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Abstract
Medical image segmentation is a hotspot in the field of image segmentation, and there are
many segmentation methods. As a method of image segmentation, pulse coupled neural
network (PCNN) has excellent segmentation effect. Of course, it also reduces the efficiency
and effect of segmentation because of the complexity of parameter setting and the need for
manual setting. This paper presents a method of searching simplified PCNN parameters by
using Harris Hawks optimization (HHO) algorithm. For one thing the number of parameters
of PCNN is reduced without affecting the segmentation effect, for another the correspond-
ing parameters of PCNN are searched quickly and accurately by intelligent optimization
algorithm. Then, image entropy (H) and mutual information entropy (MI) are introduced as
fitness functions. The performance of HHO-PCNN is compared with WOA-PCNN, SCA-
PCNN, SSA-PCNN, PSO-PCNN, GWO-PCNN, MVO-PCNN, Otsu and K-means by
performance indicators (UM, CM, Precision, Recall, and Dice). The experimental results
verify the superiority of this method in image segmentation.
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1 Introduction

The boom in machine vision has spurred the development of many related technologies, image
steganography technology [30, 51], image significance detection technology [19, 57], target
detection technology [3], visual perception technology [60], image tamper detection [4] and so
on. Image segmentation as the lowest level of machine vision engineering applications have been
widely used in all walks of life, especially in the diagnosis and analysis of lesions through medical
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image segmentation.Many researchers have explored the field, for instance Guo et al. [11] proposed
Otsu thresholding algorithm based on local grid box filter, which shortens the segmentation time and
improves the segmentation accuracy. Mutasem [1] proposed the mixture of fuzzy C-means and
neutrophils which was used to segment jaw lesions, improved the segmentation accuracy and
achieved better segmentation results. J. Hu et al. [17] used Fuzzy C-Means Clustering to segment
and recognize fish diseases, which has high segmentation accuracy. Compared with before, the
performance of modi-fied intuitionistic fuzzy C-means algorithm (MIFCM) has been improved
greatly. Madhukumar [33] made a compareation between K-means and fuzzy C-means for the
performance in image segmentation. Although there are also some other segmentationmethods,such
as watershed [13, 35, 58], mean-shift [18, 32], none of them are particularly perfect.

In the late 1980s, Eckhorn et al. [9, 45] found that in the study of cat visual cortex, the
binary images produced by the midbrain in an oscillating manner can extract different features
from visual impressions. Then, this discovery was written as an algorithm, which was applied
to image processing after a series of improvements and promotion [21, 22, 24, 31, 42, 44].
This algorithm is called pulse coupled neural network (PCNN) [20, 23]. In recent years, PCNN
has played an important role in the field of image processing, such as image segmentation [16,
28, 53, 61], image fusion [5, 27, 55, 59], image enhancement [49], and image recognition [7].
As the third generation of neural network, PCNN has incomparable advantages compared with
the current advanced neural network technologies, such as the convolutional neural networks
(CNN) [48] and the radial basis function neural network (RB-FNN) [43]. It does not need
complex training, so it can complete image segmentation more efficiently. But it has its own
limitations, which is more parameters need to be set. In addition, it is difficult and time-
consuming to set parameters through manual experience and experiments. Therefore, how to
determine parameters is a hot issue. On the one hand, researchers have made great efforts in
the adaptation of PCNN parameters. MA et al. [54] proposed an algorithm of combining
PCNN with image entropy, but this method also requires manual participation in setting
parameters, and can not achieve full automation. Wu et al. [50] published a method of self-
adaptively setting parameters of PCNN, but it is limited to a single parameter and can not
completely solve the problem of parameter setting. On the other hand, Scholars have explored
how to reduce the number of PCNN parameters. Simplified PCNN is proposed by MA et al.
[8] to reduce the complexity of parameter setting. Although this is a great progress, parameter
setting still needs experiments and experience to decide.

Therefore, if the combination of PCNN and intelligent optimization algorithm can be used,
the parameters of PCNN for each image can be automatically set quickly and accurately, so as
to achieve a perfect segmentation effect. Some researcher have explored these aspects, Hage
et al. [12] proposed PCNN combined with particle swarm optimization (PSO) algorithm to
segment cortical. Although the image can be segmented better, it still needs to train a certain
number of images to extract features to match the fitness function of the algorithm, which
means that it can not achieve complete automatic segmentation. Mohammed et al. [41] used
genetic algorithm (GA) to search PCNN parameters for image classification and retrieval. Xu
et al. [52] segmented medical images by optimizing PCNN parameters through the ant colony
optimization (ACO) algorithm. It is an improved ACO, which enhances the global search
ability, reduces the probability of solution falling into local optimum, and can better search the
parameters of PCNN globally. However, when initializing the ACO algorithm, the corre-
sponding parameters need to be set artificially. Different initialization parameters may have
different segmentation results. He et al. [10] proposed an improved cuckoo search algorithm
(CS) applied to the parameters of adaptive PCNN to segment infrared human.

Multimedia Tools and Applications (2020) 79:28369–2839228370



The above methods have several common problems, such as setting more initial parameters
of intelligent optimization algorithm manually, complex search mechanism, and possibly
falling into local optimum. Hence, in order to improve the efficiency and accuracy of
segmentation, we propose a remarkable PCNN parameter auto-setting method combined with
Harris Hawks optimization (HHO) [15] for medical image segmentation. HHO is the state-of-
the-art heuristic algorithm which imitates Harris Hawk’s cooperative predation. It has a
concise and efficient search mechanism and can improve the global search ability.

The remaining parts of this paper are as follows: Section 2 introduces the structure and
working mechanism of the simplified pulse coupled neural network (SPCNN) model [8]. The
optimization mechanism of HHO algorithm is introduced in the third section. In section 4, an
image segmentation model based on PCNN and HHO algorithm is introduced, and image
entropy (H) [54] and mutual information entropy (MI) [6] are proposed as fitness functions.
The segmentation results and evaluation indexes of medical image and gray image include UM
[26, 46], CM [29], Precision [47], Recall and Dice [2] in Section 5. Finally, the full text is
summarized and the direction of future work is pointed out in Section 6.

2 Simplified pulse coupled neural network model

In order to improve efficiency and reduce the interaction between parameters, a simplified
PCNN model derived from the SPCNNmodel is adopted in this paper. As shown in Fig. 1, the
structure of simple PCNN is divided into three parts: receptive part, modulating part and pulse
generator.

Its mathematical expression is expressed as follows:

Fij n½ � ¼ Sij ð1Þ
whereFij[n] denotes the input of the simple PCNN model, and Sij denotes the excitation signal
of the external input, i.e., the gray value of the corresponding pixels of the point (i, j).

Fig. 1 Model structure of simple PCNN

Multimedia Tools and Applications (2020) 79:28369–28392 28371



Lij n½ � ¼ ∑WijklY kl n−1½ � ð2Þ

Uij n½ � ¼ Fij n½ � 1þ βLij n½ �� � ð3Þ
Lij[n] is the link input, Uij[n] means the internal activity.

θij n½ � ¼ exp −αEð Þθij n−1½ � þ VEY ij n−1½ � ð4Þ

Y ij n½ � ¼ 1;Uij n½ �≥θij n½ �
0;Uij n½ � < θij n½ �

�
ð5Þ

θij[n] is the dynamic threshold and Yij[n] is the output of neurons; β shows the link strength
between neurons; Wijkl indicates the link matrix; αE is the threshold attenuation coefficient, VE

means the threshold magnification coefficient.
The simplified PCNN model is mainly to simplify the feed channel and link channel. By It

can be seen that the external excitation of the feed channel only has the gray value of the image
from the Eq. (1). Other reasons are not taken into account, which is expressed by Eq. (2), the
value of the link input is weighted by the sum of the trigger signals of the neurons in the
neighborhood. In short, the feed channel is only affected by the neuron itself, and the link
channel is only affected by the neighboring neuron.

In the simple PCNN model, there are three important parameters which have a
great impact on the image segmentation effect. They are the link strength β, the
threshold attenuation coefficient αE and the threshold magnification coefficient VE.
The link matrix Wijkl has little effect on segmentation, so it is set to a fixed
value. Wijkl usually is a matrix of size 3 × 3, in which each element represents the
reciprocal of the Euclidean distance from the central element to each surrounding
pixel, which can be described as:

Wijkl ¼
0:707 1 0:707
1 0 1

0:707 1 0:707

2
4

3
5 ð6Þ

VE means that when a neuron fires, the dynamic threshold θij will rapidly increase to a higher
value, which will make the neuron unable to output the pulse attenuation coefficient again in a
certain period of time. The attenuation coefficient αE is used to attenuate θij. The link
coefficient β determines the degree of pulse capture in the PCNN model. The higher the
value, the higher the probability that the neighboring neurons of the ignition neuron will be
captured, resulting in the synchronous output of the neighboring neurons. In this way, the
segmentation effect will be better and the edges will be clear. When the value of β is smaller,
the probability of adjacent neurons being fired synchronously is smaller, and the details of
segmentation results obtained at this time will be more abundant.

3 Harris hawks optimization algorithm

Harris Hawks optimization (HHO) algorithm is a bionic algorithm that mimic the predatory
behavior of hawks, mainly composed of three parts: exploration phase, transition from
exploration to exploitation and exploitation phase.
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3.1 Exploration phase

In HHO, the Harris hawks inhabit randomly in some locations, waiting for prey to be found
through two strategies. q is used to randomly select which strategy to adopt.

X t þ 1ð Þ ¼
X rand tð Þ−r1 X rand tð Þ−2r2X tð Þj j q≥0:5

X rabbit tð Þ−Xm tð Þð Þ−
r3 LBþ r4 UB−LBð Þð Þ q < 0:5

8<
: ð7Þ

Xm tð Þ ¼ 1

N
∑
N

i¼1
X i tð Þ ð8Þ

where X(t) refers to the position of hawks currently, Xrabbit(t) refers to the position of a
rabbit, Xrand(t) is the random location of one of the current hawks, Xm is the average of all
hawk positions at the moment,r1, r2, r3, r4 and q are random numbers ranging from 0 to 1. In
addition, (UB, LB) refers to the range of the initial random location of the hawks.

3.2 Transition from exploration to exploitation

E ¼ 2E0 1−
t
T

� �
ð9Þ

where E is the escape energy of prey, E0 is the initial energy of prey and T is the maximum
number of iterations.

3.3 Exploitation phase

There are four ways to simulate this phase in HHO. When the prey is in danger, it tries to
escape, while r < 0.5 indicates that the prey can escape successfully, and r > 0.5
indicates that the prey failed to escape successfully. In addition, |E| > 0.5 and |E| <
0.5 correspond to the soft besiege occurs and the hard besiege occurs, respectively.
Here we describe each case in detail.

3.3.1 Soft besiege

This behavior will occur when |E| ≥ 0.5 and r ≥ 0.5, and the mathematical expression can be
described as follows:

X t þ 1ð Þ ¼ ΔX tð Þ−E JX rabbit tð Þ−X tð Þj j ð10Þ
where ΔX(t) = Xrabbit(t) − X(t) and J is a random number between 0 and 2.

3.3.2 Hard besiege

When |E| < 0.5 and r ≥ 0.5, the current position update equation is as follows

X t þ 1ð Þ ¼ X rabbit tð Þ−EjΔX tð Þj ð11Þ
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3.3.3 Soft besiege with progressive rapid dives

This method will be adopted when |E| ≥ 0.5 and r < 0.5. The location update strategy is as
follows:

X t þ 1ð Þ ¼ Y if F Yð Þ < F X tð Þð Þ
Z if F Zð Þ < F X tð Þð Þ

�
ð12Þ

where =Xrabbit(t) − E ∣ JXrabbit(t) − X(t)∣, Z = Y + S × LF(D),D and S are the dimensions of the
question and random vectors, respectively.

In addition, Levy flight function is introduced in position updating, which can be calculated
by Eq. (14).

LF xð Þ ¼ 0:01� u� σ

vj j1β
ð13Þ

σ ¼ Γ 1þ βð Þ � sin πβ
2

� �
Γ 1þβ

2

� �� β � 2
β−1
2

 !1
β

ð14Þ

where u, σ, v are random numbers with values ranging from 0 to 1, and β is a default constant.

3.3.4 Hard besiege with progressive rapid dives

Hard besiege with progressive rapid dives will happen when |E| ≥ 0.5 and r ≥ 0.5, and the
positions of the Harris hawks can be calculated by Eq. (15).

X t þ 1ð Þ ¼ Y if F Yð Þ < F X tð Þð Þ
Z if F Zð Þ < F X tð Þð Þ

�
ð15Þ

where Y = Xrabbit(t) − E|JXrabbit(t) − X(t)| and Z = Y + S × LF(D).

4 Combination of PCNN and HHO

As we mentioned earlier, simple PCNN has three important parameters (the link strength β,
the threshold attenuation coefficient αE, the threshold magnification coefficient VE), so we
need to optimize these parameters with HHO to achieve excellent segmentation results.

The selection of fitness function is an important step in optimization algorithm. At present,
there are mainly two kinds of functions as the fitness function of image segmentation. They are
the entropy (H) [6] of the segmentation image and mutual information entropy (MI) [46] of the
original image and the segmentation image. The advantage of using the entropy of the
segmentation image as the fitness function is that the calculation is simple and the operation
efficiency is high. However, the disadvantage is that the target and background of the
segmentation image are close to each other. The cross-entropy overcomes the disadvantage
of considering only the entropy of the segmentation image. The original image is taken into
account to improve the accuracy of segmentation, but this improves the complexity and
reduces the efficiency of segmentation. Therefore, in order to be more objective and compre-
hensive, we use these two kinds of entropy as fitness function to test. The fitness functions are
expressed as follows:
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H ¼ −p1 � log2p1−p0 � log2p0 ð16Þ
where p1 and p0 represent the percentages of 1 and 0 in the whole binary image, respectively.

MI ¼ H Xð Þ þ H Yð Þ−H X ; Yð Þ ð17Þ
where H(X) and H(Y) mean marginal entropy of original image and segment image, H(X,
Y) express the joint entropy.

The search process of the algorithm is shown as follows:

Step 1: Initialize the random location of the algorithm, set the number of iterations,
population number, search dimension and scope.

Step 2: The image to be segmented is taken as input, and the optimization algorithm
assigns three parameters to the PCNN. After the PCNN iteration, the fitness values between
groups are compared and the optimal fitness values and positions are obtained.

Step 3: The optimization algorithm updates the population position according to different
strategies and re-assigns it to PCNN. The fitness function value of the output is compared with
the optimal value of the previous iteration, and the optimal fitness function and population
position are updated.
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Fig. 2 Flowchart of HHO-PCNN algorithm
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Step 4: When the maximum number of iterations of the algorithm is reached, the optimal
fitness value and three optimal parameters for image segmentation are output. Then, the
optimal parameters are input into the PCNN model and the segmented image is output.

The pseudocodes of HHO-PCNN are shown as follows:

4.1 The flowchart of HHO-PCNN

5 Experimental results and discussion

In order to evaluate the performance of the proposed algorithm, we put forward a trail of
experimental results in this section. We set forth the experimental conditions including
hardware and software environments, the original image database, and segmentation methods
in the comparative experiments (Fig. 2).

We randomly selected four and five images from the Berkeley Segmentation Dataset
BSDS300 and the Harvard Whole Brain. All experiments were performed on a PC with
Intel® Pentium CPU G4560 @ 3.50GHz and 4 GB RAM with windows 10. The software
used was Python3.7.

Six different intelligent optimization algorithms, including WOA [37], SSA [34, 40], SCA
[36], PSO [25], MVO [39] and GWO [38] are introduced to compare the proposed algorithms.
These algorithms use different search mechanisms to find the optimal parameters, which are

Table 1 Pseudo-code of HHO-PCNN algorithm

Inputs: test image, the population size N = 20 and the maximum number of iterations T = 50;
Outputs: PCNN’s parameters (β, αE,VE);
Initialize the random population X (i = 1, 2, …, N);
For t in range (T):
Update the E1;
For i in range (N):
Compare the fitness functions value of all positions; Output the optimal location and

fitness function value of t-th iteration;
For i in range(N):
Update the E0 and the J; Update the E by Eq. (9);
if (|E| ≥ 1):
Update the position using Eq. (7);
if (|E| < 1):
if r ≥ 0.5 and |E| ≥ 0.5:
Update the position using Eq. (10);
elif r < 0.5 and |E| ≥ 0.5:
Update the position using Eq. (11);
elif r ≥ 0.5 and |E| < 0.5:
Update the position using Eq. (12);
Compare the fitness functions value of the current position with fitness functions

value of the optimal position;
Update the optimal position;
elif r < 0.5 and |E| < 0.5:
Update the position using Eq. (15);
Compare the fitness functions value of the current position with the fitness

functions value of the optimal position;
Update the optimal position;
Return β, αE,VE
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representative. The initialization parameters of each algorithm and PCNN are set as shown in
Tables 1 and 2. Population size and number of iterations are set according to
experience, and other parameters used by each comparison algorithm are selected
from the above references.

For each algorithm, we tested them based on image entropy and mutual information
entropy, and compared the optimal algorithm with state-of-the-art method in order to objec-
tively evaluate the performance of the algorithm.

5.1 Segment evaluation index

In order to objectively evaluate the segmentation effect, five evaluation indexes are introduced,
namely UM, and CM, Precision, Recall and Dice.

Table 2 Parameters of each algorithm and PCNN

Algorithm Parameters Values

PCNN Number of iterations 5
Link strength β (Eq.(3)) [0.001,100]
Threshold attenuation coefficient αE (Eq.(4)) [0.001,100]
Threshold magnification coefficient VE (Eq.(4)) [0.001,400]

WOA Random number r1 [0,1]
Population size 20
Number of iterations 50

SSA Balance coefficient r1 [0,2]
Random number c1,c2 [0,1]
Switch possibility 0.5
Population size 20
Number of iterations 50

SCA Direction r1 [0,2]
Distance r2 [0,2π]
Random weight r3 [0,2]
Random number r4 [0,1]
Switch possibility 0.5
Population size 20
Number of iterations 50

PSO Maximum inertia weight 0.9
Minimum inertia weight 0.4
Learning factors c1,c2 2
Maximum velocity +120
Minimum velocity −120
Population size 20
Number of iterations 50

MVO Wormhole existence possibility [0.2,1]
Distance rate [0,1]
Random number r1,r2, r3 [0,1]
Population size 20
Number of iterations 50

GWO Coefficient vector c [0,2]
Population size 20
Number of iterations 50

HHO Random number r1,r2, r3, r4 (Eq.(7)) [0,1]
Population size 20
Number of iterations 50
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Fig. 3 Segmentation results of the algorithms using image entropy as fitness function
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Fig. 4 Segmentation results of the algorithms using mutual information entropy as fitness function
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UM refers to the uniformity of image segmentation, which can be expressed as follows:

UM ¼ 1−
σ2
1 þ σ2

2

A
ð18Þ

σ2
i ¼ ∑

x;yð Þ∈Gi

f x; yð Þ−μið Þ2 ð19Þ

μi ¼ ∑
x;yð Þ∈Gi

f x; yð Þ=Bi ð20Þ

where Bi is the number of pixels in the corresponding segmentation area Gi, and A is the
normalization factor, which refers to the number of pixels in the whole image.
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Fig. 5 Different algorithms based on image entropy as fitness function (a)-(f)
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CM refers to the regional difference of the segmented image, which can be described as

CM ¼ j f i− f jj
f i þ f j

ð21Þ

where fi is the average gray level of the target area, and fj is the average gray level of
background area.

In order to further evaluate the experimental results objectively, TP, FP, FN and TN are
introduced as follows:

TP means the target area, the segmentation result is also the target area, FP represents the
non-target area, but the segmentation result is the target area, FN is the target area, but the
segmentation result is not the target area, TN indicates the non-target area, and the segmen-
tation result is not the target area. Precision is the percentage of accurately identifying regions
relative to all regions that are segmented.

Precision ¼ TP
TP þ FP

ð22Þ

If the value of precision is 0, the region and ground-truth of the segmented image do not
overlap. On the contrary, if its value is 1, it means perfect overlap. Recall is the rate of correct
recognition of regions of interest.

Table 3 Variance of segmentation
results of each algorithm Algorithms Value

WOA-PCNN 0.0147
SSA-PCNN 0.0185
SCA-PCNN 0.0173
PSO-PCNN 0.0298
MVO-PCNN 0.0153
GWO-PCNN 0.0139
HHO-PCNN 0.0117

0 20 40 60 80

WOA-PCNN

SSA-PCNN

SCA-PCNN

PSO-PCNN

MVO-PCNN

GWO-PCNN

HHO-PCNN

Running time(s)

Fig. 6 Time efficiency comparison of the algorithms based on image entropy as fitness function
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Fig. 9 Convergence curve with mutual information entropy as fitness function (a)-(d)
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Fig. 10 Convergence curve with image entropy as fitness function (a)-(d)
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Recall ¼ TP

TPþ FN
ð22Þ

The range of recall values is 0 to 1, and the larger the value, the better the effect. Dice reflects
the similarity between segmented image and ground-truth.

Dice ¼ 2TP
TP þ FPð Þ þ TP þ FNð Þ ð24Þ

The value of Dice is between 0 and 1, the closer it is to 1, the better.

43ecilS71ecilS92ecilS51ecilS

Original image 

HHO-PCNN 

(MI as fitness function) 

Otsu 

K-means 

F-NCut-EM 

Fig. 11 Comparison of segmentation results with state-of-the-art methods

Table 4 Performance of different methods in Slice 15

Methods UM CM Recall Precision Dice

HHO-PCNN 0.9205 0.8328 0.9090 0.9261 0.9175
Otsu 0.9064 0.2842 0.8952 0.6020 0.7198
K-means 0.8594 0.8008 0.8888 0.8427 0.8651
F-NCut-EM 0.9142 0.8288 0.8990 0.9006 0.8998
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5.2 Segmentation experiment and result analysis

5.2.1 Medical image segment

For medical image, we randomly selected four pictures from the Harvard Whole Brain as test
pictures for this experiment. Different algorithms using image entropy and mutual information
entropy as fitness functions are shown in Fig. 3 and Fig. 4. It can be seen that the performance
of the proposed method is better than that of other methods, regardless of whether the fitness
function is image entropy or mutual information entropy. Firstly, our method is more suitable
for image edge processing, while other methods have different degrees of over-segmentation.
Second, our approach is closer to the ground-truth.

The objective evaluation of four images using image entropy as the fitness function of the
algorithm are shown in (a)-(e) of Fig. 5, respectively. We can see that our method has the
highest Recall and Dice in all the images. UM are also higher, but CM is slightly lower in
slice15. For precision, recall and dice, we note HHO-PCNN has the highest Precision
(93.65%), Recall (77.21%) and Dice (88.42.%), SCA-PCNN has higher Recall (74.91%)
and Dice (75.97%). In addition, MVO-PCNN and SSA-PCNN have similar Dice and Recall.
For UM, our method holds the UM of 98.62%, which is close to PSO-PCNN that has the UM
of 97. 38%, while GWO-PCNN did not perform well with the UM of 71.22%. For CM, our
method is at a moderate level with the CM of 39.08%. WOA-PCNN and PSO-PCNN have
similar CM values, GWO-PCNN have lower CM of 35.67%. Besides, we take the average
value of all the image evaluation indexes and calculate the variance of precision to reflect the
stability and robustness of the method. As shown in Table 3 and (f) of Fig. 5, our method has
the smallest variance and the highest average, which reflect the excellent robustness of our
method. GWO-PCNN, WOA-PCNN, MVO-PCNN, SCA-PCNN, SSA-PCNN and PSO-
PCNN ranked second, third, fourth, fifth, sixth and seventh, respectively. Figure 6 shows
the computational time required to process medical images. The fastest method is the proposed
scheme, followed by PSO-PCNN, WOA-PCNN, MVO-PCNN, SSA-PCNN, SCA-PCNN and
GWO-PCNN.

(a)-(e) of Fig. 7 display the segmentation evaluation index of the algorithms based on
mutual information entropy as fitness function. We averaged each evaluation index of all

Table 5 Performance of different methods in Slice 29

Methods UM CM Recall Precision Dice

HHO-PCNN 0.9271 0.9748 0.9499 0.8818 0.9146
Otsu 0.9092 0.1370 0.8654 0.6917 0.7688
K-means 0.8948 0.5649 0.9012 0.8782 0.8895
F-NCut-EM 0.9177 0.9542 0.9256 0.8790 0.9017

Table 6 Performance of different methods in Slice 17

Methods UM CM Recall Precision Dice

HHO-PCNN 0.9829 0.9040 0.9275 0.9485 0.9379
Otsu 0.9249 0.2228 0.8800 0.8167 0.8471
K-means 0.9447 0.8981 0.8753 0.6113 0.7198
F-NCut-EM 0.9658 0.9002 0.9154 0.9289 0.9221
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medical images, and the results are shown in (f) of Fig. 7. Here into, UM of 0.94, CM of 0.86,
Recall of 0.94 and Dice of 0.89 have a comparative performance than other algorithms.

Table 7 Performance of different methods in Slice 34

Methods UM CM Recall Precision Dice

HHO-PCNN 0.9486 0.8414 0.9861 0.6997 0.8186
Otsu 0.6425 0.3224 0.7841 0.5984 0.6837
K-means 0.7884 0.6419 0.8869 0.4771 0.8047
F-NCut-EM 0.9486 0.8324 0.9764 0.6832 0.8039

42049 135069 113044 159091 196059

Original image

Ground truth

GWO-PCNN

SSA-PCNN

SCA-PCNN

PSO-PCNN

WOA-PCNN

MVO-PCNN

HHO-PCNN

Fig. 12 Segmentation results of the algorithms using image entropy as fitness function
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Precision of 0.86 has a great advantage than other experimental results. In addition, as shown
in Fig. 8, the proposed algorithm performs equally well in terms of running time, ranking first
with an average of 134 s. Therefore, the proposed algorithm also performs well when it takes
mutual information entropy as the fitness function.

Figure 9 and Fig. 10 show the convergence curves of mutual information entropy
and image entropy as fitness functions, respectively. In Fig. 9, the proposed algorithm
has obvious advantages over other algorithms in terms of convergence speed and final
accuracy. In Fig. 10, the convergence speed of HHO is not very fast, but the final
accuracy is the highest. Compared with other algorithms, the convergence speed of
HHO is at a better level in the other three images, and the final accuracy is also

42049 135069 113044 159091 196059

Original image

Ground truth

GWO-PCNN

SSA-PCNN

SCA-PCNN

PSO-PCNN

WOA-PCNN
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Fig. 13 Segmentation results of the algorithms using mutual information entropy as fitness function
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Table 8 Segmentation index results of PCNN combined with different algorithms

Image Index Fitness function GWO SSA SCA PSO WOA MVO HHO

42,049 UM Image entropy 0.6765 0.8972 0.7407 0.9671 0.9646 0.9303 0.9496
Mutual information image 0.7190 0.7122 0.8379 0.6792 0.5740 0.4368 0.8568

CM Image entropy 0.2818 0.3113 0.2886 0.3566 0.3410 0.3297 0.3261
Mutual information image 0.5080 0.5756 0.5255 0.5434 0.6081 0.6800 0.8825

Precision Image entropy 0.8634 0.9103 0.8799 0.9116 0.9282 0.9138 0.9112
Mutual information image 0.8853 0.8500 0.8800 0.8595 0.8330 0.7991 0.9842

Recall Image entropy 0.6805 0.6687 0.7531 0.7134 0.6921 0.6860 0.7828
Mutual information image 0.9436 0.9473 0.9212 0.9431 0.9469 0.9357 0.9485

Dice Image entropy 0.7453 0.7710 0.8116 0.8004 0.7929 0.7837 0.8211
Mutual information image 0.9135 0.8960 0.9001 0.8993 0.8863 0.8674 0.9224

135,069 UM Image entropy 0.9526 0.9522 0.8895 0.9592 0.9554 0.9526 0.9762
Mutual information image 0.7252 0.4183 0.4796 0.2480 0.4133 0.1450 0.7573

CM Image entropy 0.2573 0.2937 0.3015 0.3117 0.3168 0.3150 0.2507
Mutual information image 0.1630 0.1402 0.2206 0.1337 0.1114 0.0923 0.2534

Precision Image entropy 0.9421 0.9619 0.9436 0.9722 0.9619 0.9340 0.9783
Mutual information image 0.7097 0.8596 0.7481 0.9087 0.6628 0.8928 0.9210

Recall Image entropy 0.7255 0.6081 0.7055 0.5390 0.5492 0.5368 0.7957
Mutual information image 0.5722 0.7909 0.5886 0.9030 0.4731 0.2719 0.9084

Dice Image entropy 0.7247 0.7452 0.8074 0.6935 0.6992 0.6818 0.8627
Mutual information image 0.6336 0.8238 0.6589 0.9058 0.5521 0.9005 0.9141

113,044 UM Image entropy 0.4780 0.8569 0.6601 0.9892 0.9879 0.9221 0.9696
Mutual information image 0.6525 0.1732 0.2095 0.1064 0.1747 0.0040 0.6505

CM Image entropy 0.2159 0.2756 0.2637 0.2983 0.3041 0.2911 0.3289
Mutual information image 0.2370 0.1105 0.2242 0.0790 0.1088 0.0492 0.3327

Precision Image entropy 0.7198 0.8136 0.7766 0.8162 0.8221 0.7987 0.8305
Mutual information image 0.7466 0.6415 0.7196 0.6597 0.6581 0.6284 0.7781

Recall Image entropy 0.7551 0.7170 0.7528 0.6882 0.7195 0.7573 0.8214
Mutual information image 0.8833 0.9413 0.8371 0.9194 0.9220 0.9221 0.9411

Dice Image entropy 0.7799 0.7623 0.7645 0.7468 0.7674 0.7775 0.7972
Mutual information image 0.8092 0.7630 0.7739 0.7682 0.7680 0.7536 0.8215

159,091 UM Image entropy 0.7223 0.9494 0.7543 0.9811 0.9818 0.9500 0.9393
Mutual information image 0.7141 0.6986 0.6944 0.6995 0.6933 0.6930 0.7116

CM Image entropy 0.5306 0.5041 0.5651 0.4628 0.4528 0.4473 0.4954
Mutual information image 0.3672 0.3990 0.4192 0.2662 0.3066 0.1980 0.4530

Precision Image entropy 0.8848 0.8820 0.8739 0.9034 0.9068 0.9040 0.9217
Mutual information image 0.9355 0.8475 0.9257 0.8453 0.8708 0.7948 0.9486

Recall Image entropy 0.6436 0.6359 0.7161 0.6835 0.6412 0.6120 0.7119
Mutual information image 0.7571 0.8815 0.7908 0.8476 0.7847 0.7890 0.8721

Dice Image entropy 0.7367 0.7390 0.7871 0.7782 0.7512 0.7299 0.7890
Mutual information image 0.8369 0.8642 0.8530 0.8465 0.8255 0.8317 0.8814

296,059 UM Image entropy 0.9003 0.8638 0.8356 0.9677 0.9645 0.9612 0.9791
Mutual information image 0.7009 0.5404 0.6665 0.4073 0.5031 0.3401 0.7092

CM Image entropy 0.3425 0.4361 0.4282 0.4633 0.4573 0.4098 0.4957
Mutual information image 0.3260 0.1972 0.3171 0.1854 0.2412 0.1409 0.3300

Precision Image entropy 0.6317 0.6923 0.6566 0.7087 0.7411 0.6540 0.7311
Mutual information image 0.7785 0.5758 0.8399 0.5473 0.7202 0.5159 0.9943

Recall Image entropy 0.8529 0.8356 0.8405 0.8142 0.8095 0.7681 0.8187
Mutual information image 0.6003 0.8086 0.5756 0.8115 0.6517 0.7871 0.8350

Dice Image entropy 0.7787 0.7572 0.7373 0.7578 0.7737 0.7065 0.7431
Mutual information image 0.6779 0.6726 0.6831 0.6537 0.6843 0.6378 0.8786

Total UM Image entropy 0.6528 0.8829 0.7811 0.9776 0.9719 0.9163 0.9739
Mutual information image 0.7023 0.5085 0.5776 0.4281 0.4717 0.3238 0.7371

CM Image entropy 0.3256 0.3642 0.3694 0.3786 0.3744 0.3586 0.3794
Mutual information image 0.3203 0.2845 0.3413 0.2415 0.2752 0.2321 0.4503

Precision Image entropy 0.8084 0.8521 0.8261 0.8624 0.8720 0.8409 0.8746
Mutual information image 0.8111 0.7549 0.8227 0.7641 0.7490 0.7262 0.9252
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perfect. In summary, this fully illustrates the powerful performance of the proposed
algorithm.

By comparing with other optimization algorithms, we can see that the proposed algorithm
has obvious advantages. In order to evaluate algorithms objectively, state-of-the-art methods
are introduced to compare the proposed algorithm. They are Otsu [11], K-means [14, 57], and
Fusing NCut Eigenvectors Maps (F-NCut-EM) [56]. The segmentation results of each algo-
rithm are shown in Fig. 11 and the evaluation index values of the response are shown in
Tables 4, 5, 6 and 7.

As can be seen from Fig. 11, the algorithm proposed in this paper has a better segmentation
effect than other algorithms, and can well segment the location of lesions, while other
algorithms cannot do this completely. From Tables 4, 5, 6 and 7, it is obvious that the UM,
CM, Precision, Recall and Dice values obtained by this method are better than those obtained
by other methods. In conclusion, the experimental results show that this method has better
performance than other methods.

5.2.2 Gray image segment

For gray image, we also randomly selected five pictures from the Berkeley Segmentation
Dataset BSDS300 as test pictures. In order to maintain consistency, we also select the same
evaluation index and comparison method as above. The segmentation results are shown in Fig.
12 and Fig. 13, which reflect that our proposed method performs better visually than other
methods. From Table 8, we have noticed that our algorithm has the highest value in CM,
Precision, Recall and Dice, regardless of whether image entropy or mutual information entropy
is chosen as fitness function, which fully demonstrates the strong segmentation ability of our
method. When image entropy is selected as fitness function, although UM value of the
proposed method is not the highest in all algorithms, it also approximates the maximum value
of 0.97, which has absolute advantages for other indicators. WOA-PCNN has relatively good
segmentation effect, ranking second. PSO-PCNN holds higher CM value, Precision than
WOA-PCNN, but Recall is lower than WOA-PCNN. SSA-PCNN and MVO-PCNN is not
good enough in all images. SCA-PCNN and GWO-PCNN are worse than other methods,
although SCA-PCNN holds a high value in Recall.

When mutual information entropy is selected as fitness function, the UM value obtained by
the proposed method is 0.85, which means that the segmentation region has good uniformity.
The value of CM is 0.03, and the experimental results are better than all the methods. This
shows that the pixel intensity difference of the target area is small in our method. Precision and
Recall values of this method are 0.74 and 0.90 respectively, which have higher segmentation
accuracy than other methods. The value of Dice is 0.88, which is also a reasonable result. In
summary, this method can segment the image accurately, and the segmentation efficiency is
also high.

Table 8 (continued)

Image Index Fitness function GWO SSA SCA PSO WOA MVO HHO

Recall Image entropy 0.7315 0.6931 0.7536 0.6877 0.6823 0.6720 0.7861
Mutual information image 0.7513 0.8739 0.7427 0.8849 0.7557 0.7412 0.9010

Dice Image entropy 0.7531 0.7549 0.7816 0.7554 0.7569 0.7359 0.8026
Mutual information image 0.7742 0.8039 0.7738 0.8147 0.7432 0.7982 0.8836
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6 Conclusion

In this paper, a method of image segmentation is proposed by using HHO algorithm to
optimize PCNN parameters. Then, image entropy and interactive information entropy are
selected as fitness functions. Four medical images and five gray images were used as test
images. UM, CM, Precision, Recall and Dice were used as evaluation criteria to objectively
evaluate the segmentation results. HHO-PCNN was compared with WOA-PCNN, SCA-
PCNN, SSA-PCNN, PSO-PCNN, GWO-PCNN and MVO-PCNN, respectively. Furthermore,
it is compared with the state-of-the-art algorithms including Otsu and K-means. Finally, the
results show that HHO-PCNN can clearly segment the target in vision, and it can also be
clearly seen that the algorithm has the highest segmentation accuracy from the evaluation
criteria. In addition, the proposed method can be applied to object segmentation in various
situations because of its good segmentation ability and robustness. Fitness function and color
image segmentation will be studied in the future.
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