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Abstract
The purpose of multimodal classification is to integrate features from diverse information
sources to make decisions. The interactions between different modalities are crucial to this
task. However, common strategies in previous studies have been to either concatenate fea-
tures from various sources into a single compound vector or input them separately into
several different classifiers that are then assembled into a single robust classifier to gener-
ate the final prediction. Both of these approaches weaken or even ignore the interactions
among different feature modalities. In addition, in the case of class-imbalanced data, mul-
timodal classification becomes troublesome. In this study, we propose a deep multimodal
generative and fusion framework for multimodal classification with class-imbalanced data.
This framework consists of two modules: a deep multimodal generative adversarial network
(DMGAN) and a deep multimodal hybrid fusion network (DMHFN). The DMGAN is used
to handle the class imbalance problem. The DMHFN identifies fine-grained interactions
and integrates different information sources for multimodal classification. Experiments on
a faculty homepage dataset show the superiority of our framework compared to several
start-of-the-art methods.

Keywords Multimodal classification · Class-imbalanced data · Deep multimodal
generative adversarial network · Deep multimodal hybrid fusion network

1 Introduction

Multimodal data consist of several feature modalities, where each modality is represented
by a group of similar data sharing the same attributes. The aim of multimodal classifica-
tion is to process and integrate information from multiple modalities to make decisions. In
the era of big data, many applications of interest involve multimodal classification prob-
lems, including audio-visual speech recognition (AVSR) [40], affective computing [39],
human emotion recognition [32], medical image analysis [22], user profiling [13], and stock
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movement prediction [29]. However, two challenging problems usually arise when fusing
information from multiple interactive modalities for multimodal classification.

The first major challenge is multimodal representation. The heterogeneity in the statis-
tical properties of multimodal data makes it more difficult to learn a joint representation
using information from multiple sources [3, 17, 24]. A good example is the joint process-
ing of images (which are real-valued and dense) and texts (which are discrete and sparse),
which typically have different dimensions and structures [52]. In previous studies, a com-
mon strategy has been to separately map each modality into a common latent space [39, 49],
for example, using a Gaussian probability distribution [52, 56]. However, in practice, sam-
ples usually appear to come from a distribution that is skewed, very peaked, or very flat or
shows some other discrepancy relative to a Gaussian distribution [47]. Information provided
by data from such distribution would be distorted if estimated using a Gaussian probability
distribution.

The second major challenge is multimodal alignment, which involves identifying the
direct relationships between components from different modalities [12, 54]. These interac-
tions are essential to consider when developing a model for decision-making. For example,
considering the interactions between stock data, news articles, and discussion boards
can boost the performance of a model for predicting stock movements [27]. However,
due to the heterogeneity in the statistical properties of multimodal data, it is difficult to
find direct relationships and correspondences between the various components of mul-
timodal features [40]. Traditional approaches, such as feature vector concatenation, will
disconnect the links between such components [41]. As illustrated in Fig. 1, the layout
feature set of a webpage consists of four types of tags, that is, 〈h1〉, 〈p〉, 〈div〉, and
〈f ooter〉. Each tag contains different textual information. Intuitively, the words embedded
in an 〈h1〉 tag are more important than those in a 〈f ooter〉 tag. Such interrelation-
ships are ignored, however, if the tag and text features are concatenated into a compound
vector.

In addition, in many applications, such as abnormal brain tumor recognition [44] and
credit scoring classification [31], the class imbalance problem is encountered. Class imbal-
ance often arises when the samples of the majority class outnumber those of the minority
class [53]. Once a dataset becomes imbalanced, model performance declines because the

Fig. 1 Modeling multimodal data
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characteristics of the minority class cannot be learned effectively [19]. Multimodal classifi-
cation becomes more troublesome in the presence of a class imbalance because an auxiliary
mechanism needs to be designed to rebalance the interdependent multimodal data to main-
tain multimodal classification performance. However, to date, there have been few works
concerning multimodal classification with class-imbalanced datasets.

To address the three challenges mentioned above, we propose a deep multimodal gener-
ative and fusion framework. This framework is composed of a deep multimodal generative
adversarial network (DMGAN) and a deep multimodal hybrid fusion network (DMHFN)
and presents three unique contributions to the literature:

• The DMGAN synthesizes samples to address the problem of imbalanced multimodal
data.

• A gate mechanism in the DMHFN is used to find the direct relationships among fine-
grained elements across different feature modalities.

• An interaction mechanism in the DMHFN is proposed to solve the fusion problem for
heterogeneous data by means of a co-occurrence matrix (a probability matrix). Through
this interaction mechanism, every data modality is mapped to its own finite discrete
distribution space.

The remainder of this article is structured as follows. Section 2 briefly describes the
previous work related to our research. Section 3 presents the design details of the pro-
posed framework. Section 4 examines the effectiveness of our approach. Finally, Section 5
concludes this article and suggests future work.

2 Related work

2.1 Class imbalance

The class imbalance problem refers to the situation in which the members of the major-
ity class greatly outnumber the members of the minority class [53]. Most classical learning
algorithms are best suited for balanced datasets [11]. Once the classes of a dataset become
imbalanced, model performance declines because the characteristics of the minority class
cannot be learned effectively [19]. A classifier trained on imbalanced data will tend to over-
represent the majority class compared to the minority class. The minority class may be so
small that members of this class may be easily ignored, treated as noise, or misidentified as
the majority class [20, 23, 26, 38]. Louzada et al. reported that class-imbalanced data lead
to severe deterioration in model performance [31].

The traditional techniques for dealing with the class imbalance include random oversam-
pling (OS), random undersampling (US), the synthetic minority oversampling technique
(SMOTE) [5], and adaptive synthetic sampling (ADASYN) [18].

In the US approach, observations from the majority class are randomly dropped until the
remaining number of majority-class samples matches the number of samples in the minority
class. This approach results in a loss of valuable information, which inevitably reduces the
classification performance [8].

In contrast, the OS approach involves randomly duplicating observations from the minor-
ity class until the total number of minority-class samples matches the number of samples in
the majority class. However, this approach tends to cause overfitting due to the simple repli-
cation of samples from the minority class [10, 19, 50]. In essence, this approach cannot
provide additional valuable information for use in classification.
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To overcome the weaknesses of the OS approach, Chawla et al. proposed SMOTE [5]. In
this approach, the number of samples in the minority class is increased by creating virtual
samples, each of which is a linear combination of two real samples from the minority class
that are located near each other, to rebalance the data. However, these virtual samples are
merely linear combinations of local information instead of being drawn from the overall
minority-class distribution [10]. In addition, SMOTE may produce noisy samples when the
boundary between the majority and minority classes is not sufficiently clear [19].

In ADASYN [18], different numbers of samples are generated for each minority class
in accordance with their data distributions. The synthetic samples are generated through
the linear combination of a data point with a randomly chosen minority data sample from
among its K nearest neighbors. However, this technique seems to have the same problems
as SMOTE.

Consequently, generating synthetic samples based on the real minority-class distribution
is a critical challenge. Some researchers have taken the further step of utilizing genera-
tive adversarial networks (GANs). Such a framework involves training a generator network
and a discriminator network, which compete with each other in a zero-sum game [16]. A
well-trained generator can estimate the latent distribution of the real data and then pro-
duce fake samples based on the global distribution instead of using only local information.
For example, Shin et al. utilized a GAN to rebalance medical data by synthesizing abnor-
mal brain tumor MRI images because of the limited availability of data from patients with
cancer [44].

Previous generative approaches for multimodal data include multimodal stochastic recur-
rent neural networks (MS-RNNs) [45], hierarchical long short-term memory with adaptive
attention (hLSTMat) [15], attention-based long short-term memory with semantic consis-
tency (aLSTMs) [14], and dual conditional GANs (Dual cGANs) [46]. However, these
approaches are aimed at multimodal translation or domain transformation and cannot be
used to generate completely new samples, i.e., when all multimodal features are missing.
In this study, we propose a DMGAN for synthesizing samples, even when all multimodal
features are missing, to address the problem of imbalanced multimodal data. Specifically,
the DMGAN generates fake samples by simultaneously using features from different fea-
ture modalities in accordance with the global feature distributions and their relationships to
improve the performance of multimodal classification with imbalanced data.

2.2 Multimodal classification

Multimodal data consist of several data modalities, where each modality is represented by
a group of related data sharing the same attributes. The aim of multimodal classification is
to process and integrate information from multiple modalities to make decisions based on
multimodal fusion. Multimodal fusion is defined as a category of techniques that integrate
information from different sources [61]. These techniques usually face two challenging
problems:

• Multimodal Representation: The heterogeneity in the statistical properties of multi-
modal data makes it more challenging to learn a joint representation using information
from multiple sources [3, 17, 24]. For example, images (which are real-valued and
dense) and texts (which are discrete and sparse) typically have different dimensions and
structures [52].

• Multimodal Alignment: Multimodal alignment involves identifying direct relation-
ships between fine-grained components from different modalities [12, 54]. These
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interactions are essential to consider when developing a model for decision-making.
For example, considering the interactions between stock data, news articles, and discus-
sion boards can boost the performance of a model for predicting stock movements [27].
However, due to the heterogeneity in the statistical properties of multimodal data,
it is difficult to find direct relationships and correspondences between the various
components of multimodal features [40].

To address these two problems, many traditional and commonly applied techniques
have been developed in previous studies, including vector concatenation and the decision-
level fusion approach [61]. These techniques can solve the heterogeneity problem, but they
weaken or even ignore the interactions between multiple modalities [3].

Vector concatenation involves concatenating features from various information sources
into a single compound vector. For example, [49] used two deep Boltzmann machines
(DBMs) to separately map image features and text features to higher-level features and
finally concatenated them into a joint representation. [36] adopted similar procedures to
obtain multimodal joint representations. Such approaches learn global relationships between
low-level features from multiple modalities.

Decision-level fusion approaches input information from different sources separately
into different classifiers, which are then assembled into a single strong classifier for final
prediction using a weighted sum or voting scheme. For instance, [35] reduced the unimodal
model error and improved the variety of multimodal models to enhance the effect of a
voting scheme. [40] aggregated the results of an audio hidden Markov model (HMM) and a
visual HMM using a weighted sum to improve the performance of speech recognition [40].
Intuitively, these approaches fuse information sources at the decision level and ignore the
fine-grained interactions among features.

Some researchers have taken a further step by estimating the interactions across multiple
modalities through a joint probability distribution. For example, in the joint multimodal vari-
ational autoencoder (JMVAE) [52] and multimodal variational autoencoder (MVAE) [56]
approaches, every modality is mapped to a probability space to obtain a multimodal repre-
sentation, and the joint probability distributions are used to identify the relationships among
different modalities. However, in these two techniques, the prior distribution of data is
assumed to be a Gaussian distribution, which may be inconsistent with the real situation. In
practice, samples usually seem to come from a distribution that is skewed, peaked, flat, or
shows some other discrepancy relative to a Gaussian distribution [47]. Therefore, to estimate
the natural distribution of every modality, we adopt a flexible finite discrete distribution
space [47].

In this study, a DMHFN is proposed to integrate information from diverse sources by
means of feature fusion at multiple levels for multimodal classification. In particular, to
solve the problems of multimodal representation and alignment, a gate mechanism is used
to find direct relationships among fine-grained elements from different feature modalities.
In addition, an interaction mechanism is used to map each modality to its own finite discrete
distribution space, and a co-occurrence matrix is then used to integrate these distribution
spaces (Table 1).

3 System design

In this study, we propose a deep multimodal generative and fusion framework for mul-
timodal classification with class-imbalanced data. Figure 2 presents an overview of this
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Table 1 Representative research on class imbalance and multimodal classification

Category Model Weakness

Class imbalance US Loses valuable information.

OS Overrepresents samples through replication

and cannot provide additional valuable information.

SMOTE [5] Are limited to local information. Introduce noise when the

ADASYN [18] boundary between the majority and minority classes

is not sufficiently clear.

MS-RNNs [45] Are aimed at multimodal translation or domain

hLSTMat [15] transformation and cannot be used when all multimodal

aLSTMs [14] features are missing.

Dual cGANs [46]

GANs [44] Are aimed at unimodal data.

Multimodal classification Dual DBMs [49] Ignore the interactions between multiple modalities.

MDBM [36]

MinCq [35] Ignore the interactions between multiple modalities.

HMMs [40]

JMVAE [52]

MVAE [56]

Are limited to spherical Gaussian distributions.

framework. Multimodal features are preprocessed to form a multimodal dataset with n

feature modalities. The DMGAN first rebalance the dataset by generating pseudofeatures
for each modality and combining them to form fake samples. Then, the DMHFN finds
fine-grained interactions among features and integrates information from diverse sources at
different fusion levels for multimodal classification.

Fig. 2 The deep multimodal generative and fusion framework

Multimedia Tools and Applications (2020) 79:25023–2505025028



3.1 Deepmultimodal fusion generative adversarial network (DMGAN)

To overcome the class imbalance problem for multimodal data, we have designed a novel
architecture called a DMGAN to generate artificial samples of the minority class. The
DMGAN first creates fake samples for each feature modality via an iterative adversar-
ial training process. In this way, the fused distribution of the counterfeit features can be
made to approach the joint distribution of the real features while preserving the individual
characteristics of each feature set and the relationships among them.

Figure 3 shows an overview of the DMGAN. It consists of n generators, where Gi

denotes the i-th generator; n unimodal discriminators, where Di denotes the i-th unimodal
discriminator; and a modality-fused discriminator Df . The n generators create fake samples
G1(z), G2(z), · · · , Gn(z) and their combination (G1(z),G2(z), · · · , Gn(z)) using random
samples z. During training, these outputs are further fed into the corresponding discrimina-
tors along with the real sample data x1, x2, · · · , xn and (x1, x2, · · · , xn). Then, the n + 1
discriminators attempt to determine whether the inputs come from the real distribution or a
fake one. Essentially, the n generators aim to fool the discriminators, which act as anti-fraud
agents and provide feedback that is used to adjust the weights of the generators to improve
their fraudulent capabilities. The objective function of the DMGAN is defined as follows:

Lmgan =
n∑

i=1

(αi × LGi) + αf × LGf . (1)

Here, Lmgan represents the overall loss of the DMGAN. LGi represents the loss for the
i-th modality; these loss functions ensure the preservation of the individual characteristics
of each feature modality. LGf is the fusion loss function, which ensures that the fused
distribution of the fake features approaches the joint distribution of the real features. αi and
αf are parameters that control the importance of the corresponding loss functions. The loss
for the i-th modality, LGi , is defined as follows:

LGi = Exi∼pxi
[log Di(xi )] + EGi(z)∼pgi

[log 1 − Di(Gi(z))], (2)

Fig. 3 Deep multimodal fusion generative adversarial network (DMGAN)
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where pxi
and pgi

represent the real and fake distributions, respectively, for the i-th
modality.

The fusion loss function is defined as follows:

LGf = Ef (x1,x2,··· ,xn)∼pxf
[logDf (f (x1, x2, · · · , xn))]

+Ef (G1(z),G2(z),··· ,Gn(z))∼pgf
[log(1−Df (f (G1(z),G2(z),· · ·,Gn(z)))], (3)

where pxf
is the joint distribution of the real samples x1, x2, · · · , xn; pgf

is the fused
distribution of the generated samples G1(z),G2(z), · · · , Gn(z); and f (·) is a fusion func-
tion embedded in the modality-fused discriminator to preserve the fine-grained interactions
among different feature modalities, as illustrated in Fig. 4.

Intuitively, the interactions among the modalities are determined by the joint effects
of the relevant sources. For example, the impact of an independent variable on a depen-
dent variable can be measured in terms of the magnitudes of other associated independent
variables [1]. Therefore, such interactions can be expressed in the form of a product, if
the information sources are scalars, or a Kronecker product if the information sources are
vectors [4, 55]. Rendle and Steffen adopted the product approach to capture the interac-
tions among features in factorization machines [42]. The feature space that captures the
interactions among different information modalities can be formally expressed as follows:

i1·2 = h1 ⊗ h2,

i1·3 = h1 ⊗ h3,

· · ·
ii·j = hi ⊗ hj ,

· · ·
i(n−1)·n = hn−1 ⊗ hn,

(4)

where ⊗ denotes the Kronecker product, which is used to represent all possible interactions
between elements in every pair of feature vectors (note that there are n(n − 1)/2 possible

Fig. 4 Modality-fused discriminator
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fusions for n modalities), and ii·j represents the fusion of features from the i-th and j -th
modalities via the Kronecker product.

The fusion function f (·) is defined as follows:

f (x1, x2, , · · · , xn) =
n∑

i=1

(hiwi ) +
n−1∑

i=1

n∑

j=i+1

(ii·jwi·j ) + b. (5)

In (5), hi = ri(xi ). hi is a high-level mapping of xi obtained through a sub-network ri(·).
Here, ri(·) and f (·) are both sub-networks of the modality-fused discriminator Df (·), and
wi , wi·j , and b are network parameters.

In (3), the vector f (x1, x2, , · · · , xn) is the result of fusing the real feature sets
(x1, x2, , · · · , xn). Similarly, the vector f (G1(z),G2(z), · · · ,Gn(z)) is the result of fus-
ing the n fake feature sets. In the fraud and anti-fraud game between the generators
and discriminators, the goal of the n generators is to confuse the discriminators (make
Df (f (G1(z),G2(z), · · · ,Gn(z)) close to 0) while making the discriminators believe that
the generated features are real ones (make Df (f (G1(z),G2(z), · · · , Gn(z)) close to 1) for
fixed states of the discriminators. In contrast, the purpose of the discriminators is to dis-
tinguish real features from generated ones. That is, the discriminators are trained to make
Df (f (x1, x2, · · · , xn)) close to 1 and make Df (f (x1, x2, · · · , xn)) close to 0 for fixed
states of the n generators. By solving the above objective function, we obtain pgf

= pxf
,

which indicates that the fused distribution of the features generated by the n generators
can converge to the joint distribution of the real features. The pseudocode for the proposed
DMGAN is shown in Algorithm 1.

3.2 Deepmultimodal hybrid fusion network (DMHFN)

In this study, we propose a DMHFN for multimodal classification with interdependent fea-
ture modalities. Figure 5 presents an overview of this network, which mainly includes three
types of sub-networks, namely, n unimodal networks, a feature-level fusion network, and a
decision-level fusion network. As described in Table 2, the modality i network is the uni-
modal network designed for the i-th modality. The gated fusion network is the feature-level
fusion network, which is designed to integrate information from the n modalities via gate
and interaction mechanisms. The decision-level fusion network aggregates the decisions
made by the n unimodal networks and the gated fusion network.
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Fig. 5 Deep multimodal hybrid fusion network (DMHFN)

3.2.1 Modality i networks

The modality i network is designed based on the statistical properties of the i-th modality.
Thus, such a network can be a feedforward neural network (FNN), a recurrent neural net-
work (RNN), or a convolutional neural network (CNN). The loss function of this network,
which is denoted by LUi , can be designed for a specific task. For example, for a binary
classification task, this loss function is defined as follows:

LUi = − 1
m

m∑
j=1

yij log ŷi (xij ) + (1 − yij ) log (1 − ŷi (xij )),

LU =
n∑

i=1
LUi,

(6)

where yij is the true label of sample xij , ŷi (xij ) is the predicted probability generated by
the modality i network when given sample xij as input, and m denotes the mini-batch size.

Table 2 Descriptions of the sub-networks of the DMHFN

Network Category Function

Modality i network Unimodal network Makes a decision based on the i-th
modality

Gated fusion network Feature-level fusion network Finds the direct relationships
among the fine-grained ele-
ments from the n modalities
via a gate mechanism and fuses
these relationships based on a
co-occurrence matrix via an
interaction mechanism

Decision fusion network Decision-level fusion network Aggregates the decisions made by
the n unimodal networks and the
gated fusion network through a
stacking mechanism
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Fig. 6 Gated fusion network

3.2.2 Gated fusion network

The gated fusion network mainly includes n(n − 1)/2 gate and interaction blocks, one for
each pair that can be selected from among the n modalities, where each such block applies
an attention-based gate mechanism and a co-occurrence matrix-based interaction mecha-
nism, as illustrated in Fig. 6. The gate mechanism attempts to extract the direct relationships
among the fine-grained components from every pair of modalities. The purpose of the
interaction mechanism is to fuse the related information based on a co-occurrence matrix.

Gate Mechanism Autoencoders are a type of self-supervised learning model that can learn
a compressed representation of input data. Intuitively, it is intractable to construct the large
sparse co-occurrence matrix, as illustrated in Fig. 8, by using the original information from
multiple modalities. Instead, it is reasonable to construct this matrix using a compressed
vector of a fixed size learned by an autoencoder, the components of which still represent the
original information [37, 48, 51]. For example, Li and Mandt [59] proposed a variational
autoencoder (VAE)-based deep generative model for mapping high-dimensional sequential
data to a latent representation that is split into a static part and a dynamic part. Mathieu
et al. [33] disentangled the hidden factors of variation within a set of labeled observations.
They separated such factors into complementary codes by combining deep convolutional
autoencoders with a form of adversarial training. Inspired by these two network architec-
tures, we use an autoencoder to compress and decompose the i-th modality before this
modality is subjected to the gate mechanism, as illustrated in Fig. 7. The reconstruction loss
of the autoencoder for the i-th modality is defined as follows:

LEi = 1
m

m∑
j=1

(xij − x̂ij )
2,

LE =
n∑

i=1
LEi,

(7)

where this reconstruction loss is based on the mean square error (MSE). xij represents the
true value, while x̂ij represents the prediction of the encoder. m denotes the mini-batch
size.
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Fig. 7 Gate & interaction mechanisms

If firm fine-grained interactions exist between components from different modalities
describing a common phenomenon, then these interactions are essential to consider in the
corresponding decision-making model. For example, considering the interactions between
stock data, news articles, and discussion boards can boost the performance of a model for
predicting stock movements [27]. Concatenation-based approaches, which depend only on
the globally encoded information from every modality, neglect such important fine-grained
information [57]. This problem becomes severe in the case of complex modality informa-
tion. To find the direct relations and correspondences between components from multiple
modalities and allow this component-level information to be utilized, an attention-based
gate mechanism is proposed to enable a classifier to extract the components from one
modality that are most relevant to components from another modality. Attention [2] can be
described as a mechanism for mapping a value to an output in accordance with weights
based on the correspondence between a query and a key. An attention-based gate mechanism
can assign higher weights to related components from different feature modalities.

For simplicity, we consider modalities xi and xj as an example. As shown in Fig. 7, in
the proposed attention-based gate mechanism, the set of compressed representations from
the modality xi autoencoder is denoted by H i = [hi1, hi2, · · · ,him] ∈ R

di×m, whereas the
set of compressed representations from the modality xj autoencoder is denoted by H j =
[hj1, hj2, · · · , hjm] ∈ R

dj ×m. Here, di and dj represent the hidden layer sizes.

q = H iwq ∈ R
di ,

k = H jwk ∈ R
dj ,

v = H jwv ∈ R
dj ,

(8)
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where wq , wk , and wv ∈ R
m are learnable parameters. q, k, and v are referred to as the

query vector, the key vector, and the value vector, respectively.

W att = sof tmax

(
qkT

√
d2

)
∈ R

di×dj , (9)

where W att is a scaled attention weight matrix. The (s, t)-th value in the attention matrix
W att measures the relationship between the s-th value from modality xi and the t-th value
from modality xj . The value range of the elements in every row of this matrix is between 0
and 1, and the sum of all elements in the same row is equal to 1; these elements represent
the weights assigned to every column of the value matrix. The vector vT ∈ R

dj is expanded
to the matrix V rep ∈ R

di×dj . W att ◦V rep , which denotes the element-wise product between
W att and V rep , represents the operation of filtering V rep by W att . In this operation, every
element in the same column of V rep is fine-tuned by means of the corresponding weight
in W att . If the s-th value of xi is strongly related to the t-th value of xj , the latter will
be amplified by the corresponding weight in W att . Otherwise, the t-th value of xj will be
reduced.

V rep = repeat (vT ) ∈ R
di×dj ,

˜V = W att ◦ V rep ∈ R
di×dj ,

hs =
d2∑

k=1

˜V sk ∈ R
di .

(10)

Here, hs represents the weighted sum of the elements along each column of xj . Through an
FNN, the latent vector hs is transformed into the outputs x̂i .

LTl = E(xi − x̂i )
2,

LT =
n(n−1)/2∑

l=1
LTl .

(11)

Equation (11) is the transformation loss function defined for the l-th gate and interaction
block. Minimizing this loss function is equivalent to making the outputs x̂i generated from
modality xj approximate modality xi . The significant benefit of this procedure is that
the weights used in the attention-based gate mechanism can be sufficiently trained based
on the gradient of such a loss function. After this pre-training process, the internal align-
ment between the components from modality xi and the corresponding components from
modality xj can be found.

Interaction Mechanism The heterogeneity in the statistical properties of multimodal data
makes it more challenging to learn a joint representation using information from multiple
sources [3, 24]. For example, images (which are real-valued and dense) and texts (which
are discrete and sparse) typically have different dimensions and structures [52]. In previous
studies, a typical strategy has been to separately map each modality to a common latent
space [36, 39, 49], for example, using a Gaussian probability distribution [52, 56]. However,
in practice, samples often appear to come from a distribution that is skewed, very peaked,
or very flat or shows some other discrepancy relative to a Gaussian distribution [47].

Therefore, for estimating real-world data distributions, we abandon the Gaussian
assumption and instead use the activation function sof tmax(·) in the neural network to
transform the latent representation ˜V into a probability distribution P v and the latent repre-
sentation q into a probability distribution pq . Both distributions may have various shapes.
The probability distribution P v is adjusted by means of the attention-based gate mechanism
mentioned above. In Eq. (12), the output C is the co-occurrence matrix, which measures the
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likelihood that components from modality xi and components from modality xj co-occur.
As shown in Fig. 8, in the case of equal weights, a higher overall probability of occurrence
of one component of a single modality may also result in a higher co-occurrence probability.

P v = sof tmax( ˜V ) ∈ R
di×dj ,

pq = sof tmax(q) ∈ R
di ,

P q = repeat (pq) ∈ R
di×dj ,

C = P v ◦ P q ∈ R
di×dj .

(12)

As illustrated in Fig. 8, one component of modality xi is usually associated with other
elements and their neighbors, and vice versa. Therefore, transforming such a matrix into a
vector will compromise these inherent spatial features. A convolutional kernel is an effective
approach for extracting spatial features. Additionally, the co-occurrence matrix is a rela-
tively large sparse matrix; only a small fraction of its elements are non-zero, and the dense
areas in such a matrix may have various geometrical shapes. However, traditional CNN
modules sample the input feature map at fixed locations; such approaches have difficulty
handling these geometric variations.

Therefore, we introduce a deformable convolutional kernel [7, 62] in our interaction
mechanism. Such a kernel is suitable for accommodating the sparsity and geometric vari-
ability of the co-occurrence matrix. Here, an autoencoder with a deformable convolutional
kernel is used to reconstruct the co-occurrence matrix. The reconstruction loss is defined as
follows:

LDl = E(Cl − Ĉl )
2,

LD =
n(n−1)/2∑

l=1
LDl,

(13)

Fig. 8 Co-occurrence matrix under the condition of equal weights
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where Ĉl is the reconstructed result obtained from the l-th gate and interaction block.
Because the dimensionality of the hidden layer is lower than the dimensionality of the visual
layer, the sparse co-occurrence matrix is compressed into a dense vector.

Classification Loss The l-th set of compressed co-occurrence information is further fed into
a classifier. We define the following cross-entropy-based binary classification loss for the
gated fusion network:

LCl = E[y log (ŷ) + (1 − y) log (1 − ŷ)],
LC =

n(n−1)/2∑
l=1

βlLCl,
(14)

where y is the true label, ŷ is the predicted probability, and βl is a parameter that controls
the importance of the l-th classifier.

Overall Loss We must simultaneously minimize four loss functions, namely, LE, LT , and
LD, and LC:

LG = LE + LT + LD + LC. (15)

The gradient of LG is backpropagated to train the initial feature compression, the gate
mechanism, the interaction mechanism, the co-occurrence matrix compression, and the
classifier.

3.2.3 Decision fusion network

The decision fusion network aggregates the n + 1 decisions from the various sub-networks.
The loss function of the decision fusion network is defined as follows:

LDF = E[y log (ŷ) + (1 − y) log (1 − ŷ)], (16)

where y is the true label and ŷ is the predicted probability.
To evaluate the total loss of the DMHFN, we define the following total loss function:

Lmhf n = γ1LU + γ2LG + γ3LDF . (17)

In Eq. (17), Lmhf n is the total loss of the DMHFN, LU is the loss of the unimodal classifiers
calculated in Eq. (6), LG is the loss of the gated fusion network calculated in Eq. (15), LDF

is the loss of the decision fusion network calculated in Eq. (16), and γ1 ∼ γ3 are parameters
that control the importance of each loss function.
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Table 3 Four data subsets with different levels of class imbalance

Subset Samples Imbalance Level

FW1 7,943 faculty homepages among a total of 15,886 webpages 1 : 1

FW2 7,943 faculty homepages among a total of 23,829 webpages 1 : 2

FW3 7,943 faculty homepages among a total of 31,645 webpages 1 : 3

FW4 7,943 faculty homepages among a total of 39,715 webpages 1 : 4

4 Experimental evaluation

This section presents a series of experiments conducted to gauge the effectiveness of the
proposed deep multimodal generative and fusion framework. In particular, this evaluation
targets the framework’s internal functions for processing imbalanced multimodal data.

The standard accuracy metric is applied to evaluate the model performance [34]. How-
ever, due to the class imbalance in the multimodal data, this accuracy metric alone is unable
to provide a comprehensive evaluation of model performance. Consequently, we also adopt
additional assessment metrics, such as specif icity (precision), sensitivity (recall), and
F1, to evaluate the model performance [19].

The experimental platform is a Linux server with 80 CPU cores (Intel(R) Xeon(R) CPU
E5-2698 v4 @ 2.20GHz), 500 GB of RAM, and 4 GPUs (NVIDIA Tesla M10).

4.1 Data

The task of recognizing faculty homepages is a typical binary classification problem involv-
ing multimodal features, namely, text, image, and HTML layout features, all of which are
related in a complicated fashion. In addition, recognizing faculty webpages is also a class-
imbalanced problem, as the total number of samples belonging to the minority class (faculty
homepages) is far smaller than the total number of samples belonging to the majority class
(non-faculty webpages).

In this study, we use a faculty homepage dataset to evaluate the performance of our
proposed framework. This dataset includes 39,715 samples collected by [60] from several
universities in the United States. The dataset is divided into four subsets to evaluate the sys-
tem performance for various levels of data imbalance, as described in Table 3. In addition,
our source code can be accessed at GitHub1.

The text, image, and layout features of a webpage are described in detail below.

• Text features: The text of a webpage can be represented as a word list with a dimen-
sionality of 400. To enhance the semantic and contextual information it contains, the
text can be further represented by word embeddings. In this study, we use the Google
word vector model 2 to convert this word list into an embedding matrix with an
embedding size of 300. Then, we apply convolutional kernels to extract the semantic
information from the word embeddings, as suggested by [58].

• Image features: Instead of representing images as pixels, we abstract the image fea-
tures of a webpage as a four-dimensional vector. The elements of this vector include the

1https://github.com/kennis-coder/multimodal generative fusion framework.git
2This model comprises 3 million 300-dimensional English word vectors and is accessible at https://code.
google.com/archive/p/word2vec/
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number of zero-face images, the number of one-face images, the number of multiple-
face images, and the total number of images. Whether an image includes one or
more faces is determined using a Histograms of Oriented Gradients (HOG)-based face
recognition algorithm [9].

• Layout features: The layout features of a webpage are represented by a tag vector with
a dimensionality of 300. Each element in this vector reflects the number of HTML tags
of a particular type, such as 〈a〉, 〈p〉, or 〈span〉.

4.2 Model parameters

In this study, we propose a deep multimodal generative and fusion framework for multi-
modal classification with class-imbalanced data. This framework is composed of a DMGAN
and a DMHFN. To evaluate the performance of this framework, we compare it with several
benchmark models.

4.2.1 Deepmultimodal generative and fusion framework

DMGAN We conducted a series of preliminary experiments to find the optimal settings
for the four discriminators and three generators. The final chosen settings are as follows.
The text discriminator has a convolutional layer with 250 1D filters, each with a size of 3,
and four fully-connected layers with 250 units each. The activation function is the sigmoid
function. The image and layout discriminators each comprise five fully-connected layers,
but with different numbers of units; the image discriminator has 100 units per layer, and
the layout discriminator has 500 units per layer. The ReLU activation function is used in
the discriminators. The modality-fused discriminator has three convolutional layers, each
with 300 1D filters with a size of 5, and five fully-connected layers with 300 units each.
The activation function is the sigmoid function. Among the generators, the text generator
consists of five convolutional layers with 300 1D filters, each with a size of 3. The image
and layout generators each comprise five fully-connected layers but with different numbers
of units; the image generator first has 100 units per layer, and the layout generator has 500
units per layer. The ReLU activation function is used in the generators.

We implemented three tricks to alleviate the challenges of non-convergence, mode
collapse, and slow training when training the DMGAN. Specifically, we added batch nor-
malization layers only to the four discriminators [21] to accelerate and stabilize the training
process, chose the Adam optimizer as the top-priority solver to accelerate the training pro-
cess [25], and added random noise to both the real and fake samples [43] to alleviate mode
collapse.

DMHFN To address the problem of multimodal data with interdependencies, our proposed
DMHFN consists of five sub-networks, namely, a text-based network, an image-based net-
work, a layout-based network, a gated fusion network, and a decision fusion network. The
image-based network, layout-based network, and decision fusion network each have three
fully-connected layers with different numbers of units; the first layer has 10 units, the sec-
ond has 200 units, and the last has 4 units. The ReLU activation function is applied in these
networks. The gated fusion network is composed of three gate and interaction blocks. Each
block contains two feature autoencoders, a gate mechanism, and an interaction mechanism.
The text autoencoder is based on a sequence-to-sequence framework with long short-term
memory (LSTM). The image and layout autoencoders are each an FNN with a single hidden
layer. The activation function for the gate mechanism is the softmax function. A deformable
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convolutional kernel is applied to extract features from the co-occurrence matrix in the inter-
action mechanism. Here, we adopt the Adam optimizer to train the DMHFN. More detailed
information can be found by referring to our source code.

4.2.2 Benchmark models

To gauge the overall performance of the proposed framework and its internal functions, we
compare this framework with several state-of-the-art algorithms and frameworks, namely,
SMOTE [5], the unimodal GAN framework, the extreme gradient boosting (XGBoost)
algorithm [6], the SMOTE-XGBoost framework, the random forest (RF) algorithm, the
SMOTE-RF framework, the CNN algorithm, the decision tree ensemble based on SMOTE
and bagging with differentiated sampling rates (DTE-SBD) algorithm [50], and the GAN-
CNN framework. Table 4 gives detailed descriptions of the other model configurations.

4.3 Comparison

To gauge the overall performance of the proposed framework, we compare it with sev-
eral state-of-the-art models, including the DTE-SBD, XGBoost, RF, SMOTE-XGBoost,
SMOTE-RF, and GAN-CNN models aforementioned, on the four subsets of the experimen-
tal dataset, namely, FW1 ∼ FW4. Figure 9 compares the results obtained on these subsets
in terms of the four selected assessment metrics.

It can be observed that the proposed approach outperforms the other methods on all
four subsets. As the amount of training data increases, the proposed approach becomes
more accurate, thus demonstrating the scalability of the proposed framework. As the level
of imbalance increases, the DTE-SBD, XGBoost, RF, SMOTE-XGBoost, and SMOTE-RF
models become more vulnerable to imbalance effects, while the GAN-CNN model and
the proposed framework both show robust performance despite the imbalance. Moreover,
the proposed framework performs better than GAN-CNN. Overall, the DMGAN generates
better samples for dataset rebalancing than the unimodal GAN does.

4.4 Internal functions

In this study, we propose a deep multimodal generative and fusion framework consisting
of two unique modules to address the challenges that arise in learning from imbalanced
multimodal data. To our knowledge, this paper is the first time that a DMGAN has been
introduced to rebalance a dataset by generating pseudofeatures for each modality and then
combining them to form fake samples. In addition, a DMHFN with gate and interaction
mechanisms is presented to capture the fine-grained relationships among different feature
modalities and integrate these relationships into the model in the form of a co-occurrence
matrix.

To gauge the effectiveness of the DMGAN and DMHFN modules, in the rest of this
section, we first examine the performance of the DMGAN when faced with class imbalance,
and then validate the ability of the DMHFN to capture the relationships among different
feature modalities. Finally, we explore the robustness of the DMHFN for different data sizes.

4.4.1 DMGAN for class imbalance

We carry out a series of experiments using our DMHFN on imbalanced data, data
augmented with classic SMOTE, data augmented with a state-of-the-art GAN, and
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Table 4 Descriptions of the other model configurations

Category Model Configuration

Class imbalance SMOTE The number of nearest neighbors
to be used to construct synthetic
samples is set to 5. The number
of nearest neighbors to be used to
determine whether a minority sam-
ple is in danger is set to 10. The
estimator is chosen to be a support
vector machine (SVM).

Unimodal GAN Consists of three GANs, namely, a
text GAN, an image GAN, and a
layout GAN. The generators in the
unimodal GAN framework have the
same configurations as the genera-
tors in the DMGAN. In contrast, the
text discriminator in the unimodal
GAN framework has a convolu-
tional layer with 300 1D filters with
a size of 3 and one fully-connected
layer with 500 units. The layout dis-
criminator has two fully-connected
layers with 500 units each. The
image discriminator has two fully-
connected layers with 100 units
each.

Multimodal classification XGBoost The number of gradient-boosted
trees is 50. The maximum tree
depth for the base learners is 10.
The boosting learning rate is 0.005.
The booster is a gradient-boosted
tree. The minimum loss reduc-
tion is 0.05. The L2 regularization
term for the weights is 0.3. The
sub-sampling ratio for the training
instances is 0.5. The sub-sampling
ratio for the columns when con-
structing each tree is 0.5.

RF Includes 50 trees and an MSE-
based split equality estimator, and
the minimum number of leaves is 5.

CNN Has the same settings as the gated
fusion network except for the gate
and interaction mechanisms.

Combined SMOTE-XGBoost Combines SMOTE and XGBoost.

SMOTE-RF Combines SMOTE and RF.

DTE-SBD Described in [50].

GAN-CNN Combines the unimodal GAN and
CNN approaches.
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Fig. 9 F1 & accuracy results for the different models on the four subsets

data augmented with our proposed DMGAN. The original imbalanced data used in
these experiments consist of the previously introduced subsets FW3 and FW4, which
represent two different class imbalance situations. Figure 10 shows the results of the
different methods in terms of specif icity and sensitivity. As the class imbalance prob-
lem worsens, the specif icity and sensitivity of the DMHFN degrade. Accordingly,
the specif icity and sensitivity of the DMHFN are worse on the more imbalanced
subset.

In the SMOTE approach, the number of samples in the minority class is increased by
creating fake samples, each of which is a linear combination of two real samples from
the minority class that are located near each other, to rebalance the data. However, these
fake samples are merely linear combinations of local information instead of being drawn

Fig. 10 Specif icity & sensitivity achieved with different data augmentation methods
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from the overall minority-class distribution [10]. As Fig. 10 demonstrates, the perfor-
mance of SMOTE is not very good. We argue that the capabilities of this method are
limited.

Previous studies on the application of GANs to imbalanced data have focused on uni-
modal data rather than multimodal data. Figure 10 shows the results obtained when using
the GAN model in the proposed framework to generate fake features. The specif icity and
sensitivity of identifying faculty homepages are generally improved compared to those in
the cases of no data augmentation and SMOTE augmentation.

In the proposed framework, to overcome the class imbalance problem in the case of mul-
timodal data, we use the DMGAN to generate fake samples to augment the minority class
(faculty homepages). The DMGAN consists of three generators and four discriminators.
The generators create features for each feature modality through iterative interaction with
the four discriminators, thus causing the fused distribution of the generated data to gradu-
ally approach the real distribution over multiple iterations while preserving the individual
characteristics of each feature modality.

Figure 11a shows the adversarial loss (of the discriminators) and the generative loss
(of the generators) during each iteration of the network learning process. Both the adver-
sarial and generative losses show an initial sharp decrease and then gradually converge to
lower values. The generative loss declines very smoothly throughout the entire learning pro-
cess, while the adversarial loss fluctuates over a relatively broad range at the beginning of
the learning process. Both losses converge when the number of iterations exceeds 2,000,
indicating that the fake fused distribution can effectively imitate the real distribution after
the competitive fraud/anti-fraud game between the generators and discriminators. Then, by
applying the proposed DMGAN, the imbalanced dataset is transformed into an augmented
dataset with balanced classes.

As seen in Fig. 10a and b, compared with the other three cases, the specif icity and
sensitivity for identifying faculty homepages are further improved with DMGAN aug-
mentation, even in the case of high class imbalance. Figure 11b presents the precision-recall
(PR) curves of the above three methods. Here, a curve that is closer to the upper right corner
represents a model with better performance. The results illustrate that DMGAN outperforms
the other two approaches. A good explanation of the superior performance of the DMGAN
over the classical GAN and SMOTE methods is that its ability to generate fake features for
each feature modality allows it to preserve both the individual characteristics of each feature
set and the relationships among the multiple modalities.

Fig. 11 Loss & PR comparisons

Multimedia Tools and Applications (2020) 79:25023–25050 25043



4.4.2 Gate and interaction mechanisms in the DMHFN

The task of recognizing faculty homepages is essentially a multimodal classification prob-
lem, in which a target faculty homepage is identified based on three different types of
features, namely, text, image, and layout features. Our proposed DMHFN can well address
this type of problem. Specifically, the DMHFN contains gate and interaction mechanisms.
The gate mechanism identifies direct and fine-grained relationships between feature modal-
ities, and the interaction mechanism integrates these relationships into the model in the
form of a co-occurrence matrix. This section reports a series of experiments carried out on
subset FW4 to evaluate the effectiveness of these two proposed mechanisms. Specifically,
experimental evaluations are conducted using two model variants, as follows:

• G&I : The proposed DMHFN with both the gate and interaction mechanisms enabled.
• NG&NI : The proposed DMHFN with both the gate and interaction mechanisms

disabled.

Figure 12 shows the performance achieved by these two variants in terms of F1 and
accuracy. As seen in Fig. 12, G&I outperforms NG&NI in terms of F1, which indicates
that G&I can achieve excellent precision and recall. In addition, G&I shows improved
accuracy. These findings provide evidence that the gate and interaction mechanisms are
essential for improving model performance.

Next, we will provide insight into the ability of the gate mechanism to find direct and
fine-grained relationships among different feature modalities based on the attention mech-
anism and the ability of the interaction mechanism to integrate these relationships into the
model in the form of a co-occurrence matrix. We consider the text and layout features as an
example. For simplicity, we remove the text autoencoder and the layout autoencoder from
the DMHFN. For illustration, a segment of HTML source code is displayed in Fig. 13.

After such a segment of HTML source code is processed by the gate and interaction
mechanisms, an attention matrix (Fig. 14a) and a co-occurrence matrix (Fig. 14b) are
obtained. Based on the input code segment, the gate mechanism can find the direct and fine-
grained relationships between the text and layout features. The interaction mechanism can
then further integrate the frequencies of occurrence of various text and layout features on
the basis of the attention matrix.

Fig. 12 F1 & accuracy results for two model variants
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Fig. 13 An example of HTML source code

In brief, the gate mechanism serves to find direct and fine-grained relationships between
the two feature modalities. In addition, the interaction mechanism integrates these rela-
tionships while considering the frequencies of the various components of the two feature
modalities. The combination of both mechanisms enables a trade-off that improves the
multimodal classification performance in the case of interdependent feature modalities.

4.4.3 Autoencoders in the DMHFN

This section reports a series of experiments carried out on subset FW4 to evaluate the
effectiveness of the autoencoders in the DMHFN. Specifically, experimental evaluations are
conducted using two model variants, as follows:

• NA: The proposed DMHFN without autoencoders.
• AU : The proposed DMHFN with autoencoders.

According to our understanding, autoencoders can learn compressed representations of
input data. As seen in Fig. 15a, after the removal of the text, image, and layout autoencoders,
the F1 and accuracy values of the DMHFN are only slightly increased. However, the
training time is nearly doubled. These findings provide evidence that the use of autoencoders
can effectively save training time while maintaining the performance of the DMHFN.

Fig. 14 Heat maps of the attention matrix and co-occurrence matrix
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Fig. 15 Performance with and without autoencoders & a deformable CNN

4.4.4 Deformable CNN in the DMHFN

The co-occurrence matrix in the DMHFN is a relatively large sparse matrix; only a small
fraction of the elements are non-zero, and the dense regions have various geometrical
shapes. Traditional CNN modules sample the input feature maps at fixed locations; there-
fore, such approaches have difficulty handling geometric variations. To handle this issue,
we introduce a deformable convolutional kernel [7, 62]. Such a kernel is suitable for accom-
modating the sparsity and geometric variability of the co-occurrence matrix. This section
reports a series of experiments carried out on subset FW4 to evaluate the effectiveness
of using a deformable CNN in the DMHFN. Specifically, experimental evaluations are
conducted using two model variants, as follows:

• NC: The DMHFN with a normal CNN.
• DC: The DMHFN with a deformable CNN.

As displayed in Fig. 15b, compared to the DMHFN with a normal CNN, the DMHFN
with a deformable CNN shows slight increases in both F1 and accuracy and a significant
decrease in training time.

4.4.5 Comparison of the DMHFNwith other models

To gauge the overall performance of the proposed DMHFN, we compare it with three
state-of-the-art algorithms: XGBoost, RF, and CNN. In addition, to make the performance
comparison more convincing, we compare the DMHFN with the other models on all four
subsets FW1 ∼ FW4 aforementioned. Figure 16 shows the detailed experimental results
in terms of F1 and accuracy. The proposed framework achieves the best performance,
generally followed (in approximate order of decreasing performance) by the CNN, RF,
and XGBoost models, as the class imbalance becomes more severe. However, our model
does not have an overwhelming advantage over the CNN model when evaluated on the two
smaller subsets of data.

Our model exhibits more obvious advantages when evaluated on FW3 and FW4, as
shown in Fig. 16c and d. The values of F1 and accuracy further increase. Figure 16 shows
that the DMHFN has the highest true positive rate and the lowest false positive rate among
all tested models, thus indicating that the proposed approach ensures the highest probability
of correctly and successfully identifying faculty homepages.
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Fig. 16 F1 & accuracy results for different models on the four subsets of data

5 Conclusions and future work

In this study, we propose a deep multimodal generative and fusion framework for multi-
modal classification with class-imbalanced data. This framework consists of two modules,
namely, a deep multimodal generative adversarial network (DMGAN) and a deep mul-
timodal hybrid fusion network (DMHFN). The DMGAN handles the class imbalance
problem by generating fake features for each feature modality through iterative adver-
sarial training. As a result of this procedure, the fused distribution of the counterfeit
features approaches the joint distribution of the real features. At the same time, the
individual characteristics of each modality and the relationships among different infor-
mation sources are preserved. The DMHFN integrates information from diverse sources
at different fusion levels for multimodal classification. Specifically, in the DMHFN, a
gate mechanism is introduced to find direct interactions among fine-grained compo-
nents from multiple modalities, while an interaction mechanism is used to aggregate
these relationships based on the co-occurrence matrix. The task of recognizing fac-
ulty homepages is a typical binary classification problem involving multimodal features,
namely, text, image, and HTML layout features, all of which are related in a compli-
cated fashion. In addition, recognizing faculty webpages is a class-imbalanced problem,
as the total number of samples in the minority class (faculty homepages) is far smaller
than the total number of samples in the majority class (non-faculty webpages). Experi-
ments on a faculty homepage dataset we collected show the effectiveness of the inter-
nal functions of the proposed framework and its advantages over other state-of-the-art
models.
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The proposed deep multimodal generative and fusion framework can be generalized
to many other multimodal classification problems involving class-imbalanced data and
interdependent feature modalities. One good example is media-aware stock movement pre-
diction, in which the market information space consists of several modalities, including
transaction data, news articles, and investors’ moods in bear markets [27, 28, 30]. However,
the effectiveness of the proposed deep multimodal generative and fusion framework has
yet to be explored in other related fields. We plan to perform such explorations in the near
feature.
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