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Abstract
With the technology progress, a plethora of freely accessible software has questioned the
authenticity of digital images. This field is continuously creating challenges for re-
searchers to ascertain the integrity of images. Hence, there is a need to improve the
performance of forgery detection algorithms from time to time. This paper is focused on
the detection of splicing forgery because it is one of the most frequently used image
manipulation techniques. In the proposed scheme, Markov features in both Discrete
Wavelet Transform (DWT) and Local Binary Pattern (LBP) domains are extracted and
combined for the detection of image splicing. Three-level DWT is applied to the source
image by the means of discrete Haar wavelet. The image is split in to high and low-
frequency sub-bands after applying one level DWT. Furthermore, low-frequency sub-
band is decomposed twice to obtain three-level DWT, which leads to more information
and less amount of noise. The efficacy of the proposed scheme has been appraised on six
benchmark datasets i.e. CASIA v2.0, DVMM, IFS-TC, CASIA v1.0, Columbia, and
DSO-1. Moreover, the SVM classifier is trained to classify the images as tampered or
authentic. The effectiveness of the proposed scheme is evaluated based on various
performance parameters such as accuracy, sensitivity, specificity, and informedness.
The proposed results show improved accuracy i.e. 99.69%, 99.76%, 97.80%, 98.61%,
96.90%, and 92.50% on CASIA v1.0, CASIA v2.0, DVMM, Columbia, IFS-TC, and
DSO-1, respectively, in comparison to other existing approaches.
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1 Introduction

Digital images have become an essential portion of our day-to-day life since they provide
prosperous information. Due to a large number of photo-editing software such as Adobe
Photoshop, GNU Image Manipulation Program (GIMP), etc., digital images can be easily
manipulated for the user’s interest [16]. For example, in the medical field, physicians make a
diagnosis based on images. Since medical images deal with a large amount of money, these
images get manipulated for claiming medical insurance [43–46]. So, it creates a necessity for
advanced methods to determine the legitimacy and truthfulness of digital images used in law,
military, science, medical, journalism, and other images of extreme importance. Intrusive
(active) and Non-intrusive (passive) techniques are used to authenticate the images. In
intrusive methods, the information is inserted into the image, for instance, digital watermark
and signature. Various watermark techniques [1–4, 49] have been proposed, which are used
for verifying the authenticity of the images and detection of forgery. The major shortcoming of
these techniques is that it involves special software or hardware either to extract authentication
information from the images or to insert authentication information into the images. Although
in the past, researchers preferred digital watermarking and digital signature algorithms,
however, in recent times, non-intrusive techniques have become more popular since it does
not insert any secondary data into the image. Moreover, these techniques authenticate the
images by examining the intrinsic properties of the images. Two common types of non-
intrusive procedures are Copy-Move Forgery (CMF) as well as splicing forgery. In CMF, one
portion of the image is copied, and inserted in the analogous image to obscure some significant
data. In splicing forgery, one portion is removed and inserted in a different image to generate a
new image [16, 29, 50]. An illustration of splicing forgery is given in Fig. 1. In splicing, to
generate a forged image, regions are generally compressed, resampled, and blurred. As a
result, spliced images are being used for malicious purposes, since image splicing can be
performed with ease and it is difficult to detect forged images by human eyes. Thus, emerging
reliable splicing detection techniques to determine the genuineness of images has become a
significant issue. This motivates the researchers to introduce various procedures to detect the
splicing forgery. The major idea of different image splicing detection approaches is to detect
the region of irregularities with features of the image [18, 35].

Recently, several effective approaches have been introduced to upgrade the performance of
splicing forgery detection. He et al. [18] fused the Markov features in a Discrete Wavelet
Transform (DWT) as well as the Discrete Cosine Transform (DCT) domain. Even though the
paper demonstrated the legitimacy of the Markov feature, but still needs improvement in the
accuracy rate. Zhang et al. [47] introduced the forgery detection approach based on Local
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   (i) Authentic images  (ii) Spliced image

Fig. 1 An illustration of splicing forgery
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Binary Patterns (LBP) by applying multi-size block DCT (MBDCT) coefficients. In this, DCT
and LBP are combined, and improved accuracy was achieved. To meet the day to day forgery
challenges, there is further demand for a more accurate method. The proposed scheme aims at
improving the detection accuracy rate. Zhang et al. [48] detected splicing forgery by extracting
the Markov features in the Contourlet transform and DCT domain. The Contourlet transform
features illustrate the dependence of positions between the Contourlet sub-band coefficients.
Suthiwan et al. [41] used Markov in the Multi-Block DCT (MBDCT) domain to detect the
splicing forgery and artifacts are created due to post-processing in the dataset. El-Alfy et al.
[15] proposed image splicing forgery detection procedure by extracting Markov features in
spatial as well as the DCT domain. Sheng et al. [36] and Zhang et al. [51] extracted Markov
features in Discrete Octonion Cosine Transform (DOCT) domain and block DWT domain,
respectively using an SVM classifier. Prakash et al. [34] used BDCT and the enhanced
threshold for the extraction of features. These techniques cause difficulty in finding the
correlation among the pixels. So, there is a need to improve correlation among the pixels to
avoid the problem of degradation of image quality.

Zhao et al. [52] introduced an approach to model an image as a 2D non-casual signal. This
model is applied to BDCT and discrete Meyer wavelet transform (DMWT) domain, and
combined extracted features are used for classification. It is observed that this approach has a
better detection rate but at the cost of the high dimensions of features. Shi et al. [37] treated the
neighboring differences of BDCT coefficients of an image as a 1-D signal. The dependencies
between neighboring nodes along a certain direction (horizontal or vertical) were modeled as a
causal Markov model and the TPM, which was considered as a discriminative feature vector
for SVM classification. Kirchner et al. [25] detected median filtering of JPEG compressed
images using SPAM features and results demonstrate that it can be treated as a detector for
image forgery detection. Agarwal et al. [5] extracted internal statistical properties using
rotation invariant co-occurrence among LBP operator. Muhammad et al. [30] proposed an
image forgery detection technique by using Steerable Pyramid Transform (SPT) along with
LBP. SPT produces multi-oriented sub-bands and LBP histograms were evaluated from each
sub-band, which were further concatenated to generate feature vector. Then, SVM has been
used for classification. Dong et al. [13] detected splicing by extracting statistical features from
image run-length and image edge statistics. Li et al. [28] introduced a technique based on
Markov in quaternion DCT transform to detect the image splicing. Both intra-block and inter-
block correlation have been extracted in the QDCT domain, and finally, SVM has been used to
classify the authentic and spliced images. Alahmadi et al. [8] proposed a technique based on
LBP and DCT to detect the forgeries present in the image. The technique converts LBP code
blocks into the DCT domain, and finally, standard deviation has been evaluated and fed to the
SVM classifier. Agarwal et al. [6] used the Undecimated Wavelet Transform (UWT) to
highlight the details of the image and then applied the Markov process to extract the features.
Hussain et al. [20] examined the effect of two texture descriptors, multi-scale LBP, and multi-
scale WLD for the robust detection of splicing forgery. The experimental results show that
multi-scale WLD performed superior to multi-scale LBP. Alahmadi et al. [7] applied 2D-DCT
in the LBP domain to extract discriminative localized features. Kumar et al. [27] applied
Markov in BDCT and DMWT domain, and enhanced threshold method. The flaw of this
method is the loss of details of feature vectors because of the thresholding process. Moreover,
it was shown in [27] that the detection performance was quite low, i.e. the attained highest
detection accuracy was 88.43% for the DVMM dataset. Jalab et al. [21] detected splicing
forgery by proposing a texture descriptor based on approximated Machado fractional entropy
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(AMFE). Though it attains better results, but it is not robust to post-processing operations like
JPEG compression. Kanwal et al. [23] introduced an overlapping block-based approach for the
detection of image splicing forgery. This approach extracted features using Ostu based
enhanced local ternary pattern (OELTP) and energy was used to reduce the dimensionality
of the features. Nevertheless, this approach was not computationally effective because of the
overlapping block-based approach. Several approaches for image splicing forgery detection
have been proposed in the literature but still, there is a need for improvement in detection
accuracy rate. The proposed approach deals with the detection of image splicing forgery with
an improved accuracy rate as well as reduced running time. Moreover, it is robust against post-
processing operation i.e. JPEG compression.

As discussed earlier, a lot of procedures had been proposed in the previous years by the
researchers for detecting the image splicing forgery and this progression seems to be never-
ending. So, it is difficult to discuss all the procedures in the paper. Thus, the trends of literature
analysis in the field of image splicing forgery detection has been demonstrated in Fig. 2. Since
the search strategy is a significant point of the survey process, therefore, the semantic scholar
has been considered to gather the appropriate literature. It has been observed that this field is
still in its progressive stage and has become a topic of interest for many researchers.

The previous approaches [22, 31, 38] has used the combination of LBP and DWT in
applications like image retrieval, face recognition, object recognition. Also, in the prior work,
the image splicing forgery is detected either by the fusion of LBP and DWT [24, 53] or
combination of Markov and DWT [39, 51], but, according to the best knowledge of the
authors, the combination of Markov, LBP, and DWT has not been yet used in any application.
Thus, in the proposed method, Markov features in both DWT and LBP domains are extracted
and combined to detect the image splicing forgery efficiently. Since image splicing produces
sharp edges in a forged image, therefore capturing the forgery introduced artifacts is the key for
image splicing detection. So, the edges introduced by forgery are different from their neigh-
bors, the relationships among the spliced part and normal part can be used to expose image
forgery. The proposed method uses Markov TPM to describe these relationships. Furthermore,
DWT is used because the wavelet analysis is good in capturing the localized changes in the
images that are created by splicing operation. Also, DWT has better spatial and frequency
resolution than other transforms like DCT and DFT. In contrast, LBP is used as it is an
effective texture operator that captures the local deviations in the texture of forged images
because the original texture of the image gets distorted when manipulation is performed.
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Fig. 2 Trends of literature analysis of image splicing forgery detection in the past decade
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Consequently, the proposed technique based on Markov is effective in image splicing forgery
detection.

The technical contributions of the proposed work are:

& Inspired by the strong capability of Markov TPM in characterizing pixel correlation,
Markov features from both LBP and DWT domains are extracted and combined, for the
first time, to the best knowledge of the authors.

& During the creation of image splicing forgery, there are abrupt changes that are highlighted
by using a standard deviation filter in the proposed approach.

& The experimental results performed on six datasets indicate that the proposed approach
offers better results than the existing techniques in terms of accuracy, TNR, TPR, and
informedness as presented in Table 5.

& The comparison between existing state-of-the-art techniques and the proposed technique is
given in Table 6.

& Also, the run time analysis is evaluated to authenticate the effectiveness of the proposed
work as shown in Table 7.

& To validate the robustness of the proposed method, JPEG compression is applied and
superior results are attained in comparison to the existing techniques.

& Furthermore, a statistical analysis test using ANOVA is performed to confirm the efficacy
of the proposed scheme.

The remaining paper is structured as follows, the proposed technique is described in detail in
Section 2. Section 3 illustrates the experimental results. Finally, the efficacy of the proposed
technique is concluded in Section 4.

2 Proposed methodology

In this paper, the Markov process is applied after the LBP and DWT domains. Then, features
from both domains are combined and normalized. The features that are being extracted rely on
the perception that falsification alters the association pattern among the pixels. Consequently,
features are extracted from the DWT domain and fused with the LBP domain’s features. In
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Fig. 3 The framework of the proposed scheme for image splicing detection
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both domains, statistical fluctuations are demonstrated through the Markov procedure. The
layout of the proposed algorithm is described in Fig. 3.

2.1 Pre-processing

Pre-processing operations are executed on images before going to the next step. In this step,
the RGB image Z of size W × V is changed to the grayscale image as given below [16]:

Z ¼ 0:299Rþ 0:587Gþ 0:114B ð1Þ
where, R, G, and B are red, green, and blue components of the image Z, correspondingly.

2.2 STD filter

After the pre-processing, the standard deviation (STD) filter is being used to highlight the
inconsistencies in the forged images. The STD filter is chosen because of its ability to measure
the inconsistencies in the spliced images since intensity level changes at the edge of a spliced
image by a huge value. Moreover, the edges of the spliced part are different from the other part
of the image, so, the relation between the spliced part and the normal part can be used to reveal
image splicing forgery. Thus, the STD filter is used as it is capable of recognizing those
relations in the images since it is the best measure of variation.

This filter changes the value of each pixel in the image with that of the standard deviation of
its neighbors, along with itself. In spliced images, the portion which is cut and pasted in the
image to generate forgery is being highlighted using the STD filter [5, 26, 40]. Since the STD
filter is used to eradicate the isolated noise points in the image, consequently, the details of
edges in the spliced image are preserved using STD filtering. In contrast, other filters are more
sensitive to noise, in case of edge detection. For example, in Fig. 4 the bird is removed from an
image and inserted into another image to generate a forgery. It can be observed from Fig. 4 that
the standard deviation filter can detect the edges of the spliced part more smoothly as
compared to other filters like variance filter, skewness filter, and kurtosis filter. Thus, the
proposed technique uses the STD filter to highlight the abrupt changes occurring in the spliced
images.

2.3 Discrete wavelet transform (DWT)

The study of wavelet works well at grasping the short-term or localized change in signals.
Some variety of wavelet families are Haar, Daubechies, Coiflet, Symlets, and Meyer. In this
paper, DWT is applied by using a discrete Haar wavelet since it is a fast, memory-efficient and
conceptually simple type of wavelet. According to the observations, the information
concerning the edges which contains much of the image information is kept in these DWT

(a) Authentic

image 

(b) Spliced 

image

(c) Grayscale 

spliced image

(d) STD 

filtered image 

of (c)

(e) Image after 

variance 

filtering [26]

(f) Image after 

skewness 

filtering [26]

(g) Image after 

kurtosis 

filtering [26]

Fig. 4 Example of the Standard deviation filter
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sub-bands. Initially, discussing first level DWT, it divides an input image into four sub-band
images. Each sub-band consists of high-frequency bands as well as low-frequency bands: HL,
LH, LL, and HH. Here, LL denotes low-frequency sub-band (approximation coefficient) and
the other three (LH, HL, and HH) are high-frequency sub-bands (detailed coefficients) in
different directions i.e. vertical, horizontal and diagonal, congruently. In third level decompo-
sition, low-frequency sub-band is further decomposed twice to diminish the image dimensions
and to extract features. Moreover, the decomposition of low-frequency sub-band leads to more
information as well as less noise. The DWT conducts decomposition as well as the recon-
struction of signals using scaling function γ(t) and basic wavelet function ξ(t). The original
signals are approximated using scaling function and detailed variations are detected by basic
function, which is given as follows [11, 39].

γ tð Þ ¼ ∑
n
a nð Þ

ffiffiffi
2

p
ξ 2t−nð Þ ð2Þ

ξ tð Þ ¼ ∑
n
b nð Þ

ffiffiffi
2

p
ξ 2t−nð Þ ð3Þ

Also, the scaling function is used to evaluate the basic wavelet function. a(n) and b(n) are
coefficients of the filter, their relation is indicated in eq. (4). In this transform, b(n) and a(n) are
almost equivalent to low pass as well as high pass filter.

a nð Þ ¼ −1ð Þnb m−n−1ð Þ ð4Þ
Here, m denotes the length of the filter and n is number of levels. The decomposition of the
wavelet transform is depicted in eq. (5) and (6).

eA1 lð Þ ¼ ∑
n
b n−2lð ÞR nð Þ ð5Þ

eD1 lð Þ ¼ ∑
n
a n−2lð ÞR nð Þ ð6Þ

R(n) is an original signal and eA1(l) is an approximation coefficient that preserves the low-
frequency data of R(n). The detailed coefficient which preserves the high-frequency data of
R(n) is denoted as eD1(l). DWT has been used to detect the splicing forgery because it has the
proficiency to scale the image in various resolution at various positions. Other transforms like
DCT and DFT are full-frame transforms. Henceforth, the entire image is affected by any
change in the coefficients of both transforms. But, DWT has spatial frequency locality, which
means if the signal is embedded it will affect the image locally. Hence a wavelet transform
provides both spatial and frequency descriptions for an image.

2.4 Local binary pattern (LBP)

LBP is an effective texture operator that captures the local deviations in the smooth-
ness of altered images. In this technique, every pixel is labeled by the neighboring
pixel’s relative gray levels. The value of the pixel is assigned as one if the neigh-
boring pixel’s gray level is greater or equivalent to the middle pixel, otherwise, the
value of the pixel is assigned as zero. Finally, the binary pattern is obtained for each
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center pixel. The weighted sum of pattern bits is called the LBP code. The LBP
operator is calculated using eq. (7) as shown beneath [42, 47]:

L x; yð Þ ¼ ∑
q−1

q¼0
Z hq−h x; yð Þ� �

2q ð7Þ

where 'q' is total pixels in the spherical region of the radius R, h(x, y) is the amount
of center pixel at (x, y), hq is qth pixel in the region and Z(hq − h(x, y)) is threshold
function.

Z hq−h x; yð Þ� � ¼ 1
0

hq−h x; yð Þ� �
≥0

hq−h x; yð Þ� �
< 0

� �
ð8Þ

The original smoothness of the image is falsified in the cases when the image is counterfeit. As
the LBP has proficiency in capturing the texture differences, it is used in the proposed
approach to discover the forged as well as authentic images.

2.5 2-D difference arrays

The features that differentiate falsification are determined by the artifacts produced at the
image’s edges through the tampering procedure. Because of this purpose, the connection
among neighboring pixels is captured by evaluating the differences in minor diagonal (M),
vertical (V), horizontal (H) and main diagonal (D) directions for LBP as well as DWT
coefficients. The difference arrays Lz(x, y), z ∈ {V,H,D,M}for LBP is calculated by [9]:

LH x; yð Þ ¼ L x; yð Þ−L xþ 1; yð Þ ð9Þ

LV x; yð Þ ¼ L x; yð Þ−L x; yþ 1ð Þ ð10Þ

LD x; yð Þ ¼ L x; yð Þ−L xþ 1; yþ 1ð Þ ð11Þ

LM x; yð Þ ¼ L xþ 1; yð Þ−L x; yþ 1ð Þ ð12Þ
where, L x; yð Þ is calculated LBP code, 1 ≤ x ≤ Rx, 1 ≤ y ≤ Ry, Rx × Ryis the size of the image.
For DWT based Markov features, the differences are evaluated in all four directions in an
analogous way as that of LBP. Here L x; yð Þ is replaced by W x; yð Þ in above-given equations
to get Wz(x, y), z ∈ {V,H,D,M}for DWT.

2.6 Markov transition probability matrix (TPM)

The process of Markov is a proficient tool for feature extraction and it works
proficiently by identifying the relationship of the features. As stated in the theory
of random process, the Markov TPM is a tool that is used to describe the relation-
ships between the spliced portion and the normal portion of the forged image.
Therefore, Markov based feature is a type of measure which can reveal the statistical
changes produced by splicing. Since image splicing produces sharp edges in a forged
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image, therefore capturing the forgery introduced artifacts is the key for image
splicing detection. So, the edges introduced by forgery are different from their
“neighbors”, the relationships among the spliced part and normal part can be used
to expose image forgery. Consequently, techniques based on Markov are effective in
image splicing problems. Initially, the STD filter is applied to the input image, which
partially highlights the inconsistencies of tampering artifacts. Therefore, Markov TPM
is used to discover the forged regions in images by examining the inconsistencies of
tampering artifacts, completely. Since applying the Markov process to difference array
leads to dimensionality reduction of Markov TPM, so the Markov process is applied
to the difference arrays instead of directly applying to the image or coefficients 2-D
array. The TPMs which obtained from the difference arrays of both LBP and DWT
domain, capture pixels or coefficients correlations to detect spliced artifacts. The
general block diagram of Markov feature extraction is given in Fig. 5 and the
difference arrays for minor diagonal (M), vertical (V), horizontal (H) and main
diagonal (D) are shown in Fig. 6. The equations of difference arrays for all the
directions have been given in section 2.5 [15, 37].

The difference arrays of both LBP and DWT domains are limited to [−T, +T]. If L x; yð Þ or
W(x, y) is lesser than −T, or larger than T, it is indicated by −T or T, congruently as given in the
following eq. [9].

Zz x; yð Þ ¼
T
−T

Fz x; yð Þ

8<
:

Fz x; yð Þ > þT
Fz x; yð Þ < −T
otherwise

ð13Þ

where, Fz(x, y) is either Lz(x, y) or Wz(x, y), for z ∈ {V,H,D,M}. The T constraints the number
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Fig. 5 Block diagram of Markov feature extraction procedure
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of states required by the data. In the proposed scheme, the value T is set to 4 to maintain the
balance between computational efficacy as well as classifier performance. The process of
Markov is categorized by TPM. A total number of elements in each direction for one-step
TPM is (2T + 1) × (2T + 1). The achieved TPM for H, V, D and M directions are given in the
following eqs. [24]:

P Zh xþ 1; yð Þ ¼ qjZh

�
x; y ¼ p

�h i
¼

∑
Rx−1

x¼1
∑
y¼1

Ry

δ Zh x; yð Þ ¼ p; Zh

�
xþ 1; y

�
¼ q

� �

∑
Rx−1

x¼1
∑
y¼1

Ry

δ Zh x; yð Þ ¼ pð Þ
ð14Þ

P Zv x; yþ 1ð Þ ¼ qjZv

�
x; y ¼ p

�h i
¼

∑
x¼1

Rx

∑
Ry−1

y¼1
δ Zv x; yð Þ ¼ p; Zv

�
x; yþ 1

�
¼ q

� �

∑
x¼1

Rx

∑
Ry−1

y¼1
δ Zv x; yð Þ ¼ pð Þ

ð15Þ

P Zd xþ 1; yþ 1ð Þ ¼ qjZd

�
x; y ¼ p

�h i

¼
∑

Rx−1

x¼1
∑

Ry−1

y¼1
δ Zd x; yð Þ ¼ p; Zd

�
xþ 1; yþ 1

�
¼ q

� �

∑
Rx−1

x¼1
∑

Ry−1

y¼1
δ Zd x; yð Þ ¼ pð Þ

ð16Þ

P Zm x; yþ 1ð Þ ¼ qjZm

�
xþ 1; y ¼ p

�h i

¼
∑

Rx−1

x¼1
∑

Ry−1

y¼1
δ Zm xþ 1; yð Þ ¼ p; Zm

�
x; yþ 1

�
¼ q

� �

∑
Rx−1

x¼1
∑

Ry−1

y¼1
δ Zm xþ 1; yð Þ ¼ pð Þ

ð17Þ

where, p, q ∈ {−T, −T + 1, ..…, 0, ..…, T − 1, T}, Rx × Ry is the dimensionality of the image. If

(i)                                     (ii)  (iii)                                     (iv)

0

0

0

0

a   -   b =H

0

0

0

0

a   -   b = V

0

0

0

0

a   -   b = D a   -  b = M

Fig. 6 Difference 2-D array: (i) Horizontal difference 2-D array (H), (ii) Vertical difference 2-D array (V), (iii)
Main diagonal difference 2-D array (D), and (iv) Minor diagonal difference 2-D array (M)
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the arguments are satisfied δ(⋅) = 1, else δ(⋅) = 0 as shown in the following equation:

δ A ¼ p;B ¼ qð Þ ¼ 1 A ¼ p;B ¼ q
0 otherwise

�
ð18Þ

After evaluating the Markov from both the domains i.e. LBP and DWT at T = 4, the feature
vector is generated. Then, this feature vector is applied to SVM classifier for the classification.
Moreover, the computational complexity is reduced and detection performance is improved.

2.7 SVM classification

The support vector machine (SVM) is a standard classifier depending on the knowledge of the
hyperplane. The optimal separation hyperplane which differentiates the positive pattern from
the negative pattern is found by using Lagrangian multipliers. Also, it can grasp feature vectors
spaces both linearly as well as nonlinearly separable. The authentic images are marked as +1
and forged images as −1, which is two-way classification and can be resolved by SVM.
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3 Experimental results and discussion

The proposed scheme is implemented using MATLAB R2017b (9.9.0.713579). The experi-
mentation is carried out using Processor i.e. Intel(R) Core (TM) i5-4210U CPU @ 2.4 GHz
with the memory of 4.00 GB on Microsoft Window 8.1.

3.1 Description of datasets

In this segment, all the experimentation is accomplished to estimate the efficacy of the
proposed algorithm. The benchmark datasets are used in the experiment analysis which is
discussed below. Figure 7 illustrates an example of images from each dataset and Table 1
illustrates certain characteristics of these datasets.

& CASIA v1.0: The CASIA image tampering detection evaluation dataset (CITDE) offers a
more puzzling as well as faithful image for the detection of tampering. The dataset
comprises 800 authentic and 921 forged images [14].

& CASIA v2.0: This dataset comprises of 7491 authentic as well as 5123 forged images. It
involves 9 categories, classified as animal, scene, architecture, plant, nature, indoor,
character, article, and texture [14].

& Columbia Uncompressed Image Splicing Detection Evaluation Dataset: It encloses 363
total images, out of which 183 are authentic images, else is forged. The images are in
uncompressed formats i.e. BMP and TIFF. The images involve indoor sights, for instance,
bookshelf, computer, or desks [19].

& DVMM: It is contributed by Columbia University to appraise the detection approaches. It
has 933 authentic and 912 forged images. The tampering operation in this dataset has been
created by cutting and pasting procedure across boundaries of the object or perpendicular/
parallel strips, from a similar image or a dissimilar image [32].

& IFS-TC: This dataset was initially used in international competition planned by IFS-TC. It
encompasses 1150 forged and 1050 authentic images [10].

& DSO-1: It comprises 100 authentic and 100 forged images. The dataset comprises both
interiors as well as outside images. The fake images are generated by implanting one or
more than one person in the original image. Various procedures such as alteration in color
and illumination are executed with the motive of making realistic forged images [12].

3.2 Performance parameters

The efficacy of the procedure is evaluated using several numbers of performance
parameters like Detection Accuracy (Accuracy), recall (R), F2 score (F2), True Positive
Rate (TPR), F1 score (F1), precision (P), True Negative Rate (TNR), Informedness
(Inf), Markedness (Mkd), and Mathews correlation coefficient (MCC). F1 score is a
parameter which merges both recall and precision in a single value. F2 score is an
average of recall as well as precision. TPR, also called sensitivity, is the possibility of
identifying a forged image as forged. TNR, also called specificity, which is the
possibility of identifying an authentic image as authentic. On the other hand, Accu-
racy is the proportion of summation of true positives and true negatives to the overall
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images used in the experiment. MCC is the correlation coefficient among predicted
and actual classes for the classifier. Informedness (Inf) states the probability that the

Authentic Images Forged Images

(i)

(ii)

(iii)

(iv)

(v)

(vi)

Fig. 7 Example of authentic and forged images from various datasets (i) CASIA v1.0 (ii) CASIA v2.0 (iii)
Columbia (iv) DVMM (v) IFS-TC (vi) DSO-1
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classifier is informed about the condition and Markedness (Mkd) specifies the prob-
ability that condition is marked by the classifier. These terms are described in
equations underneath [15, 17, 33].

P ¼ TP

TP þ FP
ð19Þ

TPR ¼ R ¼ Sensitivity ¼ TP

TP þ FN
ð20Þ

TNR ¼ Specificity ¼ TN

TN þ FP
ð21Þ

F1 ¼ 2
P:R
P þ R

ð22Þ

F2 ¼ 5
P⋅R

4⋅P þ R
ð23Þ

Accuracy ¼ Tp þ TN

Tp þ TN þ Fp þ FN
ð24Þ

MCC ¼ TP � TN−FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP þ FPð Þ TP þ FNð Þ TN þ FPð Þ TN þ FNð Þð Þp ð25Þ

Informedness ¼ TPRþ TNR−1 ð26Þ

Table 1 Characteristics of evaluated datasets

Dataset No. of Images File Format Image Size

Authentic Forged Total

CASIA v1.0 [14] 800 921 1721 JPG 384×256
CASIA v2.0 [14] 7491 5123 12,614 JPG, TIFF, BMP 240×160 to 900×600
Columbia [19] 183 180 363 TIFF, BMP 757×568 to 1152×768
DVMM [32] 933 912 1845 BMP 128×128
IFS-TC [10] 1050 1150 2200 PNG 1024×768 to 2848×2144
DSO-1 [12] 100 100 200 PNG 2048×1536
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Markedness ¼ TP

TP þ FP
þ TN

TN þ FN
−1 ð27Þ

where, TP is total images which are perfectly identified as forged, FP is total images incorrectly
identified as forged, FN is the number of missed forged images, TN is total authentic images
perfectly identified as authentic. Furthermore, a brief exposition of how parameters are chosen
in the experiments of the proposed scheme is also given in this paper. The proposed scheme
comprises different parameters such as LBP parameters, and a threshold value of Markov i.e.
T. The extensive experiments have been performed on CASIA v1.0 with different LBP
parameters (q, R) to discover the set that results in the best performance; here, q is total pixels
in the spherical region of the radius R [7, 8]. From the experimentations, it has been observed
from Fig. 8, that LBP parameters q = 8, R = 1 give the best performance with a high accuracy
rate. Therefore, the next experiments are executed using these optimal values of LBP
parameters.

Moreover, to select suitable values for T, few factors should be taken into account. If the
value of the threshold is taken too small, it is hard to capture the spliced artifacts. On the other
hand, if the value of the threshold is too large, then the dimensionality of feature vectors will be
very large, as a result, the computational cost might be uncontrollable. Thus, the choice of T
becomes a trade-off between detection accuracy and computational cost of the algorithm. In
most of the papers [18, 28, 36, 48] using the Markov feature, the threshold value is set to 4, so,
empirically, we choose T = 4 in our simulation.

3.3 Experimental results

As discussed earlier, six datasets are used to evaluate the proposed scheme. Meanwhile, in
almost all datasets, the number of forged images are more than the authentic images, and vice-
versa, so a balance is maintained between the authentic and forged images. Thus, images are
randomly chosen such that an equal number of both the images are selected for the detection.
The images are specified with the equivalent label, which is used for training the classifier. On
the other side, the images used for the testing purpose are specified with no label and it is used
to authenticate the algorithm’s efficacy. For appraising the performance of the proposed
scheme, 80% of images are taken for training and 20% images are taken for testing. A
confusion matrix outlines the classifier’s performance with respect to testing data. For instance,
there are 800 genuine and 921 forged images in the CASIA v1.0 data set. To maintain balance
800 authentic and 800 forged images are taken for experimentation, so total there are 1600
images for CASIA v1.0. According to 80:20 proportion for training and testing, 1280 images
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Fig. 8 Effect of LBP parameters (a) q (b) R on the performance
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are used in training the classifier and 320 images are used for testing purposes. Therefore, the
confusion matrix is created based on 320 images to visualize the accuracy of the classifier by
comparing actual and predicted classes. The confusion matrix for testing images of all the
datasets i.e. CASIA v1.0, CASIA v2.0, Columbia, DVMM, IFS-TC, and DSO-1 is given in
Table 2 from left to right, respectively.

The value of different performance metrics on all the datasets are specified in Table 3. The
graphical representation for the performance parameters on all the datasets i.e. CASIA v1.0,
CASIA v2.0, Columbia, DVMM, IFS-TC, and DSO-1 has been depicted in Fig. 9.

Several experiments have been carried out on six mentioned datasets. Moreover, the results
of the combined Markov features of both LBP and DWT have been compared with LBP and
DWT Markov features individually as shown in Table 4 on the respective datasets.

Table 4 reveals that significant results are attained when Markov features are extracted and
combined from both the domains i.e. LBP and DWT. The graphical representation of the
results obtained on all the datasets for various features such as LBP, DWT, and the combina-
tion of LBP and DWT is shown in Fig. 10.

From the observations, Markov features in the LBP domain perform better than Markov
features in the DWT domain for the DVMM dataset. Furthermore, the combination of both
domains attains improved results in comparison to individual domains. Also, CASIA v1.0,
IFS-TC, CASIA v2.0, DSO-1, and Columbia datasets have been used. For Columbia and

Table 2 Confusion matrices for the respective datasets

CASIA 
v1.0

Predicted 
Negative

Predicted 
Positive

Actual 
Negative 159 1

Actual 
Positive 0 160

CASIA 
v2.0

Predicted 
Negative

Predicted 
Positive

Actual 
Negative 1022 3

Actual 
Positive 2 1023

Columbia Predicted 
Negative

Predicted 
Positive

Actual 
Negative 36 0

Actual 
Positive 1 35

DVMM Predicted 
Negative

Predicted 
Positive

Actual 
Negative 179 3

Actual 
Positive 5 177

IFS-TC Predicted 
Negative

Predicted 
Positive

Actual 
Negative 204 6

Actual 
Positive 7 203

DSO-1 Predicted 
Negative

Predicted 
Positive

Actual 
Negative 18 2

Actual 
Positive 1 19

Table 3 Performance parameters of the proposed method on various datasets

Parameters CASIA v1.0 CASIA v2.0 Columbia DVMM IFS-TC DSO-1

Accuracy (%) 99.69 99.76 98.61 97.80 96.90 92.50
TPR (%) 100 99.80 97.22 97.25 96.67 95.00
TNR (%) 99.38 99.71 100 98.35 97.14 90.00
F1 score (%) 99.69 99.76 98.59 97.79 96.90 94.06
F2 score (%) 99.88 99.79 97.77 97.49 96.76 92.47
Precision (%) 99.38 99.71 100 98.33 97.13 90.48
MCC (%) 99.38 99.51 97.26 95.61 93.81 85.11
Inf (%) 99.37 99.51 97.22 95.60 93.81 85.00
Mkd (%) 99.38 99.51 97.30 95.62 93.81 85.21
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CASIA v1.0 dataset, the LBP based Markov features attain better results in comparison to
DWT based Markov features in terms of accuracy and specificity. When merging DWT and
LBP, there is an improvement in detection performance. Even though DVMM, CASIA v1.0 as
well as Columbia dataset, is extensively used, but the size of these datasets is not large. So, to
authenticate the performance of the proposed approach on a larger dataset, the same technique
is utilized for CASIA v2.0. In this, Markov features in DWT perform better in comparison to
Markov features in LBP.

Nevertheless, the finest performance is observed in combining features from both the
domains. Also, two more datasets have been used to carry out the experimentation i.e. IFS-
TC and DSO-1 datasets. The manipulation of these datasets is done by cutting and pasting
various degrees of photorealism. To check the results on a very small dataset, DSO-1 is used
which comprises 100 authentic and 100 forged images. The LBP based features perform
superior to DWT features with higher accuracy for this dataset. Moreover, the combination of
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1

CASIA v1.0 CASIA v2.0 Columbia DVMM IFS-TC DSO-1

Accuracy TPR TNR F1-Measure F2-Measure Precision MCC Inf Mkd

Fig. 9 Graphical representation of performance parameters on datasets

Table 4 Results for datasets with various features

Datasets Features Accuracy
(%)

TPR
(%)

TNR
(%)

Precision
(%)

F1
score
(%)

F2 score
(%)

MCC
(%)

Inf
(%)

Mkd
(%)

CASIA v1.0
[14]

LBP 86.25 85.00 87.50 87.18 86.08 85.43 72.52 72.50 72.55
DWT 77.81 99.38 56.25 69.43 81.75 91.48 61.65 55.62 68.33
LBP +DWT 99.69 100 99.38 99.38 99.69 99.88 99.38 99.37 99.38

CASIA v2.0
[14]

LBP 78.49 84.20 72.78 75.57 79.65 82.32 57.35 56.98 57.73
DWT 86.83 99.90 73.76 99.90 88.34 94.94 76.31 73.66 79.06
LBP +DWT 99.76 99.80 99.71 99.71 99.76 99.79 99.51 99.51 99.51

Columbia
[19]

LBP 88.89 86.11 91.67 91.18 88.57 87.08 77.90 77.78 78.02
DWT 81.94 86.11 77.78 79.49 82.67 84.70 64.11 63.89 64.34
LBP +DWT 98.61 97.22 100 100 98.59 97.77 97.26 97.22 97.30

DVMM [32] LBP 93.65 88.33 98.90 98.76 93.26 90.24 87.77 87.23 88.31
DWT 93.13 96.15 90.11 90.67 93.33 95.01 86.42 86.26 86.58
LBP +DWT 97.80 97.25 98.35 98.33 97.79 97.47 95.61 95.60 95.62

IFS-TC [10] LBP 73.57 63.81 83.33 79.29 70.71 66.40 48.07 47.14 49.01
DWT 72.62 98.57 46.67 64.89 78.26 89.30 52.93 45.24 61.92
LBP +DWT 96.90 96.67 97.14 97.13 96.90 96.76 93.81 93.81 93.81

DSO-1 [12] LBP 85.00 85.00 85.00 85.00 85.00 85.00 70.00 70.00 70.00
DWT 82.50 95.00 70.00 76.00 84.44 90.48 67.13 65.00 69.33
LBP +DWT 92.50 95.00 90.00 90.48 94.06 92.47 85.11 85.00 85.21
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both features exceeds the detection accuracy rate in comparison to individual features. The
Receiver Operating Characteristic (ROC) curve is plotted to visualize the performance of the
classifier. Moreover, it is used to describe the progressions of TPR as well as False Positive
Rate (FPR). TPR represents the number of forged images that were perfectly identified as
forged. Similarly, FPR represents the number of forged images that were wrongly classified as
authentic. The ROC curves are for LBP, DWT, and combined Markov features for all the
datasets are shown in Fig. 11. The ROC curves for CASIA v1.0 and CASIA v2.0 dataset are
zoomed for better visualization.

From Fig. 11, it is observed that the ROC curves for combined features are closer to the
upper left corner which depicts the highest accuracy. The performance of the classifier is
calculated by using LBP as well as DWT based Markov features separately as well as in the
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Fig. 10 Graphical representation of results evaluated for various features on (a) CASIA v1.0 (b) CASIA v2.0 (c)
Columbia (d) DVMM (e) IFS-TC (f) DSO-1 datasets
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combination of both. From Table 4 as well as ROC curves for respective datasets, it is clear
that a combination of Markov features from both LBP and DWT domains provides better
results in comparison to their individual performances. The accuracy achieved by fusing both
LBP as well as DWT domains for datasets i.e. CASIA v1.0, CASIA v2.0, Columbia, DVMM,
IFS-TC, and DSO-1 is 99.69%, 99.76%, 98.61%, 97.80%, 96.90%, and 92.50%, respectively.

3.4 Comparative analysis of the proposed scheme with existing schemes

To exhibit the efficacy of the proposed scheme, the comparison of performance parameters of
the proposed scheme is carried out with some existing image splicing detection techniques as
shown in Table 5. The ROC curve is plotted to visualize the performance of the classifier. The
ROC curve that is close to the upper left corner indicates the highest performance of the
proposed scheme. The comparison of ROC curves for all the datasets has been given in
Fig. 12. The ROC curves have been zoomed for better visualization for CASIA v1.0 and
CASIA v2.0 datasets. Moreover, the difference between the state-of-the-art techniques and the
proposed technique has been given in Table 6.

From Table 5, it is revealed the proposed scheme outperforms the existing techniques in
terms of performance metrics like accuracy, sensitivity, specificity, and informedness. As
shown in Fig. 12, the ROC curve of the proposed scheme for all the datasets is closer to the
upper left corner which depicts that it attains a better accuracy rate in comparison to other
existing procedures. It is observed from the experimental results, that fusing Markov TPM
features in LBP as well as DWT domains outperforms with regard to sensitivity, specificity,
and accuracy. Moreover, the proposed scheme is compared with other techniques and attains
excellent detection performance on CASIA v1.0, DVMM, CASIA v2.0, IFS-TC, Columbia,
and DSO-1 Datasets.
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Fig. 11 ROC curves for various features evaluated on (a) CASIA v1.0 (b) CASIA v2.0 (c) Columbia (d)
DVMM (e) IFS-TC (f) DSO-1 datasets
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It has been observed from Table 6 that the effectiveness of the proposed technique is
validated on six datasets which are larger in number as compared to other state-of-art
techniques. As a result, the proposed method attains better results with several performance
parameters. Furthermore, most of the existing techniques do not perform run time analysis,
statistical analysis, as well as they, are not robust against post-processing operations. On the
other hand, the proposed approach overcomes these drawbacks by validating the performance
with run time analysis, statistical analysis, and post-processing operation.

Table 5 Comparison of performance parameters of the proposed scheme with existing schemes

Datasets Techniques Accuracy (%) TPR (%) TNR (%) Inf (%)

CASIA v1.0 [14] Alahmadi et al. [8] 97.50 96.75 98.24 94.99
Muhammad et al. [30] 94.89 95.15 93.91 89.06
Hussain et al. [20] 94.29 — — —
Sheng et al. [36] 98.77 — — —
Hakimi et al. [53] 97.21 — — —
Kanwal et al. [23] 98.25 — — —
Proposed scheme 99.69 100 99.38 99.37

CASIA v2.0 [14] Alahmadi et al. [8] 97.50 98.31 96.88 95.19
Muhammad et al. [30] 97.33 98.50 96.53 95.03
He et al. [18] 89.76 — — —
Prakash et al. [34] 96.68 95.77 97.52 93.29
Sheng et al. [36] 97.59 — —
Jalab et al. [21] 99.50 95.00 99.00 94.00
Kanwal et al. [23] 97.59 — — —
Proposed scheme 99.76 99.80 99.71 99.51

DVMM [32] He et al. [18] 93.55 93.28 93.83 87.11
He et al. [18] 90.07 89.92 90.21 80.13
He et al. [18] 86.50 87.58 85.39 72.97
Zhang et al. [51] 89.88 92.50 87.31 79.81
El-Alfy et al. [15] 96.83 96.83 96.84 93.67
Zhang et al. [47] 89.93 90.92 89.30 80.22
Dong et al. [13] 84.36 83.23 85.53 68.76
Zhao et al. [52] 93.36 92.99 93.75 86.74
Shi et al. [37] 90.15 90.01 90.31 80.32
Kumar et al. [27] 88.43 — — —
Proposed scheme 97.80 97.25 98.35 95.60

Columbia [19] Agarwal et al. [5] 93.81 — — —
Alahmadi et al. [7] 96.60 — — —
Kanwal et al. [23] 96.66 — — —
Proposed scheme 98.61 97.22 100 97.22

IFS-TC [10] He et al. [18] 91.87 95.30 89.02 84.32
He et al. [18] 81.96 79.81 83.75 63.56
Zhang et al. [48] 84.53 84.49 84.57 69.06
Zhang et al. [51] 92.10 95.66 89.14 84.80
Li et al. [28] 89.61 91.38 88.14 79.52
Proposed scheme 96.90 96.67 97.14 93.81

DSO-1 [12] Agarwal et al. [5] 85.31 — — —
Agarwal et al. [6] 88.33 86.79 91.44 78.23
Proposed scheme 92.50 95.00 90.00 85.00
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3.5 Run time analysis of the proposed approach

In this section, the run time analysis of the proposed approach for the detection of splicing
forgery is evaluated on all the six mentioned datasets. Table 7 demonstrates the average
running time of the proposed approach. The execution time is different for each dataset since it
depends on the different sizes of images as well as the total number of images present in the
dataset. The average run time of the proposed approach attained for CASIA v1.0, CASIA v2.0,
Columbia, DVMM, IFS-TC, and DSO-1 is 0.372, 0.508, 2.478, 0.110, 4.482, and 2.748 secs
per image, respectively. The average run time of the DVMM dataset is lowest than the other
five datasets as each image in this dataset is of small size i.e. 128×128. On the other hand, the
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(c) (d)

(e) (f)

Fig. 12 Comparative analysis of ROC curves for the proposed scheme evaluated on (a) CASIA v1.0 (b) CASIA
v2.0 (c) DVMM (d) Columbia (e) IFS-TC (f) DSO-1 datasets
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IFS-TC dataset has large-sized images, thus it takes maximum processing time to execute the
proposed algorithm. For small dataset i.e. DSO-1, the proposed approach performs higher than
the other four datasets. Meanwhile, CASIA v1.0 and CASIA v2.0 datasets take slightly less
time to execute as compared to Columbia, IFS-TC, and DSO-1 datasets. It is observed from
Table 7 that the average run time of the proposed approach increases significantly either with
the increase in the total number of images or the size of images.

3.6 Robustness test

In this section, post-processing operation i.e. JPEG compression is applied on the DVMM
dataset to validate the robustness of the proposed technique. The JPEG compression level
can be measured by the quality factor. The higher quality factors mean high quality (i.e.,
less compression) and vice versa. The proposed method has extracted Markov features
from DWT and LBP domain. He et al. [18] fused the Markov features in a Discrete
Wavelet Transform (DWT) as well as the Discrete Cosine Transform (DCT) domain. Zhao
et al. [52] extracted features from BDCT and discrete Meyer wavelet transform (DMWT)
domain. Shi et al. [37] treated the neighboring differences of BDCT coefficients of an
image as a 1-D signal and Kirchner et al. [25] have used SPAM features. After performing
the experiments, the detection accuracies of the existing detection techniques [18, 25, 37,

Table 7 Run time analysis of the proposed approach on different datasets

Datasets Image Size Total number of images Running Time (secs/image)

CASIA v1.0 [14] 384×256 1721 0.372
CASIA v2.0 [14] 240×160 to 900×600 12,614 0.508
Columbia [19] 757×568 to 1152×768 363 2.478
DVMM [32] 128×128 1845 0.110
IFS-TC [10] 1024×768 to 2848×2144 2200 4.482
DSO-1 [12] 2048×1536 200 2.748
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Fig. 13 Detection results for JPEG compression

Multimedia Tools and Applications (2020) 79:32037–32063 32059



52] and the proposed method are evaluated as shown in Fig. 13. It has been observed from
Fig. 13 that with the decrease in the quality factor, the detection accuracies of all the
techniques decrease. The proposed method with different JPEG quality factors outper-
forms the other existing methods, which shows that the proposed approach is robust
against post-processing operation i.e. JPEG compression.

The value of detection accuracy for different quality factors for various techniques has
been compared by Analysis of Variance (ANOVA). The ANOVA is used to figure out
whether there is any statistical significant difference among the means of two or more
independent techniques. The ANOVA test is performed on the achieved results of the
proposed technique and existing techniques such as He [18], Zhao [52], Shi [37], and
Kirchner [25]. Figure 14 shows the statistical analysis of detection accuracy for different
techniques when tested against JPEG compression. From Fig. 14, it has been analyzed
that the whiskers (which indicate the maximum and minimum values) of the proposed
technique reaches nearly to 100, which is higher than the other existing techniques, and
also, the values of the median are better than the existing techniques at 95% confidence
level. It has been observed from the representation of the data in Fig. 14 that the existing
detection techniques are much weaker than the proposed technique.

4 Conclusion

A passive forgery detection methodology is proposed to validate the detection of splicing
forgery. At the outset, the STD filter is used to highlight the irregularities in the forged images.
Further, Markov features are extracted from LBP and DWT domains separately and combined,
to detect the image splicing forgery. Then, the SVM classifier is used to evaluate the
effectiveness of the algorithm. Accuracy is calculated on six different datasets i.e. CASIA
v1.0, DVMM, CASIA v2.0, IFS-TC, Columbia, and DSO-1. The proposed technique attains
99.69% and 99.76% accuracy on CASIA v1.0 and CASIA v2.0, 97.80%, and 98.61%
accuracy on DVMM and Columbia datasets, and 96.90% and 92.50% accuracy on IFS-TC,

Fig. 14 Statistical analysis of detection accuracy for different techniques, when tested against JPEG compression
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and DSO-1, respectively. The experimental results show that fusing Markov features from
LBP and DWT domains leads to improvement in terms of detection accuracy, sensitivity,
specificity, and informedness in comparison to other existing techniques. Moreover, the
robustness of the proposed method is validated for JPEG compression, and efficacy is
confirmed by performing the statistical analysis test using ANOVA. In future work, it has
been planned to localize the tampering regions in the spliced images. Moreover, the authen-
tication of medical images has acquired less attention in the research community. Since the
medical images are misrepresented by some people to claim medical loans, the concerned
patient may face social embarrassment or disappointed, while other people may achieve an
illegal benefit. So, this field needs more attention to attain the trust of patients as well as to
avoid their embarrassment. Thus, the proposed scheme can be extended and applied to medical
images in the future work so that it will be beneficial for the society as well as the research
community.
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