available information.
There are three methods of proceeding with 3D face after alignment. First, coarse-detail based
facial landmark detection is one of the fastest method. Facial landmarks lack the finer details of
the face. To overcome this, voxelization is used that includes fine-details of a 3D face.
Voxelization is a slower process in contrast to landmarks detection. The third method is to
use a 3D object as a whole, in the form of 3D RGB-D image, mesh image, or the point cloud
image. After the completion of pre-processing phase, there is an availability of deep learning
models. There are different types of models such as convolutional neural networks (CNNs),
recurrent neural networks (RNNs), autoencoders (AEs), generative adversarial networks
(GANs), and reinforcement learning (RL) [2, 3]. CNN’s and RNNs are used in supervised
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learning for images and text, respectively. AEs and GANs are used in semi-supervised
learning. RL is used in unsupervised learning.

There are two sub-phases in testing phase namely, validation and verification. In validation,
the testing dataset is processed through alignment. Face registration and trained deep learning
model is used to predict the array of classes corresponding to all images in testing dataset. The
accuracy of face recognition model is computed as follows [37].

Accuracy ¼ Number of images correctly predicted

Total number of images
x 100 ð1Þ

In verification, the query image is processed through face alignment and registration. The
trained deep learning model is used to predict the class of image. Finally, a similarity score is
calculated in comparison to the predicted class images [14].

Similarity Score ¼ ∑
N

i¼1

corr Query Image; Iið Þ
N

ð2Þ

2.1.2 Voxelization

Voxel representation is widely used in multiple fields viz. computer graphics, computational
science, real-time computer vision, and 3D shape matching. Dynamic modeling requires
voxelization or real-time scan conversion. In this process, the triangular mesh is used to create
voxel representation from the input surface [60].

Let point O be arbitrary origin point, and G be a polyhedron with triangular faces t1, t2, t3,
…, tn, then H = {H1,H2,H3,…,Hn} be covering of G with 3D tetrahedra. Hi is defined by O
and triangular faces ti [58]. Point A is considered to be inside the polyhedron G iff

∑i sign Hið Þ incl Hi;Að Þ > 0 ð3Þ
where sign(Hi) is true when Hi > 0, and incl(Hi, A) is true for all A∈ Hi.

2.1.3 Locality preserving projections

Suppose there are large n-dimensional vectors of data points. The intrinsic property of data is
used for dimensionality reduction of these large vectors. Locality preserving projection (LPP)
builds a graph that consists of the neighborhood information of dataset [33] and solves the
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3D
 F

ac
e 

A
cq

ui
si

tio
n

(1
) R

G
B

-D
(2

) M
es

h
(3

) P
oi

nt
 C

lo
ud

La
nd

m
ar

ks
 D

et
ec

tio
n

Vo
xe

liz
at

io
n

A
lig

nm
en

t a
nd

 F
ac

e
R

eg
is

tr
at

io
n

C
la

ss
 P

re
di

ct
io

n

C
N

N
R

N
N

G
A

N

3D
 Im

ag
e 

(1
), 

(2
), 

(3
)

A
ut

oe
nc

od
er

R
L

O
R

O
R

TR
A

IN
IN

G

TE
ST

IN
G

Va
lid

at
io

n
Ve

rif
ic

at
io

n

Te
st

in
g

D
at

as
et

Q
ue

ry
 Im

ag
e

A
lig

nm
en

t a
nd

 F
ac

e 
R

eg
is

tr
at

io
n

Tr
ai

ne
d 

D
ee

p 
Le

ar
ni

ng
 M

od
el

C
la

ss
Pr

ed
ic

tio
n

A
rr

ay
C

la
ss

Pr
ed

ic
tio

n

C
om

pa
ris

on
w

ith
 G

ro
un

d
Tr

ut
h

Si
m

ila
rit

y
Sc

or
e

A
cc

ur
ac

y

Fig. 1 A general framework of deep learning-based 3D face recognition
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linear dimensionality reduction problem. LPP is a linear approximation of non-linear Laplace
Eigenmap and is as follows [9, 33].

In locality preserving projections algorithm, Graph G with P nodes are connected according
to the Euclidean norm and k-nearest neighbors of two nodes (see Step 1). In Step 2, weights
are assigned to nodes. In the final step, the computation of final l-dimensional vector is
calculated based on the generalized eigenvector problem.

2.1.4 Triplet loss

Triplet loss uses face embeddings as vectors. It chooses three embeddings namely, Anchor
(A), Positive (P), and Negative (N) from the dataset such that A and P belong to the same class,
and N belongs to a different class. A, P, and N are selected randomly based on three categories
viz. easy triplets, hard triplets, and semi-hard triplets. Easy triplets (see Eq. 4) has a loss of 0. In
hard triplets (see Eq. 5), negative embedding is closer to anchor embedding as compared to
positive embedding. In semi-hard triplets (see Eq. 6), the negative embedding is not closer than
the positive embedding but still has positive loss [73].

d A;Pð Þ þ magin < d A;Nð Þ ð4Þ

d A;Nð Þ < d A;Pð Þ ð5Þ

d A;Pð Þ < d A;Nð Þ < d A;Pð Þ þmargin ð6Þ
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The loss of a triplet (A, P, N) is defined as [73].

L ¼ max d A;Pð Þ−d A;Nð Þ þ margin; 0ð Þ ð7Þ

The main objective of triplet loss is to minimize the loss by pushing d(A, P) → 0 and d(A,
N) > d(A, P) +margin by triplet loss training. Figure 2 represents the concept of triplet loss
using three images given as input in form of A, P, and N to deep learning model for triplet
embeddings and triplet loss training.

2.1.5 Game theory

Game theory is a term used jointly with generative adversarial networks (GANs). GANs [29]
are one of the types of generative models. Let Pdata(I) be the distribution of a real image I and
PJ(J) be the distribution of the input. Let generator G(z) capture the Pdata distribution by using
an adversarial process. The discriminator D distinguishes between real images and generated
images. The formulation of the adversarial process in the form of a minimax game (see Eq. 8).

minGmaxDEI∼Pdata

h
logD Ið Þ þ EZ∼PZ log 1−D G zð Þð Þð Þ½ � ð8Þ

Theoretically, the global optimum PG(Z) = Pdata [30] is reached by the minimax game
on reaching Nash equilibrium [69] by the adversarial process. Recently, AttGAN [34]
has achieved facial attribute editing as well as gender and age transformation (see Fig.
3(a) and (b)) viz. reconstruction of blond hair, eye glass, changing expression,
makeup, etc. Face aging with conditional GANs [4] achieved remarkable results in
generating faces of different age from a single image (see Fig. 3(c)).

Deep
Learning

Deep
Learning

Deep
Learning

Triplet Loss

Embeddings

Anchor (A)

Positive (P)

Negative (N)

Shared Weights

Shared Weights

Fig. 2 Concept of triplet loss technique

Multimedia Tools and Applications (2020) 79:26517–2654726522



2.1.6 Simulated annealing

Simulated annealing (SA) optimization algorithm is based on metallurgical practices in which a
particular material is heated at high temperature, and then it is brought to low temperature gradually.
Shifting of atoms become unpredictable when heating a material at high temperature. It helps in the
elimination of impurities as the material takes pure crystal form after cooling. In terms of optimi-
zation, SA introduces a degree of randomness, which may take the solution from better to worse in
an attempt to escape local minima and increasing the probability of achieving global optimum [44].
The applications of SA are diverse [7, 13, 52] by single criterion optimization [8].

Figure 4 holds four states A, B, C, and D having different energy. The main target is to find
a path having maximum energy by using simulated annealing algorithm to traverse every state
exactly once. For understanding purposes, the four states have been connected in two ways,
clockwise and anticlockwise. The total sum of energies by clockwise traversing of all states is
35, whereas the total sum of energies by anticlockwise traversing is 70. Hence, the maximum
energy state path is selected by anticlockwise traversing.

Input

Reconstruction

Blond Hair

Eyeglasses

Gender

Mouth

VAEGAN IcGAN AttGAN

Female to Male

Old to Young

10-18 19-29 30-39 40-49 50-59 60+

(A)

(B)

(C)
Fig. 3 a Comparison of transforming attributes using VAE-GAN [46], IcGAN [63], and AttGAN [34], b Gender
and age transformation using AttGAN, and c Transformation of face to any age using Age Conditional GAN [4]
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In a simulated annealing algorithm, the initial state is chosen randomly (see Step 1). Es acts as
current state energy. The new state becomes the current state if there is a positive energy change,
and otherwise, the new state is chosen with probability eΔE/T (see Step 2). During the process,
temperature T is decreased gradually so that solution converges towards the global optimum.

2.2 Related work

Kim et al. [42] proposed a novel 3D face recognition algorithm using a face
expression augmentation technique alongwith deep convolutional neural network. They
used 2.5D or depth images as 3D face images and transfer learning on FRGC [66],
CASIA 3D [12], BU-3DFE [85], Bosphorus [71], and 3D-TEC [78] datasets. They
presented a technique of augmenting facial expressions from single 3D face image.
VGG-16 model has been used to implement the transfer learning. They claimed the
rank-1 accuracy for face recognition is 99.2% for Bosphorus. However, it would fail
on voxel based, mesh based, or landmark based 3D face recognition technique when
the input data is in sequential nature.

Gilani et al. [101] proposed a technique to generate millions of 3D facial images of unique
identities by simultaneously interpolating between the facial identity and facial expression
spaces to close the gap between the sizes of 2D and 3D datasets. There may be a loss in the
depth factor due to the conversion of 3D into 2D images but the augmentation makes up for
the loss. In closed and open world recognition scenarios, the proposed FR3DNet outperforms
the existing face recognition algorithms. The main advantage of [101] is that it helps in
building bigger 3D datasets as compared to the standard 3D datasets. This work is done on
3D images generated from 2D images. Similar to [42], this method fails on voxel based face
recognition.

Korshunov and Marcel [45] proposed a public dataset, namely, Deepfake, generated
with VidTIMIT database [70]. The main objective of this dataset is to help in
generating the swapped faces of two people from videos using generative adversarial
networks (GANs). This work is done on 2D face videos. They emphasized that the
quality of video is significantly impacted by training and blending parameters. It is
observed that the VGG-Net and FaceNet are in jeopardy due to Deepfake videos. The
error rate obtained from the FaceNet was 8.97%. The Deepfakes generated from
GANs are challenging for both the face detection and recognition systems. The face
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Fig. 4 State energy maximization using simulated annealing
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swap technology based on GANs provided greater challenge to 2D face recognition.
This work if presented on voxel face videos would be a challenging for 3D face
recognition.

Gecer et al. [28] came up with a novel 3D Morphable Models (3DMM) fitting
strategy, which is based on generative adversarial networks (GANs) and a differentiable
renderer. The novel cost function integrated various content losses on deep identity
features from a face recognition network. The high fidelity 3D Face Reconstruction
was achieved by using non-linear energy based cost optimization, GAN texture model,
differentiable renderer, cost function, and model fitting techniques. During the fitting
process, Adam solver was used for optimization. Abrevaya et al. [1] presents a GAN
based 3D face modeling novel architecture which combines a 3D generator with a 2D
discriminator leveraging the conventional CNNs. The feature loss, identity loss, and
expression loss are calculated by the discriminator to give the real or fake output. Four
publicly available 3D face datasets have been used namely BU-3DFE [85], Bosphorus
[71], BP4D-Spontaneous [90], and BP-4DFE [89].

Patil et al. [62] presents a survey on 3D face recognition. It provided an extensive
review on 3D face recognition in terms of feature detection, the classifiers, 3D face
databases, types of 3D facial data acquisition techniques viz. stereo acquisition, laser
beam scanning, and fringe pattern acquisition using structured light. Different 3D face
representations, namely, point cloud representation, 3D mesh representation, and depth
image representation are discussed. Different registration techniques of 3D faces as
iterative closest point (ICP) algorithm, spin images, simulated annealing, and intrinsic
coordinate system are discussed with their pros and cons. Wu et al. [81] extracted the
features from the whole 3D model. For 3D object shapes, a volumetric representation is
used. Based on the mesh surface, each voxel location contains a binary value of 0 or 1
with a grid size of 303. Voxel grids hold vast information in terms of facial density and
texture. This method is better than the depth image technique. Moreover, voxels can be
directly used in training 3D convolutional neural networks (3DCNNs) and 3D generative
adversarial networks (3DGANs).

Rathgeb et al. [68] presented an overview of impact and detection of facial beautifi-
cation in face recognition. The plastic surgery, facial retouching, facial cosmetics are
common these days. Due to these beautifications, the face recognition based biometrics
become an enormous challenge. Facial recognition is used in mobile phones unlocking,
payment applications, automated border control etc. The challenges were presented in
this work. All the work discussed in this paper is 2D in nature and lacks discussion on
3D face recognition and challenges. Hassaballah and Aly [31] discussed about the
significant challenges, which are faced while building a face recognition system for the
real world. 3D face recognition and video-based face recognition have been discussed in
the work, however, deep learning based techniques are not mentioned at all.

Scherhag et al. [72] presented the survey on face recognition systems under morphing
attacks. The generalizability of deep face recognition systems have increased the vulner-
ability against attacks. The morphing on 2D faces using correspondence, warping, and
blending are discussed. This work does not discuss morphing over 3D face images. Ding
and Tao [19] discussed 2D face image based pose-invariant face recognition (PIFR).
PIFR methods are grouped in four categories viz. pose-robust feature extraction ap-
proaches, face synthesis approaches, multi-view subspace learning approaches, and
hybrid approaches. The main challenge of face recognition under different poses is
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self-occlusion because of non-frontal pose. Other challenges are resolution of an image,
illumination in an image, and expression.

Bowyer et al. [11] presented a survey of 3D and multi-modal 3D + 2D face recognition. All
the techniques mentioned in the paper are working around feature vectors or range images for
most of the cases. All the datasets used in the presented researches had small 3D face datasets.
In modern times, humungous size of datasets can be handled using deep learning techniques
and advent of GPUs. Cho et al. [16] proposed a graph-structured module called Relational
Graph Module (RGM), which focuses on the high-level relational information between the
facial components. The heterogeneous face recognition (HFR) problem is handled in this
work. HFR is a type of face recognition in which face is matched across two domains viz.
near-infrared (NIR), visible light (VIS), or the sketch domain. RGM did the embedding of
spatially correlated feature vectors into the graph node vectors and performs the relation
modeling between different nodes of the graph. In addition to RGM, a Node Attention Unit
(NAU) was used to perform node-wise recalibration. This model is able to handle HFR
database.

Huang et al. [38] developed an adaptive curriculum learning loss (CurricularFace) for
deep face recognition. CurricularFace addressed an idea of curriculum learning into a
loss function for achieving a novel training technique. This technique addresses easy
samples in the early training stage and hard samples in the later stage. Different
importance is assigned to different samples based on the corresponding difficulty. The
datasets used were CASIA-WebFace [84], refined MS1MS2 [18], LFW [47], CFP-FP
[74], CPLFW [97], AgeDB [56], CALFW [98], IJB-B [80], IJB-C [53], and MegaFace
[40]. Bi et al. [10] investigated the conditional GAN (cGAN) for understanding the face-
to-sketch translation issues. Along with learning of mapping relationships between the
face and the sketch, these networks generate a loss function for automatically training the
mapping relationships. In the presented work, it is considered that multi-scale image
representation can capture the structure, image texture, and other features accurately.
Three layer pyramid model was constructed to obtain the multi-scale information. The
multiscale cGAN model was used to train the mapping relationships. The datasets used
were CUFS database [79], CUFSF dataset [88], and FERET database [65]. Fan et al. [27]
presented a perceptual metric for facial sketches namely Structure Co-Occurrence Tex-
ture (Scoot). Scoot simultaneously considered the co-occurrence texture statistics and the
block-level spatial structure.

Sharma and Kumar [75] presents a voxel based 3D face reconstruction technique using
sequential deep learning. The datasets used in the presented work are Bosphorus, UMBDB,
and Kinect Face DB. The process of voxelization is followed by variational autoencoders,
bidirectional long short-term memory, and triplet loss training followed by support vector
machine based prediction. The mirroring technique is used for reconstruction of the 3D
voxelized face. Using the reconstructed face, a sequential deep learning framework is utilized
for gender recognition, emotion type recognition, occlusion type recognition, and person
identification.

Multiple deep learning metric algorithms [5, 6, 15, 59] have been designed loss
function such that they can learn more distinguishing features. Evolutionary algorithms
are mostly used for feature optimization because the search capability of these algorithms
is better than others [83, 91]. In [21, 35, 36, 87, 92], the latest developments in machine
learning, mathematical modeling, and optimization techniques are presented. The main
shortcoming of the above-mentioned techniques is that it is difficult to recognize a face
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from 3D occluded face datasets. To resolve this problem, 3D occlusion invariant face
recognition framework is proposed.

3 Proposed research framework

This section discusses the motivation followed by voxel-based 3D occlusion invariant face
recognition framework.

3.1 Motivation

The proposed framework is motivated by the recent success of generative adversarial
networks (GANs). The use of voxels makes it possible to include the finer details of 3D
face. According to the best of author’s knowledge, little work has been done in the field
of voxels and deep learning for 3D face recognition. The proposed framework utilizes
the concepts of voxelization, locality preserving projections, triplet loss, simulated
annealing, and game theory. In the traditional approach, 3D mesh images are converted
into depth images (2.5D) or Epipolar geometry-based multiple 2D images, which are
used to train the conventional neural networks (CNNs) or autoencoders. In contrast to 2D
and 2.5D images, the presented work is implemented using voxels in 3D form. In
Sharma [75], mirroring technique based face reconstruction was done after voxelization
along with BiLSTM based sequential deep learning. Figure 5 shows the comparison
among traditional approach given by [22, 67], and the proposed approach of 3D face
recognition framework. The proposed approach uses voxels in contrast to depth images
or epipolar geometry images.

3.2 Proposed 3D face recognition framework

The proposed framework for 3D face recognition consists of two phases, namely, training and
testing. Figure 6 presents the proposed 3D face recognition framework.

3.2.1 Training phase

There are two sub-phases in the training phase, namely, pre-processing and simulated anneal-
ing based deep learning. The detail descriptions of these phases are mentioned in preceding
subsections.

3.2.2 Pre-processing

During the training phase, voxelization and locality preserving projections are two well-
known preprocessing techniques for generating embeddings. Figure 7 shows the mesh
images and their corresponding voxel images. The voxelization process converts a 3D
mesh into voxel form in such a way that 3D coordinates are generated for each triangular
mesh represented using cubes in different grid sizes. A single mesh is converted into
three different voxel grid sizes viz. 43, 83, and 163. The number of voxels generated is
sparse for different phases, even for the same size grid. Locality preserving projections
are used to handle the problem of sparseness. 43 voxels are converted into 64 × 3
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embedding, 83 voxels are converted into 128 × 3 embedding, and 163 voxels are con-
verted into 256 × 3 embedding. Ensembling is a famous technique in making the predic-
tion model more robust towards new test images. Hence, three different kinds of grid
sizes are used. It helps in boosting the quality of training data during the preprocessing
step.

3.2.3 Adversarial voxel triplet generator and simulated annealing based prediction

The pre-processing sub-phase produces normalized voxel embedding for further processing.
The generator produces triplets of Anchor (A), Positive (P), and Negative (N) for triplet loss
training. Motivated from [95], normalized voxel embeddings for a voxelized mesh image x is
represented as V(x) ∈ℝL. Given <A, P, N> as a triplet, <A, P> is relevant (positive) pair and
<A, N> is irrelevant (negative) pair. The objective function to train V(x) such that minimizing
the following loss:

LV ;tri ¼ d V að Þ;V pð Þð Þ−d V að Þ;V nð Þð Þ þ m½ �þ ð9Þ

where d x; yð Þ ¼ x
‖x‖ −

y
‖y‖

���
��� 2 is squared Euclidean distance between two L2-normalized

vectors. m is the least margin required between d(a, p) and d(a, n) during training, and
[.]+ ≜max(., 0) denotes the positive component of the input. Let the adversarial voxel
triplet generator (G) generates an adversarial sample G(V(x)) ∈ℝL by modifying the
feature representation V(x) of an image x. While generator training to minimize the
triplet loss, G produces hard triplet examples by pushing away the same category vectors
and pushing close the different category vectors.

The following objective is to be minimize the adversarial voxel triplet loss during
training G,
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LG;tri ¼ d G V að Þð Þ;G V nð Þð Þð Þ−d G V að Þð Þ;G V pð Þð Þð Þ þ m½ �þ ð10Þ

Finally, with a fixed G objective function for training becomes

LV ;tri ¼ d G V að Þð Þ;G V pð Þð Þð Þ−d G V að Þð Þ;G V nð Þð Þð Þ þ m½ �þ ð11Þ

Here, LG, tri and LV, tri makes up an adversarial loss pair. Comparing Eq. (9) and Eq. (11), V is
trained through the triplets generated by G pushing the <A, P> closer and <A, N> apart to meet
margin m.
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Fig. 6 Proposed framework for 3D face recognition (a) Training phase (b) Testing phase
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The adversarial mechanism using a generator (G) is insufficient without the use of
discriminator along with it. The role of discriminator (D) is to monitor and the constrain the
triplet generator G from producing random triplet vectors for attaining a low value of LG, tri.
Using a discriminatorD, a feature vector is categorized into (C + 1) categories, where real class
examples are represented by the first C categories and the final one denotes the fake class. The
triplet <A, P, N> has the labels<lA, lP, lN>, the positive pair has lA = lP and the negative pair
has lA ≠ lN. The following loss function is minimized for training D.

LD ¼ LD;real þ βLD;fake ð12Þ

Here, D is forced to do the classification of feature vectors of the triplet correctly by the first
term (LD, real).

LD;real ¼ Lll D V Að Þð Þ; lAð Þ þ Lll D V Pð Þð Þ; lPð Þ þ Lll D V Nð Þð Þ; lNð Þ½ �*0:33 ð13Þ

where Lll signifies the log loss. However, the second term LD, fake enables D to differentiate
between real features and the generated features.

LD;fake ¼ Lll D G V Að Þð Þð Þ; lfake
� �þ Lll D G V Pð Þð Þð Þ; lfake

� �þ Lll D G V Nð Þð Þð Þ; lfake
� �� �

*0:33

ð14Þ

Here, fake class is denoted by lfake.

MESH IMAGES

CORRESPONDING VOXEL IMAGES

Fig. 7 Mesh images and its corresponding voxel images
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D plays a crucial role in helping G for the preservation of a class of input features. Hence,
the subsequent loss enforces the class preservation assumption and represented as

LG;class ¼ Lll D G V Að Þð Þð Þ; lAð Þ þ Lll D G V Pð Þð Þð Þ; lPð Þ þ Lll D G V Nð Þð Þð Þ; lNð Þ½ �*0:33ð15Þ
The final loss value is minimized by training the voxel triplet generator G and defined as

LG ¼ LG;tri þ γLG;class ð16Þ
Based on the mean triplet loss for multiple grid sizes, simulated annealing threshold is
applied for accepting the predicted similarity score. The concept of simulated annealing
has been introduced here to make sure that the minimization problem of the mean loss
value coming as output from adversarial triplet loss training under discriminator is
handled in an effective way by keeping a check on the threshold value. If the mean loss
value does not satisfy the simulated annealing threshold, then embedding is dropped and
sent back to the generator for the new triplet generation. The similarity score and final
class are generated through discriminator classifying the selected embeddings. Figure 8
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depicts prediction and score matching using adversarial triplet loss and simulated an-
nealing. In this figure, M is the number of embeddings after the voxel normalization, and
n is the number of triplets forming via generator.

3.2.4 Testing phase

There are two sub-phases in the testing phase, namely, pre-processing and the prediction for
validation and verification. Figure 9 shows the pre-processing and prediction phase for
different grid size voxels.

3.2.5 Pre-processing

The pre-processing during testing phase is considered either for validation or for verification at
one time. For validation, the testing dataset is considered. Voxelization process is carried out
on each image in the testing dataset. For verification, the voxelization process is carried out on
a single query image. Locality preserving projection normalizes voxels removing their sparse-
ness for deep learning model.

3.2.6 Prediction

In case of validation, an array of class predictions is given as output from trained
deep learning model. For validation, the output array values are compared with
ground truth values to calculate the accuracy of the model. In the case of verification,
the predicted value is a single class. For verification, the final similarity score is
calculated using the correlation value [49].

3.3 V3DOFR and computational complexity

The proposed algorithm of voxel-based 3D occlusion invariant face recognition
(V3DOFR) consists of five steps. Firstly, raw 3D mesh image is taken as input, and
the number of triangular units of mesh is counted. If there are no triangular units found,
then an error message is generated (see Step 1). In Step 2, voxelization is performed for
different grid sizes. The number of voxels and grid sizes are linearly proportional.
During the process of voxelization, there is an inconsistency in voxel count due to
different poses with in the same class. To overcome this inconsistency, locality preserv-
ing projection (LPP) is used in Step 3, that will help in removing the sparseness while
maintaining the neighboring voxel properties. Thus, LPP is a more effective technique
than principal component analysis (PCA) for dimensionality reduction in maintaining the
voxel properties at facial feature level. Different grid sizes are converted into different
number of LPP feature set. Once the LPP embeddings are generated, triplet generation is
followed using generator in Step 4. The generator randomly selects Anchor (A), Positive
(P), and Negative (N) embeddings. Deep learning-based triplet loss training is performed
for computation of loss value. Further, normalization of loss values for corresponding
grid sizes is performed in Step 4. In final step, average of normalized loss value is
calculated for simulated annealing-based triplet selection. After triplet selection, discrim-
inator assigns the class identification number. If triplet is not selected, then new triplet is
generated through generator.
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3.3.1 Computational complexity

The time complexity of the proposed algorithm is as follows. The pre-processing of mesh
requires O(n) time. In Step 2 voxelization (i.e. 2(a)-2(h)), all steps require O(n) time and sub-

Algorithm. Proposed V3DOFR – Voxel based 3D Occlusion Invariant Face Recognition

Input: 3D Mesh Face Image (I)
Output: Classification of Image I

1. Pre-processing of Mesh
a. Count traingular units of mesh (Ct)

b. If Ct = 0 do
c. Voxel = “Error: No triangular unit found”
d. End if

2. Voxelization according to grid sizes of 43, 83, and 163

a. Find the voxel for each triangular unit. Function: V(size)
b. For t = 1 to Ct do
c. Using three coordinates A(x1,y1,z1), B(x2,y2,z2), and C(x3,y3,z3)
d. X = (x1+x2+x3)/3
e. Y = (y1+y2+y3)/3
f. Z = (z1+z2+z3)/3
g. Save Vt = [X,Y,Z]
h. End for
i. VoxelSize = [4, 8, 16];

j. Cv4 = [], Cv8 = [], Cv16 = []; //Current Voxels for all sizes
k. Cv4 = V(4);

l. Cv8 = V(8);

m. Cv16 = V(16);

3. Calculation of LPP embeddings
a. LPP4 = LPP(Cv, 64); //LPP embedding of grid size 43

b. LPP8 = LPP(Cv, 128); //LPP embedding of grid size 83

c. LPP16 = LPP(Cv, 256); //LPP embedding of grid size 163

d. TotalLPP4 = [TotalLPP4;LPP4;]; //LPP embedding of grid size 43 for all the dataset
e. TotalLPP8 = [TotalLPP8;LPP8;]; //LPP embedding of grid size 83 for all the dataset
f. TotalLPP16 = [TotalLPP16;LPP16;]; //LPP embedding of grid size 163 for all the dataset
g. TotalLPP = [TotalLPP4, TotalLPP8, TotalLPP16];

4. Triplet Generation with Generator and Discriminator
a. Loss = [0,0,0]

b. NormLoss = [0,0,0]

c. For t = 1 to 3 do
d. Select embedding for A and P randomly from TotalLPP[t] of same class and N randomly from 

other class

e. Adversarial voxel triplet loss training

f. Loss[t] = triplet loss after training //Logarithmic Loss value

g. End for
5. Simulated Annealing based Prediction

a. FinalLoss = (Loss[1] + Loss[2] + Loss[3])/3;

b. Try
c. If(eFinalLoss

< rand(0,0.8))) //Concept based on simulated annealing
//Accept
Throw(IID) //ID of the image

d. Else
//Reject
Goto: Step 4 //Go back to Generator for Triplet Generation

e. End If
f. End try
g. Catch(IID)

ID = Max (Corr(IID)) among all classes

FinalClass = ID
h. End catch
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steps (i.e. 2(i)-2(m)) requires O(1) time. In Step 3 calculation of LPP embeddings (i.e. 3(a)-
3(c)) requires O(n3) time [32], and other sub-steps (i.e. 3(d)-3(g)) requires O(1) time. In Step 4
Triplet generation with generator and discriminator takes O(1) time for steps (i.e. 4(a)-4(b))
and O(n3) time [20] for rest of the sub-steps (i.e. 4(c)-4(g)). The simulated annealing based
prediction takes O(1) time. Hence, the total complexity of proposed technique is O(n3).

4 Experimental results and discussion

In this section, the performance of the proposed technique is compared with the existing
techniques along with their visual verification. This section presents datasets used, parameter
setting, and computational time analysis.

4.1 Datasets used

The datasets used for evaluation of the proposed techniques are Bosphorus face database [71],
UMBDB face database [17], and KinectFaceDB face database [54]. Bosphorus dataset
consists of 105 subjects in different poses and occlusions. There are 381 occluded images in
Bosphorus dataset. All images are annotated with subject ID and pose, occlusion, or emotion
description. The total number of images in Bosphorus dataset is 4666. For UMBDB dataset,
there are 1473 different images. 590 images are occluded out of 1473 with a different type of
occlusions. The number of subjects in the dataset is 143. The modalities of this dataset are 2D
and 3D. In KinectFaceDB dataset, there are a total of 52 subject’s data. Three types of
modalities are covered in this dataset viz. 2D, 2.5D, and 3D. The total number of images is
936, and 312 images are occluded out of it. Table 1 presents the detail description of these
datasets. Table 2 presents the occlusion description for these datasets.

4.2 Parameter setting

The parameters of the proposed approach are mentioned in Table 3. In the voxelization
process, the grid sizes are kept as 4x4x4, 8x8x8, and 16x16x16, respectively. The correspond-
ing number of neighbours for locality preserving projection are 16, 64, and 128 using the
current voxels of the corresponding grid size. K-nearest neighbour along with adjacency
weight matrix is assigned for an effective LPP embeddings. The number of epochs are
2700, 1200, and 800 corresponding to various grid sizes in triplet loss training. Adaptive
moment (Adam) optimizer [43] is employed in triplet loss training. The alpha value is kept to
be 0.2 and mean absolute error is used as a loss parameter. The loss function used in the
discriminator is the logarithmic loss function, which directly gives the values in range 0 to 1.
The batch size is kept to be 30, the dropout rate is kept at 40%, the learning rate is 0.005, and
the activation function used is the rectified linear unit (ReLU).

Table 1 Description of datasets used

Dataset Number of subjects Number of images Modality Annotation

Bosphorus 105 4666 2D, 3D Yes
UMBDB 143 1473 2D, 3D Yes
KinectFaceDB 52 936 2D, 2.5D, 3D Yes
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ElSayed et al. [24] used Siamese neural network with (2, 500, 1) model, where 2 are
the number of inputs, 500 are the number of nodes in the hidden layer and giving single
output. Tan et al. [77] used ResNet-18 model with a 256 × 256 grid size of the depth map
image. Adam optimizer has been used along with an initial learning rate of 0.01 and
weight decay of 5 × 10−5. Liu et al. [51] built a face reconstruction model based on the
pose and expression normalization using 128 SIFT descriptors and tanh activation
function for yaw poses of 0°, ± 10 ° , ± 20 ° , …, ± 90°.

Table 2 Occlusion description for datasets

Dataset Bosphorus KinectFaceDB UMBDB

Occlusion Type Count 4 3 5
Occlusion Types Eye, Mouth, Glass, Hair Eye, Mouth, Paper Cloth, Glass, Hair, Mouth, Paper
Occluded Images Count 381 312 590

Table 3 Parameter setting

Parameter Value

Proposed V3DOFR
Voxelization
Grid sizes 43, 83, 163

Locality preserving projection [33]
Number of neighbours 16, 64, 128
Number of voxels Current Voxels (VC)
Neighbour algorithm K-nearest neighbour
Weight Adjacency
Adversarial Voxel Triplet loss training [95]
Number of epochs 2700, 1200, 800
Optimizer Adam
Alpha 0.2
Overall Loss Mean Absolute Error
Discriminator Loss Log Loss
Batch Size 30
Dropout 0.40
Learning Rate 0.005
Activation ReLU
ElSayed et al. [24]
Number of inputs 2
Number of hidden layers 1
Nodes in hidden layer 500
Number of outputs 1
Tan et al. [77]
Input size 256 × 256
CNN model ResNet-18
Optimizer Adam
Weight decay 5 × 10−5

Initial learning rate 0.01
Liu et al. [51]
Number of SIFT descriptors 128
Yaw poses 0°, ± 10 ° , ± 20 ° , …, ± 90°
Activation tanh
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4.3 Performance evaluation metrics

The seven well-known performance evaluation measures such as accuracy, sensitivity, spec-
ificity, precision, FPR, FNR, and F1 score are used for comparing the quality of the proposed
technique along with other techniques. These measures are computed from the confusion
matrix and are shown in Fig. 10.

With reference to confusion matrix in Fig. 10, it is important to understand the concepts of
true positive (TP), true negative (TN), false-positive (FP), and false-negative (FN). When
actual and predicted values are ‘YES’, it is known as TP. When both values are ‘NO’, it is
known as TN. In FN, the actual value is ‘YES’, but predicted is ‘NO’. For FP, the actual value
is ‘NO’, but predicted is ‘YES’.

Accuracy is the measure of total correctness while predicting the classes and defined as
[100].

Accuracy ¼ TP þ TN
TP þ TN þ FPþ FN

ð17Þ

Sensitivity is the measure of correct classification of all the true positives and defined as [100].

Sensitivity ¼ TP
TP þ FN

ð18Þ

Specificity is the measure of correct classification of all the true negatives and defined as
[100].

Specificity ¼ TN
TN þ FP

ð19Þ

Precision is defined as the ratio of actual positive values compared to total positive values
including the predicted ones. It is mathematically represented as

Precision ¼ TP
TP þ FP

ð20Þ

TRUE
POSITIVE

(TP)

PREDICTED
YES

TRUE
NEGATIVE

(TN)

FALSE
POSITIVE

(FP)

FALSE
NEGATIVE

(FN)

PREDICTED NO

A
C

TU
A

L 
YE

S
A

C
TU

A
L 

N
O

Fig. 10 Confusion matrix
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False Positive Ratio (FPR) is the ratio of wrongly predicted negative values to total number of
negative values in actual and predicted. FPR is defined as

FPR ¼ FP
FPþ TN

ð21Þ

False Negative Ratio (FNR) is the ratio of wrongly predicted positive values to total number of
positive values in actual and predicted. The mathematical representation of FNR is as follows

FNR ¼ FN
FN þ TP

ð22Þ

F1 Score is represented as the harmonic mean of precision and sensitivity value. It is defined as

F1 Score ¼ 2*TP
2*TPþ FP þ FN

ð23Þ

4.4 Non-adversarial versus adversarial voxel triplet generator face recognition
technique

This section compares the techniques of 3D face recognition by using adversarial voxel triplet
generator and without using the adversarial technique. Table 4 shows the performance
comparison between non-adversarial and adversarial based voxel triplet generator.

The accuracy obtained over three datasets is 8–10% better in case of adversarial voxel-
triplet based face recognition than the non-adversarial voxel-triplet generator based face
recognition. Hence, the use of the adversarial technique in a combination of simulated
annealing has proven to be beneficial for the computation of face recognition accuracy.

4.5 Performance evaluation

In this sub-section, the performance of the proposed techniques and four well-known tech-
niques namely ElSayed [24], Tan [77], Liu [51], and Sharma [75] has been evaluated in four
different experimentations. These are voxel, occlusion invariant face, landmarks, and 3D
mesh. In each experimentation, the evaluation has been done through seven performance
measures viz. Accuracy, Sensitivity, Specificity, Precision, False Positive Rate (FPR), False

Table 4 Comparison between proposed adversarial and non-adversarial based voxel triplet generator face
recognition

Dataset Accuracy Sensitivity Specificity

Adversarial
voxel triplet
generator

Non-
adversarial
voxel triplet
generator

Adversarial
voxel triplet
generator

Non-
adversarial
voxel triplet
generator

Adversarial
voxel triplet
generator

Non-
adversarial
voxel triplet
generator

Bosphorus 90.8 82.7 95.8 94.7 70.0 32.7
UMBDB 81.9 75.4 88.5 90.2 43.8 44.5
Kinect

face DB
85.6 77.2 92.7 92.4 45.4 34.8
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Negative Ratio (FNR), and F1 Score. The validation of the proposed technique and compared
algorithms have been tested over the dataset mentioned in Section 4.1.

Table 5 shows the performance comparison of various face recognition techniques using
voxels. The training dataset has been generated using randomly selected 80% images from the
given set. 20% images are used in the testing dataset. In Bosphorus dataset, the proposed
technique provides better results than the existing techniques in terms of performance measures
except specificity and FPR.While, Sharma [75] provides better value of specificity and FPR. The
accuracy obtained from the proposed technique is 90.8%. Similarly, in UMBDB dataset, the
proposed technique outperforms the other techniques in terms of performancemeasures except for
sensitivity and specificity. The accuracy achieved by the proposed technique is 81.9%. The main
reason behind to drop the accuracy in UMBDB dataset is that the presence of more dynamic
occlusion present in UMBDB dataset as compared to Bosphorus dataset. In case of Kinect Face
DB dataset, the best accuracy achieved through Sharma’s method [75]. However, the proposed
technique provides accuracy with a difference of 0.1%. Sharma [75] technique outperforms the
others in terms of FNR and specificity. Whereas, precision, FPR, and F1 score obtained from the
proposed technique is better than the existing techniques. The proposed technique and ElSayed
[24] achieved the sensitivity at par with 92.7% and 92.9%, respectively.

Table 6 presents the results obtained from various face recognition techniques under
occlusion environment. The proposed model and the other four techniques have been trained
with the non-occluded images in the dataset. However, it has been tested on the occluded
images. In Bosphorus dataset, the best accuracy obtained from the proposed technique is
81.5%. The accuracy achieved by the proposed approach is better than the second best
technique by 2.1%. In terms of sensitivity, the proposed technique is the second best
technique. For specificity, FPR, FNR, and F1 Score, the proposed method outperforms the
other face recognition methods. In case of precision, the proposed technique and ElSayed [24]
provide 84.1% and 85.3% value, respectively. In case of UMBDB and Kinect Face DB
dataset, the proposed technique attained best value for all the performance measures except

Table 5 Performance measures obtained from various face recognition techniques using voxels

Accuracy Sensitivity Specificity Precision FPR FNR F1 Score

Bosphorus Dataset
ElSayed [24] 89.2 94.5 64.9 90.2 34.3 9.8 90.4
Tan [77] 87.4 95.3 50.2 89.4 54.6 13.1 88.1
Liu [51] 84.7 93.3 31.0 91.0 65.1 7.2 91.9
Sharma [75] 90.0 93.4 73.7 94.5 26.3 6.6 93.9
Proposed 90.8 95.8 70.0 94.5 28.4 6.2 94.0
UMBDB Dataset
ElSayed [24] 79.2 91.2 36.3 87.9 59.2 14.3 87.2
Tan [77] 77.5 89.8 21.4 87.3 58.9 16.0 85.6
Liu [51] 72.8 80.5 46.0 80.4 73.7 12.5 83.8
Sharma [75] 78.2 89.7 31.6 84.2 68.4 10.3 86.8
Proposed 81.9 88.5 43.8 88.7 53.2 8.8 89.5
Kinect Face DB
ElSayed [24] 82.8 92.9 27.1 89.5 48.8 10.4 89.6
Tan [77] 79.8 91.9 34.2 86.2 64.9 11.2 87.5
Liu [51] 74.3 84.4 31.3 85.7 57.5 17.5 84.1
Sharma [75] 85.7 92.2 50.0 91.0 50.0 7.8 91.6
Proposed 85.6 92.7 45.4 92.6 41.6 10.3 92.2

Best achieved values are highlighted
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sensitivity. The best accuracies obtained from the proposed approach over UMBDB and
Kinect Face DB are 67% and 77.9%, respectively. The sensitivity and specificity values
achieved by using the proposed technique in case of UMBDB are 79.2% and 38.0%, and in
case of Kinect Face DB are 88.1% and 40.4%, respectively.

Table 7 shows the results obtained from 3D face recognition techniques using landmarks.
The training and testing datasets are generated in ratio of 80–20 randomly using 26 landmarks
in each case. In case of Bosphorus dataset, the proposed technique has the best results for most
of the performance measures. The highest accuracy achieved from the proposed face recog-
nition technique is 84.9% with 93.8% sensitivity and 49.7% specificity. The proposed
technique achieved precision as 90.8%, FPR as 36.6%, FNR as 8.3%, and F1 score as
91.3%. Sharma’s method [75] provides the second best accuracy, sensitivity, FPR, FNR,
and F1 score. In case of UMBDB dataset, the recognition accuracy obtained from the proposed
approach is 77.4%. The proposed method outperforms the other methods in terms of perfor-
mance measures except specificity. Sharma’s method [75] provides better results than the
proposed method in terms of specificity. In case of Kinect Face DB dataset, the proposed
technique outperforms all the other methods in terms of evaluation metrics except specificity.
Sharma’s method [75] has more specificity than the proposed technique. The accuracy
achieved from the proposed face recognition for Kinect Face DB is 81.6%.

Table 8 shows the results obtained from different face recognition techniques using mesh.
The training and testing dataset is partitioned into 80–20 ratio randomly. While using
Bosphorus dataset, the accuracy achieved from the proposed face recognition technique is
88.7%. While, Sharma [75] method provides 87.4%. The sensitivity achieved by the proposed
technique is 92.8%. Tan [77] attained the best sensitivity value 94.1%. In all the other
evaluation metrics, the proposed technique achieved the best results. In case of UMBDB
dataset, the best accuracy for the 3D face recognition is achieved by the proposed technique
with a value of 79.2%. The best sensitivity is achieved by ElSayed [24] with 5.2% difference
from the proposed technique. The precision, FPR, FNR, and the F1 score of the proposed

Table 6 Performance measures obtained from the various face recognition techniques under occlusion condition

Accuracy Sensitivity Specificity Precision FPR FNR F1 Score

Bosphorus Dataset
ElSayed [24] 77.5 93.7 17.6 85.3 66.5 12.4 86.4
Tan [77] 75.6 91.2 42.4 83.9 54.0 15.5 84.2
Liu [51] 73.5 88.2 26.0 82.3 74.1 9.6 86.1
Sharma [75] 79.4 90.6 43.6 83.8 56.4 9.4 87.0
Proposed 81.5 93.2 50.2 84.1 51.8 7.9 87.9
UMBDB Dataset
ElSayed [24] 64.2 83.9 25.5 72.5 81.3 22.8 78.2
Tan [77] 63.0 86.7 19.4 78.3 78.5 26.8 75.7
Liu [51] 60.9 79.1 16.9 79.1 83.5 28.3 75.2
Sharma [75] 65.6 74.6 37.7 78.8 62.6 25.4 76.7
Proposed 67.0 79.2 38.0 79.9 62.3 15.2 78.6
Kinect Face DB
ElSayed [24] 74.6 91.0 24.9 80.0 62.6 14.8 82.5
Tan [77] 72.4 90.5 13.6 84.0 63.2 18.4 82.8
Liu [51] 71.3 89.7 19.2 78.0 76.3 12.7 82.4
Sharma [75] 76.7 85.9 39.1 83.9 58.9 14.1 85.1
Proposed 77.9 88.1 40.4 85.0 56.2 9.6 85.4

Best achieved values are highlighted
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technique are 86.6%, 48.7%, 10.4%, and 87.9% respectively. Liu [51] has performed better in
case of specificity with 45.8% for UMBDB dataset. In case of Kinect Face DB, Sharma’s method
[75] outperforms the other methods including the proposed method for all evaluation metrics.

4.6 Visual verification

Visual verification of random 3D mesh images based on occlusion invariant proposed
framework is presented in Fig. 11. All 3D meshes have an occlusion in them viz. hand on

Table 7 Performance comparison between different 3D face recognition techniques using landmarks

Accuracy Sensitivity Specificity Precision FPR FNR F1 Score

Bosphorus Dataset
ElSayed [24] 83.4 90.6 28.8 90.4 46.2 9.9 90.2
Tan [77] 81.7 91.5 18.9 87.3 69.4 8.5 89.4
Liu [51] 77.5 85.8 55.8 90.3 67.0 13.8 88.2
Sharma [75] 84.6 92.4 28.5 88.4 41.5 8.3 90.3
Proposed 84.9 93.8 49.7 90.8 36.6 5.6 91.3
UMBDB Dataset
ElSayed [24] 73.7 84.6 30.1 80.2 62.3 14.2 82.9
Tan [77] 72.3 83.7 34.8 81.3 78.3 14.8 83.2
Liu [51] 69.8 81.9 25.9 75.5 66.6 13.2 80.8
Sharma [75] 75.0 89.2 35.7 79.5 65.3 12.8 84.0
Proposed 77.4 90.1 29.7 85.2 60.8 10.2 85.0
Kinect Face DB
ElSayed [24] 79.4 85.2 15.1 80.5 76.3 10.3 84.9
Tan [77] 77.1 83.3 27.6 88.0 61.0 16.8 85.5
Liu [51] 73.9 81.2 36.4 82.5 54.6 17.5 82.5
Sharma [75] 80.1 90.0 37.9 86.1 62.1 11.2 88.0
Proposed 81.6 91.7 19.2 88.7 45.9 10.0 88.8

Best achieved values are highlighted

Table 8 Performance comparison between different face recognition techniques using 3D mesh

Accuracy Sensitivity Specificity Precision FPR FNR F1 Score

Bosphorus Dataset
ElSayed [24] 87.1 93.5 63.6 91.1 34.6 7.3 92.7
Tan [77] 85.9 94.1 49.2 91.6 35.4 6.0 92.9
Liu [51] 81.3 90.1 32.4 87.7 58.7 8.9 89.3
Sharma [75] 87.4 93.8 38.3 92.2 61.8 6.24 92.9
Proposed 88.7 92.8 68.0 92.8 30.3 5.8 93.4
UMBDB Dataset
ElSayed [24] 78.4 90.4 34.4 83.0 49.9 13.4 86.4
Tan [77] 75.2 88.5 20.5 84.0 60.7 13.0 86.7
Liu [51] 70.6 79.3 45.8 78.3 65.0 12.5 82.7
Sharma [75] 77.4 89.5 34.9 82.8 65.1 10.5 86.0
Proposed 79.2 85.2 42.7 86.6 48.7 10.4 87.9
Kinect Face DB
ElSayed [24] 80.7 89.0 25.8 86.6 48.8 8.7 89.7
Tan [77] 77.5 90.7 33.7 88.9 45.7 14.9 86.6
Liu [51] 72.3 82.1 30.2 82.4 56.7 9.6 86.2
Sharma [75] 85.7 92.1 58.4 90.4 41.6 7.9 91.2
Proposed 83.7 90.1 42.3 87.5 51.4 12.9 87.3

Best achieved values are highlighted
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eyes, hair, glasses, hands-on mouth, cloth, cap, and finger. Ten 3D meshes from the occluded
images are selected randomly for verification. Predicted subject IDs are given along with
actual subject IDs. Nine out of ten meshes have the correct predicted value during verification.
Hence, it validates that the proposed method is an occlusion invariant.

4.7 Computational time analysis

Table 9 depicts GPU based computational time obtained from the proposed approach and
other techniques. Four well-known 3D face recognition techniques are compared with the
proposed method using voxels, landmarks, and meshes for pre-processing, recognition,
verification, and the corresponding learning model. The computation time presented is calcu-
lated as the average time in all the phases. This work has been run on GeForce GTX 1080Ti
GPU model with 3584 CUDA (Compute Unified Device Architecture) cores and a memory
speed of 11 Gbps.

The overall time computation of proposed technique using the landmarks is the fastest and
using meshes the slowest when compared to the proposed technique using the voxels.

4.8 Convergence analysis

The convergence of accuracy obtained from the proposed technique for all datasets is shown in
Fig. 12. Bosphorus dataset converges at 90% accuracy in 2700 epochs, UMBDB dataset
converges at 81% accuracy in 1200 epochs, and KinectFaceDB dataset converges at 85% in
800 epochs. The convergence plot is based on accuracy obtained from combined approaches
of triplet loss training, simulated annealing, and game theory.

Figure 13 shows the accuracies obtained from the face recognition model using voxelized
technique on three datasets viz. Bosphorus, UMBDB, and KinectFaceDB. It can be seen from

Actual: 7 Actual: 38 Actual: 68 Actual: 129 Actual:168

Predicted: 7 Predicted: 53 Predicted: 68 Predicted: 129 Predicted: 168

[Batch 2]

Actual:   3 Actual: 28 Actual: 81 Actual: 95 Actual:104

Predicted: 20 Predicted: 28 Predicted: 81 Predicted: 95 Predicted: 104

[Batch 1]

Fig. 11 Visual verification of 3D meshes with their actual and predicted subject IDs in Batch 1 and Batch 2
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Fig. 13 that the accuracy on Bosphorus dataset is 90.8%, UMBDB is 81.9%, and
KinectFaceDB dataset is 85.6%. These values can be verified in Table 5 performance
measures obtained from various face recognition techniques using voxels.

5 Future work

The attention based models are being used for improving the accuracy of facial expres-
sion recognition [39]. There are other attention based models viz. image based attention
[26], edge based attention [96], weakly supervised attention [93], and uncertainty based
attention [94]. In [26], a high quality dataset namely SOC (Salient Objects in Clutter) is
used to update the previous saliency benchmark for salient object detection. The atten-
tion of the deep learning model is brought to the objects in the image and the target is to
detect the salient object in clutter and bring it to the foreground. This technique can be
extremely useful to detect the facial landmarks such as eyes behind eyeglasses. The
facial features can be effectively reconstructed using this approach by bring the salient
facial features in the foreground of the occluding object. In [96], EGNet based on edge
guidance network is presented for salient object detection. It focuses on the complemen-
tarity of salient edge information and salient object information to generate fine bound-
aries. This technique can be used in face detection similar to shape-from-shadow
technique. The shape from shadow as well as shape from fully convolutional neural
networks (FCNs) suffers from coarse object boundaries. Due to rich edge information,
the salient objects can be detected more precisely. Hence, the facial features can be
detected more precisely with fine edges using EGNet.

Table 9 Computation time (in ms) on GPU for proposed technique versus other techniques in voxel-based face
recognition

Technique Pre-Processing Recognition Verification Learning Model

ElSayed et al. [24] 90 81 107 Siamese neural network
Tan et al. [77] 87 88 104 Convolutional neural network
Liu et al. [51] 96 73 112 Pose and expression normalized
Sharma et al. [75] 78 66 98 VAE, BiLSTM
Proposed using voxels 80 65 99 Adversarial triplet loss
Proposed using landmarks 55 67 95 Adversarial triplet loss
Proposed using meshes 105 69 105 Adversarial triplet loss
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In [93], the labeling based salient object detection is proposed using weak-supervision
technique. However, there is a challenge of poor boundary localization. To handle this
problem, an auxiliary edge detection task is suggested for localization of object edges
explicitly. This technique can be extended to use in 3D face detection for localization of facial
features such as eyes, nose, mouth, etc. In [94], uncertainty inspired RGB-D saliency detection
via conditional variational autoencoders (UC-Net) is presented. A probabilistic RGB-D
saliency detection network is developed using conditional variational autoencoders for model-
ing of human annotation and build various saliency maps for each input image by latent space
sampling. This technique can be used on RGB-D images for facial landmarks detection and
predicting the facial expression.

The above-mentioned techniques may be utilized in the proposed approach for better
performance in near future. EGNet can be integrated with the proposed approach for better
facial feature extraction. RGB-D saliency detection method can be used in the proposed
approach for landmark identification and detection. The attention based models may be
utilized in the proposed approach for better recognition.

The simulated annealing based deep learning techniques can be implemented in all types of
CNN models where backward propagation is done to calculate the loss between different
layers. This simulated annealing can also be used in other deep learning models viz.
autoencoders, variational autoencoders, GANs etc. because in all of them a simulated anneal-
ing based threshold value can be kept for loss acceptance.

6 Conclusions

In this paper, voxel-based 3D occlusion invariant face recognition framework is
proposed. The proposed framework utilizes the concept of generator and discriminator
based deep learning. Bosphorus, UMBDB, and Kinect Face DB have been used for
implementing face recognition techniques. The best average accuracy obtained from
face recognition using voxels by the proposed technique is 86.1%. Similarly, for
occlusion invariant face recognition, the best average given by the proposed technique
is 75.5%. In case of face recognition using 3D landmarks, the best average accuracy
for the proposed technique is 81.3%. In case of face recognition using 3D meshes the
best average accuracy given by the proposed technique is 83.9%. Adding the adver-
sarial training strategy for triplet generation ensures low biasness. This technique,
coupled with simulated annealing allows the proposed method to be robust in different
areas using voxels.
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