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Abstract
Driver drowsiness is a major cause of road accidents. In this study, a novel approach that
detects human drowsiness is proposed and investigated. First, driver face and facial landmarks
are detected to extract facial region from each frame in a video. Then, a residual-based deep 3D
convolution neural network (CNN) that learned from an irrelevant dataset is constructed to
classify driver facial image sequences with a certain number of frames for obtaining its
drowsiness output probability value. After that, a certain number of output probability values
is concatenated to obtain the state probability vector of a video. Finally, a recurrent neural
network is adopted to classify constructed probability vector and obtain the recognition result
of driver drowsiness. The proposed method is tested and investigated using a public drowsy
driver dataset. Experimental results demonstrate that similar to 2D CNN, 3D CNN can learn
spatiotemporal features from irrelevant dataset to improve its performance obviously in driver
drowsiness classification. Furthermore, the proposedmethod performs stably and robustly, and
it can achieve an average accuracy of 88.6%.

Keywords Driverdrowsinessdetection .3Dconvolutionneuralnetwork .Stateprobabilityvector
. Transfer learning . Residual learning

1 Introduction

Driver fatigue is a major cause of accidents. Compared with drunk driving, overspeeding, and
other risky driving behaviors, driver drowsiness is difficult to detect and prevent, thereby
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compromising the security and safety of drivers, passengers, and pedestrians. In recent years,
with the development of artificial intelligence technology, autonomous driving technology has
progressed rapidly. However, road vehicles still need drivers. Furthermore, with conditional
autonomous driving systems, driver should still be ready to take over if these systems do not
operate correctly [1]. Therefore, research on effective methods for detecting driver drowsiness
is important to improve transport safety. Detection methods can be divided into three catego-
ries according to basis: driver physiological parameters, operational behavior, and physical
conditions [2].

Physiological signals change evidently when drivers feel drowsy. In recent years, many
physiological signal detection methods for recognizing driver drowsiness have been studied
[3]. Physiological signal tests include electroencephalogram, electrocardiogram, electrooculo-
gram, and electromyogram [4]. Physiology-based methods have higher recognition accuracy
compared with other methods [3]. However, most physiological acquisition sensors need to be
attached to the driver’s head or skin [3].

When drivers become drowsy, his or her operational behaviors change [5]. Therefore, the
operational behaviors of drivers have been employed recently to detect driver drowsiness [3].
Various driver operational behaviors, such as steering wheel movement, speed, acceleration,
and braking, are used to recognize driver drowsiness. However, different driving experiences,
vehicle types and road conditions often affect driver operational behavior, thereby affecting the
performance of these methods.

Facial behavior can reflect the changes in a driver’s mental state, such as alert and
drowsy. Variations in facial information, such as eyelid movement, eye openness, and
facial expression, can reflect driver drowsiness [3]. Physical condition-based recognition
methods adopted driver facial images to detect human facial fatigue [6]. Compared with
the first two types of methods, this method is nonintrusive and not influenced by external
interference. In the present study, we adopt physical condition-based methods to detect
driver drowsiness.

Deep learning methods have greatly promoted the development of computer vision [7, 8].
Meanwhile, many deep learning models are used to solve the problems of driver drowsiness
recognition [2, 9]. Many deep learning-based systems use convolutional neural networks
(CNNs) to detect driver drowsiness because of the advantages of image recognition [7]. Some
methods have used the CNN model to classify single driver facial image, whereas some
methods have used the recognition outputs of static image to detect driver drowsiness in videos
[9–12]. However, a static image only represents the instantaneous movement of the face
because human face behavior is dynamic. Thus, the driver’s real mental state is difficult to
express.

In this study, we propose a novel method based on transferred deep 3D CNN and state
probability vector. First, facial landmarks are detected to extract the facial region of drivers
from each frame in the video. Then, a residual-based deep 3D CNN model is used to classify
driver facial image sequences for obtaining its drowsiness output probability in a relatively
short period of time. The difficulty in training deep 3D CNN is addressed by pretraining the
constructed 3D CNN model in a human action dataset and finetuning it in a driver drowsiness
dataset for recognition performance improvement. The facial movements of a person under
drowsiness are slower, and they change less frequently compared with the facial movements of
an alert person. Thus, a certain number of output probability values is concatenated to obtain
the state probability vector, and a recurrent neural network model is adopted to classify the
constructed vector and obtain the recognition result of driver drowsiness. The probability
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vector not only discriminates driver drowsiness and alert states but also filters out some
recognition errors produced by the 3D CNN.

The contributions of this study come in four aspects: a) a driver drowsiness recognition
system with transferred deep 3D CNN and state probability vector; b) an analysis of the effect
of different 3D CNNmodels for driver facial video classification; c) a transfer learning strategy
based on uncorrelated data sets to improve the performance of the 3D CNN for driver
drowsiness recognition; and d) a method of cascading the codified probability values of facial
dynamic drowsiness status in a video to construct a state probability vector for representing
driver facial drowsiness behavior.

The remainder of this paper is structured as follows: In Section 2 we introduce several
representative related studies. In Section 3, we describe the overall architecture of the proposed
method. In Section 4, we present the experiments conducted to evaluate the performance of the
proposed method. In Section 5, we provide the conclusions and future research directions.

2 Related works

In recent years, image-based technologies have considerably developed because of the ad-
vances in related research subareas, such as face detection, tracking, and facial expression
recognition, as well as in the area of machine learning, such as supervised learning, feature
extraction, and deep learning. These systems can be divided into three major categories: eye-,
mouth-, and fusion-based methods.

2.1 Eye-based methods

Eye-based driver drowsiness detection methods have been widely used. Mandal [13] proposed
an eye-based drowsiness detection system for bus driver monitoring. This system detects eyes
using two different methods and estimates the continuous level of the two eyes’ openness by
using spectral regression. Then, the level of openness of two the eyes are fused using adaptive
integration to extract the percentage of eyelid closure for estimating the drowsiness of a bus
driver. Cyganek [14] proposed a method for detecting the states of driver drowsiness by using
two cameras. In the system, cascading two recognition models are used to locate the eye
regions; one model is used to detect the eye location, whereas the other model is used to verify
the eye coordinate. You [15] used a near-infrared camera to capture a driver image at night and
then a spline function to fit the eyelid curve for driver drowsiness evaluation. Ibrahim [16]
used Haar feature classifiers to detect the driver’s face and adopted a correlation matching
algorithm to locate and track the driver’s eyes according to the shape, intensity, and size of the
pupils. Song [17] proposed multiscale histograms of principal-oriented gradients to extract the
texture information of eye regions for recognizing whether the driver eyes are closed. Gou [18]
proposed a cascade regression framework to detect driver eye and estimated eye state. At each
iteration of cascaded regression, the image pixel value of the eye center, as well as the image
contextual features from the eye corners and eyelids are cascaded to locate eye regions and
openness probability. Zhao [19] fused deep neural network and deep CNN to construct a deep
integrated neural network (DINN) for recognizing driver eye state. The performance of the
DINN is improved by using a transfer learning strategy based on an irrelevant dataset to
pretrain the integrated model. The recognition rate of the DINN can achieve 97% in the driving
environment experiment.
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2.2 Mouth-based methods

Yawning often occurs when drivers feel drowsy. In recent years, many researchers have
studied driver fatigue detection by extracting and analyzing driver mouth state. Omidyeganeh
[20] used a modified implementation of the Viola-Jones detector for face and mouth detections
and then adopted a back projection theory for extracting the changes in the driver mouth state
to recognize yawning. Zhang [21] used deep learning and Kalman filter-based algorithms to
detect and track driver face and nose and then adopted a neural network to detect yawning by
using nose tracking confidence value, face motion features, and gradient features around the
corners of the mouth. Zhang [22] used CNNs to extract spatial image mouth states and long
short-term memory (LSTM) network to classify driver yawning behavior in a video. Akrout
[23] used active contours algorithm to fit driver lip and then calculated the lip area to represent
the state of the mouth to judge whether the driver yawned or not.

2.3 Fusion-based method

The two detection methods above are widely used to detect human drowsiness because eye
or mouth behavior changes considerably when drivers are fatigued. However, some crucial
cues of the other organs are often overlooked by relying only on eyes or mouth, thereby
affecting the recognition accuracy [24]. The study found that detecting drowsiness by fusing
the behaviors of the eyes, mouth, and other regions of the face can considerably improve
recognition accuracy [2]. Weng [9] proposed a hierarchical temporal deep belief network
(DBN) to extract high-level features and output motion probabilities of driver face in each
frame and then adopted two continuous hiddenMarkovmodels to classify driver drowsiness
state. The experiment on a self-built dataset showed that the recognition accuracy of the
proposed model could achieve 84.82%. Guo [10] proposed a hybrid VGG-based CNN
model to extract driver eye and mouth state from each video frame and then used a time skip
combination LSTM model on top of the CNNs to recognize driver states in the video. Zhao
[2] fused the landmarks and image paths of driver eyes and mouth and placed them into a
DBNmodel to classify three driver drowsiness expressions (alert, moderate drowsiness, and
severe drowsiness). The experimental results in an actual driving environment showed that
the recognition rate of the proposed model achieved 96.7%. Park [11] input driver face
image and its optical-flow image into three CNN model (AlexNet, VGG-FaceNet, and
FlowNet) and then concentrated and fed the outputs of the three models into SoftMax
classifier for drowsiness classification. Shih [12] proposed a spatial-temporal network to
detect driver drowsiness. First, a spatial CNN model was used to extract drowsiness-related
features from each facial image in a video. Then, an LSTMmodel was used to construct the
temporal variation of drowsiness status. Finally, a temporal smoothing method was adopted
to smooth the predicted driver state scores. The proposed model achieved 82.61% average
accuracy on the NTHU dataset [9]. Yu [25] used 3D CNN to learn scene understanding
knowledge and extract spatiotemporal representations (eye, mouth, and head pose) from a
video; then, the author fused and placed the two features into deep neural network to
recognize driver drowsiness state. Although our method also used 3D CNN to detect driver
drowsiness, our method is different from the method proposed by Yu [25]. We used 3D
CNN to detect driver drowsiness probability in a short time video. Then, we integrated the
probability value to model the state probability vector of long time videos. Finally, we fed
the state probability vector into a recurrent neural network to classify driver drowsiness. In
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addition, deep 3D CNN pretrained in other irrelevant dataset was used to improve the
performance of the model.

3 Method

The proposed system consists of driver face detection and facial landmark detection, 3D CNN
development, transfer learning, and state probability vector construction. The exhaustive
illustration of the proposed method is presented in Fig. 1.

3.1 Face detection and facial landmark detection

When a video is inputted into a driver drowsiness recognition system, the facial regions should
be detected initially as a preprocessing step. In this study, the S3FD face detector is adopted to
detect the facial region, and a ResNet-based facial alignment model is applied to locate and
track driver facial landmarks. Driver facial regions are extracted as follows: a) extracting driver
facial regions by using S3FD face detector roughly; b) detecting and tracking facial landmarks
with a facial alignment model; and c) obtaining driver facial regions accurately according to
the coordinates of facial landmarks.

3.2 Spatiotemporal drowsiness recognition based on 3D CNN

3D CNN [26] is an extension of the CNN [27] model. The two models are composed of (3D or
2D) convolutional layers, (3D or 2D) pooling layers, and fully connected layers. The math-
ematical representation of 2D convolution operation is shown as follows:

vxyij ¼ f bij þ ∑
M−1

k¼0
∑
Pi−1

p¼0
∑

Qi−1

q¼0
wpq

ijk v xþpð Þ yþqð Þ
i−1ð Þk

 !
ð1Þ

where vxvij is the value of the unit at location (x, y) in the jth feature map in the ith layer; f is the
nonlinear function, such as tanh, sigmoid, or rectified linear unit function; bij is the bias for the
feature map; M is the number of feature maps in the previous layer connected to the current
feature map; wpqr

ijk is the value at (p, q) of the convolutional kernel connected to the previous

FinetuningPretraining

Frames n1-nm

3D CNN

Building 3D CNN model

Transfer learning

Face detection and facial landmark location Frames nk-nl

Frames ni-nj

State Probability
Vector

. . .

0.9 0.1 0.6 0.7

Sigmoid

Result

Classifier

Fig. 1 Overall structure of the proposed method
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layer’s kth feature map; Pi and Qi are the height and width of the convolutional kernel,
respectively. The mathematical representation of the 3D convolution operation is shown as
follows:

vxyzij ¼ f bij þ ∑
M−1

k¼0
∑
Pi−1

p¼0
∑

Qi−1

q¼0
∑
Ri−1

r¼0
w pqr

ijk v xþpð Þ yþqð Þ zþrð Þ
i−1ð Þk

 !
ð2Þ

where Ri is the temporal dimension of the convolutional kernel, and wpqr
ijk is the value at (p, q, z)

of the kernel connected to the previous layer’s kth feature map. Pooling layers are used to
reduce the size of the feature map. The extension strategy from 2D pooling to 3D is the same
as that of convolutional layers. The full connection layers of 2D and 3D CNN are the same.

In this study, residual-based architectures [28] are adopted to construct 3D CNN. As shown
in Fig. 2, residual learning block provides shortcut connections that allow a feature signal to
bypass one weight layer and move to the next weight layer in the network. The mathematical
representation of residual learning is shown as follows:

F xð Þ≔H xð Þ−x ð3Þ
where, H(x) is the desired output mapping, x is the input signal of a residual unit, and F(x) is
the stacked nonlinear layers. The original mapping is recast into F(x) + x. ResNet [28], which
consists of residual learning units, is a successful architecture in image and human action
recognition because of its outstanding performance in large-scale image and video processing.
Furthermore, some derivative models based on residual-based architectures, such as DenseNet
[29] and ResNeXt [30], have also been proposed successively.

Three kinds of extended 3D CNN models based on ResNet, DenseNet, and ResNeXt
architectures are used to detect driver drowsiness from face image sequences. The residual
learning block of these models are shown in Fig. 3 [31]. In Fig. 3, conv, a3, and N are the
parameters of convolutional kernel; a × a × a represents the kernel size of the convolutional
filter; N and group are the number of groups of the convolutions’ group, which divides the
feature maps into groups; BN refers to batch normalization; ReLU is the activation function.

To conduct experiments, we use seven 3D CNN models, namely named ResNet3D-18,
ResNet3D-34, ResNet3D-50, ResNet3D-101, ResNet3D-152, DenseNet3D-121, and
ResNeXt3D-101, to evaluate the proposed system [31]. The number of the models’ name

Weight layer

Weight layer

+

x

F(x)

F(x)+x

Relu

Relu

x

identity

Fig. 2 Residual learning block
architecture
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denote the layer number of networks. The architectures of these networks are shown in
Table 1.

In the table, block name denotes the block architectures presented in Fig. 3. For each block,
N is the number of the convolutional feature map, andM is the number of the blocks. In output
layers, spatiotemporal down-sampling is performed by average pool, except for DenseNet3D-
121. FC-TRANS represents that the convolution layer is transformed into a full connection
layer. As shown in the table, ResNet3D-18 and 34 consist of the basic block of ResNet;
meanwhile, ResNet3D-50, 101, and 152 consist of the bottleneck block of ResNet.

The output layers of these models are shown as follows:

p Að Þ ¼ σ ∑
K

k¼0
AkWk;i

� �
ð4Þ

where A is the top hidden layer of 3DCNN; p (A) is the probability for driver drowsiness given
A; σ is the output classifier; W = [W1i, W2i, …, WKi] is the parameter set of the output layers.

conv, 3
3
, N

BN

ReLU

conv, 3
3
, N

ReLU

conv, 1
3
, N

BN

ReLU

conv, 3
3
, N

ReLU

BN

ReLU

conv, 1
3
, 4N

BN

conv, 1
3
, N

BN

ReLU

conv, 3
3
, N, group=32
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BN

ReLU

conv, 1
3
, 2N

BN

BN

ReLU

conv, 1
3
, 128

BN

conv, 3
3
, 32

ReLU

Concat

BN

ResNet (basic) ResNet (bottleneck) ResNeXt DenseNet

Fig. 3 Block of each architecture [31]

Table 1 Network architectures

Layers ResNet3D-{18, 34} ResNet3D-{50, 101, 152} DenseNet3D-121 ResNeXt3D-101

Block name Basic Bottleneck DenseNet ResNeXt
Block_0 conv, 7×7×7, N: 64, stride: 2×2×1.

BN. ReLU. maxpool: 3×3×3.
Block_1 N 64 64 64 128

M {2, 3} 3 {6, 6} 3
Block_2 N 128 128 128 256

M {2, 4} {4, 4, 8} {12, 12} 24
Block_2 N 256 256 256 512

M {2, 6} {6, 23, 36} {24, 48} 36
Block_3 N 512 512 {512, 896} 1024

M {2,3} 3 {16, 32} 3
output average pool: 4×4×1, FC-TRANS, sigmoid function
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3.3 Transfer learning

Acquiring a sufficient number of datasets that meet the training requirement is difficult to
achieve. Thus, training our 3D CNN model, whose parameters are randomly initialized, is
unrealistic. The lack of training data can render our network prone to overfitting. In recent
years, transfer learning methods have been used to solve this problem and improve the
recognition capability of CNNs [32, 33]. In transfer learning, a base CNN is pretrained on a
dataset, which has a sufficient number of samples by using supervised learning. Then, the
parameters of the learned base CNN are repurposed or transferred to a second model to be
trained on a target dataset and task. This method can improve recognition accuracy if the
transferred features are meaningful, general, and suitable for the tasks. Furthermore, transfer
learning among unrelated data sets is still effective. However, studies on transfer learning are
focused on the 2D CNN model. Hara [31] successfully applied transfer learning to the 3D
CNNmodel to improve the accuracy of human behavior recognition. However, the experiment
is only implemented in a relevant dataset. The 3D CNN model are pretrained and finetuned in
different human behavior recognition datasets. In this paper, the 3Dmodel pretrained in human
behavior recognition is adopted to be finetuned in the driver drowsiness dataset to analyze
whether the performance of the model is improved. The pretraining dataset is Kinetics [34], a
human behavior recognition dataset. Kinetics has 400 human behaviors, of which 400 image
sequences are contained. The total number of the samples is not less than 300,000, and these
samples have an adequate amount of data to pretrain the 3D CNN model.

3.4 State probability vector

In driver face and facial landmark detection, the failure of location often occurs. To solve these
problems, we adopt the integration strategy of frame substitution [2]. As shown in Fig. 4, the
frames where no face or facial landmarks is detected are discarded, and the other adjacent
images are extended to the position of the discarded frames. Then, a time window is used to
extract image sequences with fixed frames in a video. These image sequences are placed into
the proposed 3D CNNmodel to obtain the state probability value. As shown in Fig. 4 and Eqs.
5–7, time windows can overlap over time. Finally, the state probability values of the video are
integrated into a vector. A recurrent model is used to classify the state probability vector for
obtaining the driver drowsiness state of the video. The mathematical representation of the
formation of state probability vector is shown in Eq. 8.

v1 ¼ f 1; f 2;…; f N f

h i
ð5Þ

vn ¼ f nSþ1; f nSþ2;…; f nSþN f
� � ð6Þ

S ¼ N F−N f

ns−1
ð7Þ

V ¼ P1; P2; …; Pi …; Pns½ � ð8Þ
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where, vn is the nth image sequence extracted from the driver facial video; fi denotes the ith
frame of an image sequence; S is the sliding step of time windows; NF and Nf are the frame
numbers of the video and the extracted image sequence, respectively; ns represents the number
image sequences extracted from a video; V is the state probability vector of the video; Pi is the
state probability value of the ith image sequence in the video.

In a short period of time (several frames), driver drowsiness and alertness often
produce similar facial behaviors, such as closing eyes and blinking, yawning, and
talking. In actual driving, when the driver is alert, the speed of facial muscle movement
is often faster and more frequent than when the driver is drowsy. If features are extracted
in a relatively short time for drowsiness detection, then a high false detection rate will be
obtained. Therefore, a long period of time is required to obtain sufficient driver facial
movement information. In this study, we extract the drowsiness probability vector of
drivers facial videos with 240 frames.

Finally, LSTM and gated recurrent unit (GRU) network are applied to classify the vector
and analysis effectiveness of the drowsiness probability vector of drivers. LSTM and GRU are
recurrent-based neural networks that have been widely used in speech recognition, natural
language processing, and video recognition. Each value of the vector is placed into the
corresponding input nodes of the model in chronological order. The output classifier is added
to the top of the last hidden layer of the model to obtain the recognition result. The number
layers of the two models are set to 2, the size of hidden layers is 10, and the output function is
logistic regression.

4 Experimental results

In this section, we elaborate the information of the driver drowsiness dataset, platform, and
data preprocessing method in Sections 4.1 and 4.2. Then, we present the experimental
results to prove the effectiveness of the proposed method. We present the results of the
performance evaluation of the 3D CNN in Sections 4.3–4.5. We present the results of the

FRAME FRAME FRAME FRAME FRAME FRAME FRAME FRAME. . .

FRAME FRAME FRAME FRAME FRAME FRAME FRAME FRAME FRAME FRAME FRAME. . .FRAME

Residual-based 3D CNN

0.6 0.9 0.1 0.7 0.8 0.1

Classifier

. . .

Frame aggregation

Forming state probability vector

Time window

Fig. 4 State probability vector
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performance evaluations of the proposed state probability vector and the entire system in
Sections 4.6–4.10. In Section 4.11, we compared other state-of-the-art methods with the
proposed system.

4.1 Dataset

To evaluate the effectiveness of our method and compare with other state-of-the-art
methods, we use the NTHU driver drowsiness dataset to conduct experiments [9]. The
dataset contains 22 subjects and 380 videos. In the dataset, all subjects with various facial
ornaments (eyeglasses and sunglasses) are captured in various environments (day and
night). The subjects sit in front of simulated driving system and perform driving operations.
In the meantime, each participant acts several actions that usually happen during actual
driving, such as talking, blinking, yawning, and drowsiness. The video is captured by D-
Link DCS-932 L with infrared LED at 30 frames per second. The size of each image is
640×480. The dataset is divided into training and validation sets. In this experiment, the
validation set is adopted to test our model. Sample images of the dataset are presented in
Fig. 5. The top row of Fig. 5 shows the sample frames of the alert state of the subjects,
whereas the bottom row of Fig. 5 shows the sample frames of the drowsiness state of the
participant. For the training and evaluation of the 3D CNN model, certain image sequences
with 16 frame numbers are randomly extracted from the video-based dataset to construct the
training and testing datasets. The frame rate of these image sequence datasets is 15 frames
per second. The labels of the dataset are obtained in accordance with the original labels of
the images in the NTHU dataset.

4.2 Platform and data preprocessing

The proposed method is trained and tested using Pytorch 0.4 and OpenCV 2.4.8 on two Intel
Xeon E5–2630 v4 CPU at 2.50 GHz with 256 GB RAM and 2 NVIDIA Tesla K80 graphic
cards with 24 GB RAM running on Windows 10.

Normalization process is essential for training and testing. Initially, the mean values of the
image sequences and vectors are obtained. Then, the difference between the mean and real
values is calculated to remove the individual difference for the input data. Finally, the standard
deviation is divided to render the data normally distributed. The values of all data are
normalized as follows:

Fig. 5 Sample images of the NTHU dataset
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μ ¼
∑
J

j¼1
pj

J
ð9Þ

σ ¼ ∑
J

j¼1
pj−μ
� �2

ð10Þ

P j ¼
pj−μ
σþ C

ð11Þ

where μ and σ are the mean and standard deviation, respectively; pj is the original input vector;
C is a constant avoiding the numerator to be divided by zero; Pj is the normalized input data; J
is the number of input vectors.

4.3 Evaluation of the different number layers of the ResNet3D model

In this experiment, the performance of the different ResNet3D number layers are compared to
analyze the effect of layer’s number on recognition accuracy. The number layers of ResNet3D
used in this experiment are 18, 34, 50, 101, and 152. The curves of recognition accuracies and
the area under the receiver operating characteristic curve (AUC) are shown in Figs. 6 (a) and
(b), respectively. On the basis of the experimental results, the recognition accuracy and AUC
of the model are improved with the increase in the model layer’s number. In Fig.6 (a), the
growth of AUC slows down with the increase in layers. Compared with AUC, the improve-
ment of recognition accuracy is limited. In accordance with recognition results and model
complexity, 3D CNN models with approximately 100 layers are adopted to detect driver
drowsiness.
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Fig. 6 Experimental results of ResNet3Ds with different numbers of layers
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4.4 Evaluation of different 3D CNN models

The performance of different 3D CNNs with about 100 layers (ResNet3D-101, DenseNet3D-
121, and ResNeXt3D-101) are compared in this section. The recognition accuracies and AUC
are shown in Table 2. The curves of the receiver operating characteristic (ROC) are shown in
Fig. 7. As shown in Table 2, ResNext3D-101 achieves the best drowsiness recognition rate. In
Table 2 and Fig. 7, the DenseNet3D-121 outperforms the others in terms of AUC. However,
compared with the recognition accuracy, the advantages of AUC of the ResNext3D-101 and
DenseNet3D-121 are not obvious. Furthermore, ResNeXt-based architecture has fewer pa-
rameters compared with DenseNet, thereby reducing reduce the operation time of systems.
Therefore, ResNeXt3D-101 is used to obtain the driver drowsiness probability value.

4.5 Evaluation of transfer learning strategies for the 3D CNN models

In this section, 3D CNN models with and without a transfer learning strategy are compared.
The comparison results of the two strategies are shown in Fig. 8. The experimental results
indicate that when the 3D CNN models pretrained in the Kinetics human behavior dataset are
used to perform classification, the accuracy of drowsiness recognition improves evidently.
Same as the traditional CNN model, backpropagation algorithm is adopted to minimize the
prediction error with gradient descent. If the weights and bias of the 3D CNN initialize
randomly, then they may cause local optimization for the excessive number of parameters of
deep 3D CNN model. Hara [31] successfully used transfer learning to improve the perfor-
mance of 3D CNN in human behavior recognition detection. However, the pretraining and
finetuning processes were all conducted in human behavior datasets. While these experimental
results in Fig. 8 demonstrate that 3D CNN can learn spatiotemporal features from irrelevant
datasets similar to 2D CNN in drowsiness detection.

4.6 Evaluation of the proposed method with different numbers of frames of input
video

The proposed method with different numbers of image frames of input video (F) is compared.
The experimental results are shown in Table 3. The 3D CNN model used in this experiment is
ResNeXt3D-101, and the classifier of the probability vector is LSTM neural network. When
image sequences are extracted, the number of overlapped frames is 6. The recognition rate and
AUC of the system show a marked overall change with the increase in number of frames. The
recognition rate and AUC of the model are highest when F is 240. We can infer that the
proposed model will perform better if F continues to rise. However, the complexity of the
model increases with F. Thus, the proposed model with 240 frames is adopted in subsequent
experiments.

Table. 2 Experimental results of different 3D CNN models

Model Alertness (%) Drowsiness (%) Total (%) AUC (%)

ResNet3D-101 87.05 81.94 84.74% 91.87
DenseNet3D-121 82.09 88.63 85.04 92.44
ResNext3D-101 88.71 82.94 86.10 92.35
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4.7 Evaluation of the proposed method with different numbers of probability vector

The proposed method with different numbers of probability vector (NF) is compared. The
experimental results are shown in Table 4. The 3D CNN model and classifier of the
probability vector are the same as Section 4.6. The recognition rate and AUC of the
system show a limited overall change with the increase in NF. When NF is 40, the
accuracy of driver drowsiness recognition is highest. When NF is 30, the AUC of the
proposed model is better than that of others. The improvement of recognition accuracy is
more evident than that of AUC. Thus, the drowsiness probability vector with 40
probability values is adopted in subsequent experiments.
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4.8 Evaluation of the proposed method with different classifiers

This set of experiments compares the performance of the proposed system with different
classifiers, namely support vector machine (SVM), random forest (RF), decision tree
(ID3), k-nearest neighbor (k-NN), LSTM, and GRU, which are widely applied in many
machine learning fields. The 3D CNN model used in this experiment is ResNeXt3D-101,
and the NF of the state probability vector is 20. The experimental results are presented in
Table 5 and Fig. 9. The classification results shown in Table 5 illustrate that the LSTM
neural network outperforms other classifiers, whereas the recognition rate of SVM and
RF are the worst. However, as shown in Fig. 9 and Table 5, the AUC and ROC of the
model using the GRU neural network is better than those of others. The experimental
results indicate that the performance of the recurrent-based neural networks (LSTM and
GRU) are similar, and these networks outperform the other classifiers (SVM, RF, and k-
NN).

4.9 Evaluation of the proposed method with different accuracies of 3D CNN

The different accuracies of the 3D CNN in the proposed system are compared in this
experiment. The comparison results are presented in Table 6. As shown in the table,
model-based accuracy and AUC denote the recognition rate and AUC value of proba-
bility vector extraction models, respectively. Meanwhile, video-based accuracy and AUC
denote the recognition rate and AUC value of LSTM neural networks with video
probability vector as input respectively. The experimental results show that the video-
based accuracy and AUC are improved with the increase in model-based accuracy and
AUC. Furthermore, compared with model-based recognition results, video-based accu-
racy and AUC increased by 1.85% and 2.46%, respectively. The video-based

Table 3 Experimental results of models with different number of frames

F Alertness (%) Drowsiness (%) Total (%) AUC (%)

64 79.40 83.90 81.80 89.55
96 84.50 86.52 85.80 91.79
128 83.70 87.27 85.60 92.63
160 82.83 88.01 85.60 93.36
192 87.56 86.52 87.00 94.22
240 87.12 89.89 88.60 95.25

Table 4 Experimental results of models with different numbers of probability vector

NF Alertness (%) Drowsiness (%) Total (%) AUC (%)

16 82.40 90.63 86.80 95.61
20 84.12 89.89 87.20 95.39
24 84.12 90.26 87.40 95.48
30 82.40 91.01 87.00 95.72
40 87.12 89.89 88.60 95.25
60 83.26 91.39 87.60 95.56
120 83.26 91.01 87.40 95.30

Multimedia Tools and Applications (2020) 79:26683–2670126696



performance of the ResNet3D-101-based system improves the most (3.46% and 3.19%).
Meanwhile, the system with a few layer numbers of 3D CNN barely improves. The
experimental results indicate that the recognition ability of the system will be improve
remarkably when the output probability values of the 3D CNN models are concatenated
into a drowsiness state vector, and the recognition accuracy and the AUC achieve 88.6%
and 95.26%, respectively.

4.10 Evaluation of methods with different state probability vector extraction models

CNN- and 3D CNN-based state probability vector extraction model are compared in this
section. ResNeXt-101 (CNN) and ResNeXt3D-101 (3D CNN) are used to conduct the
experiment. ResNeXt-101, which is pretrained in ImageNet, is finetuned in static images
extracted from the NTHU dataset. LSTM is applied to classify the state probability vectors
extracted using the two models. The comparison results are presented in Table 7. The
experimental results show that the model-based accuracy and AUC of ResNeXt3D-101 are
higher than those of ResNeXt-101. Furthermore, the accuracy and AUC of the ResNeXt-101-
based method are less than 50% when static state probabilities of the driver are concatenated
into the vector. We can conclude that dynamic features are more discriminative than static
features for driver drowsiness classification.

Table 5 Experimental results of the proposed method with different classifiers

Model Alertness (%) Drowsiness (%) Total (%) AUC (%)

SVM 83.69 90.26 87.20 95.29
RF 82.40 91.38 87.20 93.83
k-NN 86.69 89.51 88.20 92.19
LSTM 87.12 89.89 88.60 95.26
GRU 86.27 90.26 88.40 95.65
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4.11 Comparison of the proposed method and state-of-the-art methods

In this experiment, the performance of the proposed systems is compared with that of the state-
of-the-art methods proposed by Park [11], Yu [25], Shih [12], Wen [9], and Guo [10] using the
NTHU dataset. In the proposed system, ResNeXt3D-101 is used to predict the probability
value of the image sequences with 16 frames for constructing the state probability vector of the
video with 240 frames. Meanwhile, GRU and LSTM are adopted to classify the vector for
obtaining the driver drowsiness state. NF is 20.The other experiment results presented in this
experiment are the best performance of the corresponding state-of-the-art methods. The
comparison results in Table 8 indicate that the proposed methods outperform other state-of-
the-art methods. The recognition accuracy of the system with ResNeXt3D-101 and LSTM
achieves 88.6%.

5 Conclusion

In this study, a novel approach for detecting human drowsiness is proposed and investigated.
First, the S3FD face detector and ResNet-based facial alignment model are adopted to detect
the facial region, locate and track driver facial landmarks, respectively, and extract the driver’s
facial region. Then, a 3D residual-based CNN model that learned from a human action dataset
is constructed to classify driver facial image sequences with a certain number of frames and
obtain its drowsiness output probability value. Finally, a certain number of output probability
values is concatenated to obtain the state probability vector of a video, and a recurrent neural
network is adopted to classify the constructed probability vector and obtain the recognition
result of driver drowsiness. The proposed method is tested and investigated on a public NTHU
drowsy driver dataset. Experimental results demonstrate that 3D CNN can learn spatiotempo-
ral features from irrelevant datasets to improve its performance obviously similar to 2D CNN
in driver drowsiness classification. The recognition results also show that the AUC and
recognition rate improve with the layer’s number of 3D CNN; however, compared with that

Table 6 Experimental results of the proposed method with different accuracies of 3D CNN

Model Model-based accuracy
(%)

Model–based AUC
(%)

Video-based accuracy
(%)

Video-based AUC
(%)

ResNet3D-18 80.51 90.43 82.20 (1.69) 91.40 (0.97)
ResNet3D-34 82.78 90.08 83.40 (0.62) 92.65 (2.57)
ResNet3D-50 83.08 90.98 84.20 (1.12) 93.26 (2.28)
ResNet3D-101 84.74 91.87 88.20 (3.46) 95.06 (3.19)
DenseNet3D-121 85.04 92.44 86.80 (1.76) 95.26 (2.82)
ResNext3D-101 86.10 92.35 88.60 (2.50) 95.26 (2.91)

Table 7 Experimental results of different extraction models of state probability vector

Model Model-based accuracy
(%)

Model–based AUC
(%)

Video-based accuracy
(%)

Video-based AUC
(%)

ResNeXt-101 77.07 86.38 53.80 47.56
ResNeXt3D-101 86.10 92.35 88.60 95.26
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of AUC, the improvement of recognition accuracy is limited. Therefore, that the proposed
method outperforms other state-of-the-art systems and it can achieve an average accuracy of
88.6%.

However, large head rotations and occlusions can reduce the effectiveness of the proposed
method. We will address these limitations in future studies by combining other useful
information (e.g., gaze estimation and pupil movements). In addition, 3D CNN has more
parameters than 2D CNN, thereby greatly increasing the running time of the system. There-
fore, we will attempt to establish a simple, efficient, and accurate approximate model of the 3D
CNN used in this study to reduce the computational complexity of our method.
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