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Abstract
When a video is encoded with constant quality, the resulting bitstream will have variable
bitrate due to the inherent nature of the video encoding process. This paper proposes a
video Adaptive Bitrate Streaming (ABR) algorithm, called Look Ahead, which takes into
account this bitrate variability in order to calculate, in real time, the appropriate quality
level that minimizes the number of interruptions during the playback. The algorithm is
based on the Dynamic Adaptive Streaming over HTTP (DASH) standard for on-demand
video services. In fact, it has been implemented and integrated into ExoPlayer v2, the
latest version of the library developed by Google to play DASH contents. The proposed
algorithm is compared to the Müller and Segment Aware Rate Adaptation (SARA)
algorithms as well as to the default ABR algorithm integrated into ExoPlayer. The
comparison is carried out by using the most relevant parameters that affect the Quality
of Experience (QoE) in video playback services, that is, number and duration of stalls,
average quality of the video playback and number of representation switches. These
parameters can be combined to define a QoE model. In this sense, this paper also
proposes two new QoE models for the evaluation of ABR algorithms. One of them
considers the bitrate of every segment of each representation, and the second is based on
VMAF (Video Multimethod Assessment Fusion), a Video Quality Assessment (VQA)
method developed by Netflix. The evaluations presented in the paper reflect: first, that
Look Ahead outperforms the Müller, SARA and the ExoPlayer ABR algorithms in terms
of number and duration of video playback stalls, with hardly decreasing the average video
quality; and second, that the two QoE models proposed are more accurate than other
similar models existing in the literature.
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1 Introduction

Providing the best quality at any time depending on the particular context of each client is the
main objective of adaptive streaming. To that extent, adaptive streaming works by detecting
client device capabilities, such as available network bandwidth, playback buffer size, through-
put or video decoding capacity, in order to adapt the video flow to those constraints.

Nowadays, one the most important examples of adaptive streaming is DASH [17], an ISO
standard for the transmission of live and on demand content. DASH is based on the segmen-
tation of multimedia content. Hence, media files are encoded with different qualities (called
representations), which are then split into small parts called segments. All the information
about media segments (such as video resolution or average bitrates) is contained in the Media
Presentation Description (MPD). Clients download the segments in a sequential way using the
HTTP protocol, and may select different representations for each content segment. Segments
are displayed seamlessly in order so, while no problem arises, the result is an uninterrupted
video playback. Adaptation process is managed by the client, which implies that the client
carries out the corresponding calculations to decide the convenience of a representation switch.

To perform the adaptation, ABR algorithms generally use the average video bitrate to be
compared to the estimated bandwidth [23] as well as the playback buffer [26]. However, using
average bitrate as a prediction of the needed bandwidth is only barely precise when videos are
encoded with a constant bitrate. This type of encoding is indeed creating representations that
have quality changes due to the inherent characteristics of different video scenes. Although
some works have considered this problem, such as [15, 19, 30], in general, those quality
changes are not usually taken into account when ABR algorithms are assessed.

Even though this approach usually works rather well for constant bitrate encoded content, it
may cause stalls when the size of video segments changes abruptly. In fact, when a video is
encoded with constant quality, the resulting bitstream usually has very variable bitrate due to
the different scene types. The reason is that bitrate changes over time, so every single segment
of a representation will have, almost inevitably, a slightly variation (if not a huge one). This is
true even for constant bitrate encoded videos, as Fig. 1 shows. The figure depicts a video
(“Elephants Dream”) encoded with constant quality (a target Constant Rate Factor –CRF–)
and with constant bitrate. Although both encodings provide similar average bitrate, encoding
with a target CRF causes more variation in terms of segment size.

Fig. 1 Segment size comparison for a video encoded with a target quality (CRF) and with fixed bitrate for the
video “Elephants Dream”
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In order to address these difficulties, this paper proposes an ABR algorithm that takes into
account the bitrate of forthcoming segments when choosing the next video representation in
order to avoid interruptions during the video playback, which worsen the Quality of Experi-
ence (QoE) [6].

Apart from evaluating the performance of the proposed ABR algorithm with objective
measures, the algorithm is evaluated using two new QoE models proposed in this work.

The rest of the paper is organized as follows: Section 2 presents the state of the art;
Section 3 explains relevant ABR algorithms in the literature and details the proposed ABR
algorithm; Section 4 analyzes different models for calculating the Quality of Experience,
presenting two new QoE models; Section 5 explains the methodology used to carry out the
evaluation presented in Section 6; Finally, Section 7 summarizes the main conclusions.

1.1 Contribution

The main contributions of this work are:

& A new ABR algorithm for DASH, called Look Ahead, which takes into account the bitrate
of forthcoming segments so as to reduce considerably the number and duration of stalls, at
the expense of hardly decreasing the average bitrate displayed.

& The development of Look Ahead and its integration into ExoPlayer, the library developed
by Google to play DASH content on the Android platform. Apart from Look Ahead, other
existing ABR algorithms proposed in the literature have been integrated into ExoPlayer, in
order to carry out a fair comparison based on a real implementation. It is important to
highlight that: 1) Look Ahead is rather simple to be implemented; 2) Look Ahead
eliminates the need to include all segment sizes in the MPD file; 3) the evaluation has
not been carried out by simulations but using a real performance; 4) it is possible to check
the performance of the Look Ahead by accessing a dedicated server set up by the authors
[16], which includes a publicly available App that contains the developed Look Ahead
algorithm integrated into ExoPlayer.

& Two new models to measure objectively the QoE perceived by the users: one QoE model
is based on the bitrate; and the other is based on the calculation of VMAF, which is one of
the most popular metrics for video assessment nowadays.

2 State of the art

In recent years, many publications related to DASH have been published, several of them
focused on the optimization of the standard and the combination with other solutions to
improve the QoE of users [14, 21].

In the same way, multiple implementations of the standard have been released. Re-
garding these implementations of DASH, it should be mentioned DASH Industry Forum
(DASH-IF) [9]. DASH-IF, among other features, elaborates interoperability guidelines
and provides a reference DASH player implementation. Among the most remarkable
DASH player implementations nowadays, we underline Shaka Player and, especially,
ExoPlayer [2], the open source media library developed by Google for the Android
platform. The importance of this library is reflected considering that in May 2018 more
than 0.2 million apps in Google Play used ExoPlayer [38]. This player library provides
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modularity, so users are able to develop and inject new implementations of the different
modules. The work presented in this paper has been carried out using the latest version of
the aforementioned library: ExoPlayer v2.

With regard to the underlying ABR algorithms, it is worth highlighting some relevant
papers that propose new ABR algorithms for DASH. For instance, the authors of [28]
provide an own implementation of a DASH ABR algorithm and present an evaluation of
the proposed solution compared to popular implementations such as Apple HTTP Live
Streaming or Adobe HTTP Dynamic Streaming. That implementation is based on the
use of an adaptive algorithm that measures the download time of each segment and
builds an adaptation decision out of this download time, the average bitrate of the
representations and the buffer level. On the other hand, apart from evaluating some
commercial and open source DASH players, the authors of [1] propose an ABR
algorithm with the aim of detecting persistent and short-term bandwidth variations in
a timely manner to provide smooth bitrate transitions and avoid video freezes. Also, the
authors of [40] present a generic dynamic ABR algorithm to be used in both bandwidth
and buffer-based approach. A complete study about the state of the art of DASH can be
found in [20, 42]. In this context, it is interesting to mention [31], where the authors
analyze several adaptive bitrate video proposals by classifying them into rate-based and
buffer-based adaptation logics.

In contrast to most of ABR algorithms existing in the literature, which usually consider the
average video bitrate to decide the representation to display, our proposed ABR algorithm
takes into consideration the variability of the instantaneous bitrate, which is reflected in the
segment size. This idea was initially considered by the authors of this paper in [5]. Likewise,
the concept has been also considered in [18, 35], where it is proposed an ABR algorithm called
SARA that knows the segments size of the whole video in advance, at the expense of
modifying the MPD, instead of getting the size in runtime. Also, the authors of [39] use the
extension part of the MPD to include information of instant bitrates of each segment to
perform a proposed QoE-based video adaptation method. However, the modification of the
MPD can lead to a meaningful increase in terms of the size of the MPD, as we will see in the
next section. Our proposal, prior to the first segment representation selection, initializes all
available qualities by downloading and parsing the SegmentBase-indexRange of each repre-
sentation as defined in the MPD. Therefore, the Look Ahead algorithm does not need any
modification in the MPD file.

Moreover, in [41] the dynamics of bandwidth and segment bitrate are considered, but in
this case it is used a partial-linear trend prediction to estimate the trend of client buffer
level variation. In [30] it is proposed the CAVA ABR algorithm, which takes into account
the sizes of upcoming segments as well as its complexity (based on the segment size) and
prioritizes the playback of the most complex segments in order to maximize video quality.
Finally, in [29] it is presented an ABR algorithm for VBR (variable bitrate) videos,
specifically a network-based solution.

It is important to highlight that the ABR algorithm presented in this paper, unlike some
aforementioned theoretical ABR algorithms which have been evaluated in simulation scenar-
ios, has been implemented and tested in a real environment. In this sense, among the several
ABR algorithms existing in the literature, in this paper, apart from ExoPlayer, we have selected
Müller [28] and SARA [18, 35] to carry out the evaluation. The reason is that the papers in
which these algorithms are described, unlike most papers, provide enough detail to implement
and integrate these ABR algorithms into a real player.
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3 ABR algorithms

In this section, the proposed representation adaptation algorithm, called Look Ahead, is
detailed. First, different ABR algorithms existing in the literature are explained, such as the
ABR algorithm used by ExoPlayer or the Müller algorithm.

3.1 ExoPlayer adaptive algorithm

The ExoPlayer library contains a built-in adaptation algorithm in charge of managing the
representation changes by default if no additional implementation is provided. The input
parameters of the algorithm are tracks, buffer size and an estimation of the available
bandwidth.

When deciding the representation of the next segment, the algorithm first calculates the best
representation that fits in the current available bandwidth. This is done by checking all
available qualities and selecting the representation with the highest average bitrate lower than

or equal to the estimated bandwidth (cbw), which is weighted by a factor λ, as shown in (1).

q iþ 1½ � ¼ max
n
Q : bwq j

iþ 1½ �≤λ � dbwo; ð1Þ

where Q= {q0, q1, …, qk-1} is the vector with the k available qualities. With the best average
bandwidth fitting representation, if it differs from the current representation, the algorithm will
switch to the new representation, excluding the following scenarios (2):

& If the new selected representation bandwidth (bw[i + 1]) is higher than the previous
(bw[i]) and the buffer size (b) is lower than a minimum buffer (βmin) –by default 10 s–.

& If the new selected representation bandwidth is lower than the previous and the buffer size
is higher than a maximum buffer level (βmax) –by default 25 s–.

if bw iþ 1½ � > bw i½ � and b < βminð Þ or bw iþ 1½ � < bw i½ � and b > βmaxð Þthen q iþ 1½ � ¼ q i½ � : ð2Þ
This algorithm uses the default implementation of the bandwidth estimator and the buffer
manager offered by the ExoPlayer library.

3.2 Müller algorithm

The Müller algorithm, proposed in [28], provides its own adaptation method for DASH, and it
is widely used in open source software. The algorithm uses the available bandwidth and the
buffer level to calculate a new maximum bandwidth: the lower the buffer level, the lower the
maximum bandwidth of the next segment, and vice versa. This maximum is compared to the
average bitrate of each representation to select the highest representation that accomplishes that
the bitrate is lower than the maximum bandwidth of the next segment, as shown in (3).

max bw sið Þ ¼
bw si−1ð Þ*0:3 if 0≤bli < 0:15
bw si−1ð Þ*0:5 if 0:15≤bli < 0:35
bw si−1ð Þ

bw si−1ð Þ* 1þ 0:5*blið Þ
if
if

0:35≤bli < 0:50
0:50≤bli≤1

8><
>: ð3Þ
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where i є [1, n] is the segment index, n is the number of segments that compose the video, bli is
the buffer level when downloading segment i, and bw(si) is the function that returns the
bandwidth measured during the download of segment i. The default implementation is used for
bandwidth estimation and buffer management.

3.3 Segment aware rate adaptation algorithm (SARA)

The SARA algorithm, proposed in [18], considers the segment size variation in addition to the
estimated path bandwidth and the current buffer occupancy to predict the time required to
download the next segment. The solution is based on a modified MPD file that contains the
information about segment sizes.

Also, the algorithm uses a throughput estimation with weighted harmonic mean. Specifi-
cally, the weighted harmonic mean download rate for n downloaded segments is given by:

Hn ¼ ∑n
i¼1ωi

∑n
i¼1

ωi

di

; ð4Þ

where ωi is the weight proportional to the size of segment i, and di is the download rate of
segment i. The time to download the next segment is predicted by ωn + 1/Hn, which is compared
to different buffer thresholds to decide the next representation. As shown in the evaluation
section, this method of estimating the bandwidth provides smooth variations of video repre-
sentations but reacts slowly to sudden throughput changes which can lead to playback stalls.

The defined strategies to choose the next representation are: fast start, representation
decrease, additive increase, increasing by one level, aggressive switching, delayed download
or keeping the current representation.

One of the main drawbacks of SARA algorithm is the need of modifying the MPD, since
this modification could increase the size of the MPD considerably. For instance, as provided
by the authors of the algorithm [12], a video of 77 min with a segment size of 4 s has a MPD
with a size of 1.6 MB. This size corresponds to the aggregated size of the first 76 segments of
the lowest quality representation which, in turn, represents around 5 min of video. In contrast,
the same MPD but without SARA modifications has a size of 9.2 kB.

3.4 Look ahead algorithm

With the aim of avoiding stalls and rebufferings during the playback, this paper proposes an
ABR algorithm called Look Ahead that takes into account the bitrate variability of the
available representations. The main objective of Look Ahead is to provide a continuous
playback while maximizing video quality. In this way, when calculating the representation
chosen for the next segment i + 1, it is intended to provide the maximum quality, as long as no
stalls occur, among the k available representations Q = {q0, q1, …, qk-1}, where qj is the
representation of the segment j (note that qj < qj + 1).

Look Ahead is an iterative process consisting on computing the average bandwidth
of the forthcoming z segments for all representations from z = 1 to θ, where θ is the
maximum number of forthcoming segments into consideration to calculate the average
rate. The algorithm selects, on each iteration, the highest representation of which
average bitrate of the next z segments, τz, is lower than the estimated bandwidth,
according to (5).
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τ z iþ 1; jð Þ ¼ ∑iþz
m¼iþ1Sm;q j

∑iþz
m¼iþ1tm

; τ iþ 1; jð Þ < cbw; ð5Þ

where i is the current segment, Sm;q j
is the size of segment m for the representation

qj, tm is the duration of segment m, and cbw is the estimated bandwidth. Note that tm
will usually be equal in every segment, although it depends on the encoding process.

The selected representation for the next segment, ξ(i + 1), corresponds to the lowest
representation obtained from the θ iterations, as shown in (6):

ξ iþ 1ð Þ ¼ min τ zf g; z ¼ 1…Θ: ð6Þ
Considering different iterations when calculating the representation of forthcoming segments is a
conservative process that avoids stalls during the playback, since future segments with higher bitrate
can make the algorithm to select lower representations than the bandwidth may allow, thus keeping
or increasing the buffer depending on forthcoming segments. In this sense, the parameter θ could
have a great impact on the QoE of users. In fact, when choosing θ to maximize the QoE, there is a
trade-off in terms of stalls, video representation displayed and noticeable representation switches.

To see an example, in the particular case of θ = 3, when calculating the representation of
segment u, the available rates for the k representations under consideration are first calculated.
This means calculating τ(u,j), where j є [0, k-1], and generating vectors Т(u) as shown in (7)–(9):

Т uð Þz¼1 ¼
Su;0
tu

Su;1
tu

…
Su;k−1
tu

� �
; ð7Þ

Т uð Þz¼2 ¼
Su;0 þ Suþ1;0

tu þ tuþ1

Su;1 þ Suþ1;1

tu þ tuþ1
…

Su;k−1 þ Suþ1;k−1

tu þ tuþ1

� �
; ð8Þ

Т uð Þz¼3 ¼
Su;0 þ Suþ1;0 þ Suþ2;0

tu þ tuþ1 þ tuþ2
…

Su;k−1 þ Suþ1;k−1 þ Suþ2;k−1

tu þ tuþ1 þ tuþ2

� �
: ð9Þ

In each vector T(u), the chosen representation is the highest j (the highest column in the Т(u)

vector) that fulfills the condition τ(u,j) < cbw, i.e., the necessary rate for downloading that
segment must be lower than the estimated bandwidth.When all vectors T(u)z = 1..θ are calculated
generating a vector Tq(u) = {q(z= 1), q(z = 2), …, q(z = θ)}, the chosen representation of segment u
corresponds to the lowest representation of the vector Tq(u), i.e. ξ (u) = min {Tq(u)}.

Note that, when calculating the representation of the last segment, the value of z will be 1.
In the case of the penultimate segment, the value of z will be min{2, θ}, and so on.

It is important to highlight that the proposed algorithm is only intended for on-demand
video services, where it is possible to know the sizes of the ahead segments in runtime by
parsing the SegmentBase-indexRange byte range of each representation.

4 Quality of experience models

The Quality of Experience is a subjective evaluation parameter to measure the user experience
regarding a service. The importance of this parameter in video evaluation has grown
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considerably in the last decade, as the amount of related work recently published proves (a
complete survey can be found in [4]).

In the literature, there are different proposals to measure analytically the QoE. In the
following subsections we first present the proposal explained in [36], then we suggest a new
model based on a brief modification of this algorithm and, finally, we propose a new model
based on VMAF for measuring the QoE.

4.1 Normalized QoE model

Yin et al. [36] propose a formula where the QoE is calculated through the sum of the QoE of
each segment. Thus, Yin et al. define the QoE of video segment 1 through K by a weighted
sum of three components: video quality, quality variations and total rebuffering time, as (10)
shows.

QoEK
1 ¼ ∑K

k¼1q Rkð Þ−λ∑K−1
k¼1 q Rkþ1ð Þ−q Rkð Þj j−μ∑K

k¼1

LRk

Ck
−Bk

� �
;Rkεℜ ð10Þ

where K is the number of segments of the video, Rk є ℜ (where ℜ is the set of all available
bitrate levels) is the bandwidth of the selected representation of segment k, q(·) is an increasing
function which maps selected bitrate Rk to video quality perceived by user q(Rk), L is the
duration (in seconds) of each segment, Ck is the average download speed of segment k, Bk is
the buffer occupancy at the instant of time when the segment k is being downloaded, and
finally, λ and μ are positive weighting parameters corresponding to video quality variations
and rebuffering time, respectively.

With regard to these latest parameters, a small λ implies that the user is not particularly
concerned about video quality variability, whereas a large μ indicates that the user is deeply
concerned about rebuffering. As stalls, generally, disturb users much more than video quality
changes do, the value of μ is usually much higher than λ.

Yin et al. define a normalized QoE model to compare the performance of algorithms to the
theoretical optimum, calculated assuming that the future bandwidth is known, as (11) shows:

nQoEK
1 ¼ QoEK

1

QoEopt
ð11Þ

4.2 QoE model modified

We propose an initial modification regarding the QoE model proposed by Yin et al. The
proposed model is shown in (12):

QoEK
1 ¼ ∑K

k¼1q Rkð Þ−λ∑K−1
k¼1 q Rkþ1ð Þ−q Rkð Þj j−μ∑K

k¼1

LRk

Ck
−Bk

� �
; RkεℜS ; ð12Þ

Apparently, the formula is the same as (10). However, there is a meaningful difference.
In this case Rk є ℜS, where ℜS has a different set of values for each segment compared to
ℜ. That is, Rk does not belong to a set of available bitrates specified in the MPD, since
the bitrate of each representation, generally, changes in every segment. To see an
example, supposing that a video is encoded with only one quality, for instance with a
bitrate of 1 Mbps, the value of ℜ will always be 1 Mbps for each segment, whereas ℜS
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could have a different value in each segment around the average bitrate (e.g. 0.77, 0.95,
1.12 Mbps…).

The idea of taking into consideration the specific bitrate in each segment instead of the
average bitrate of every representation makes the proposed Yin et al.-based QoE model more
accurate since, as explained in the introduction, as the bitrate changes over time, every single
segment of a representation has, almost inevitably, some variation.

4.3 VMAF-based QoE model

VMAF is an objective measure that usually has a strong correlation with the QoE: the higher
the VMAF, the better the QoE. Specifically, VMAF [3, 24] is a Video Quality Assessment
(VQA) method developed by Netflix and used by many tools like FFmpeg and Elecard
StreamEye. It uses Visual Information Fidelity (VIF) [32], Detail Loss Metric (DLM) [22]
and Temporal Impairment Feature (TI) metrics fused by Support Vector Machine (SVM)
regression [8] with a built-in machine-learning trained model. The model has been trained
using the opinion scores obtained through a subjective experiment. Figure 2. outlines the
VMAF process to calculate frame scores.

VMAF adopts a modified version of VIF that uses each one of the values of the four scales
used by VIF, while VIF combines them into a single value. The SVR (Support Vector
Regression) uses the six features to generate per-frame value. The final VMAF value is the
arithmetic mean of the per-frame values.

It is worth noting that, even encoding with a target quality and variable bitrate, the resulting
segment VMAF changes over time. The variation of VMAF in a representation is particularly
meaningful when videos are encoded using a target mean bitrate. As an example, Fig. 3 shows
the VMAF obtained for each segment for the same video encoded with a target quality (CRF)
and a fixed bitrate, both having the same average bitrate (around 1.13 Mbps). Although both
provide similar average VMAF (around 87), a video encoded with a target bitrate has more
variations in terms of VMAF (amaximum fluctuation of 43.16 against 23.69with a fixed CRF).

Moreover, since the bitrate and the VMAF have an increasing logarithmic relationship,
bitrate variations do not affect equally VMAF depending on the value of bitrate. For example,
a slight bitrate variation can imply a high VMAF variation for low bitrates, as we can check in
Fig. 4, where an increase of 500 kbps to 1 Mbps implies a VMAF rise of 12, whereas the same
increase, but this time between 4 Mbps and 4.5 Mbps, causes a VMAF rise of hardly 0.4.

Both bitrate and VMAF are important objective measures, however VMAF offers a more
representative relationship regarding the QoE. Also, due the nonlinearity of bitrate regarding
VMAF depicted in Fig. 4, the QoE model proposed by Yin et al., which is based on the bitrate,
can be improved. Although it is true that the model is based on an increasing q(·) function that

Fig. 2 Outline of the VMAF system
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affects the bitrate, and therefore this could be a linear or logarithmic function (among others),
this function is not specified in the proposal by Yin et al. [36].

For the abovementioned reasons, we propose a new QoE model based on such an important
parameter as the VMAF is. Formula (13) shows the VMAF-based QoE model proposed:

QoE
0
VMAF ¼ 1

K
∑K

k¼1VMAF ξkð Þ−λ 1

K−1
∑
K−1

k¼1
VMAF ξkþ1

� �
−VMAF ξkð Þ�� ��−

γ � 1
d
∑K

k¼1

LRk

Ck
−Bk

� �
−δ � Ts; RkεℜS ; ð13Þ

where K is the number of segments of the video, ξk is the selected representation of segment k,
VMAF(ξk) is the VMAF of the selected representation of segment k, d is the total duration of
the video (in seconds), L is the duration (in seconds) of each segment, Rk єℜS is the bandwidth
of the selected representation of segment k, Ck is the average download speed of segment k, Bk

is the buffer occupancy at the instant of time when the segment k is being download, Ts is the
start-up delay, and finally λ, γ and δ are positive weighting parameters corresponding to video

Fig. 3 Segment VMAF comparison for a video encoded with constant CRF and with constant bitrate for the
video “Elephants Dream” encoded with VP9

Fig. 4 Relation between bitrate and VMAF for the video “Elephants Dream” encoded with VP9
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representation switches, rebuffering time and start-up delay, respectively. As in the previous
case, Rk does not belong to a set of available bitrate levels specified in the MPD.

In order to establish a lower bound in case there are many stalls (so as to avoid negative
values of the model), QoEVMAF is defined as follows:

QoEVMAF ¼ max QoE
0
VMAF ; 0

	 

ð14Þ

The structure and idea of the proposed formula is similar to the QoE model by Yin, explained
in Eq. (10), that is: the VMAF increases the value of the QoE model, whereas both quality
changes and the rebuffering duration penalize the QoE. The stalling ratio is the amount of time
spent so that video playback is stalled (rebuffering time) divided by the total duration of the
video. The proposed formula also includes the effect of the start-up delay. Conceptually, (13)
can be expressed as shown in Eq. (15):

QoE
0
VMAF ¼ Average VMAF−λ*Average VMAF switches−γ � stalling ratio−δ � startupdelay: ð15Þ

Note that, when rebuffering time is zero, the third term of the formula (15) will also be. It is
important to highlight that, the QoEVMAF model can provide information by itself about the
Quality of Experience of the video playback, without the need of comparison with other
values, in contrast to the model proposed by Yin et al., which is normalized with an ideal case,
shown in Eq. (11). Thus, the proposed formula has the same scale of VMAF, that is, the
maximum value is 100 (an excellent QoE) and the minimum value is 0 (very bad QoE).

In practice, the main difficulty of using the formula is calculating the VMAF of each
segment for each representation. This could imply a meaningful processing time, which grows
as the number of representations increases. To ease this procedure, we have made available a
program in GitHub that calculates VMAF [13], as explained in the next section.

To see an example, making use of Eq. (13), Fig. 5 shows the QoEVMAF for different values
of stalling ratio and different values of γ. In the figure, the parameter of average VMAF has
been fixed to 95, the average VMAF variations have been set to 5, λ = 1 and δ = 0 (the start-up
delay is not considered) so, in case of no stalls, the QoEVMAF obtained is 90, as the figure
shows. As it can be seen, the parameter γ has a high impact on the QoEVMAF model. For
example, when γ = 1800, if the duration of the stalls is 4% of the video playback, we obtain a

Fig. 5 QoEVMAF for different values of stalling ratio and γ
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very poor QoEVMAF = 18. On the contrary, the same percentage of stalls duration causes an
acceptable value of QoEVMAF = 66 when γ = 600. In the studies presented in this paper we
have used γ = 900 since, according to [25], stalling ratio of 1% is considered to be noticeable
for users, while values higher than 10% are considered to be not acceptable. Taking into
consideration the results shown in Fig. 5, the γ that best accomplishes the previous condition is
γ = 900, since it provides a value of QoEVMAF = 0 when the stalling ratio is 10%.

5 Methodology

5.1 Implementation and integration with ExoPlayer

The proposed Look Ahead algorithm and theMüller and SARA algorithms have been developed
and integrated into the ExoPlayer v2 library. The use of a real player, instead of emulations, has
several advantages for gathering precise data. For example, when using a real implementation,
buffer occupancy is updated as soon as a frame is parsed from the HTTP connection and not just
once the segment transmission ends. Emulations that do not have this feature cannot be used for
detecting video stalls accurately as they may find stalls where there are not.

In order to play video in real devices, ExoPlayer has defined a set of different modules and
implementations. The logic of the ABR algorithm is split into three different elements defined
by its interfaces: BandwidthMeter, LoadControl and TrackSelection. The first receives peri-
odic updates on transferred bytes and computes a bandwidth estimation that other modules can
request. LoadControl handles the allocated buffer and instructs the player whether to keep
filling the buffer and if the playback should start. Finally, TrackSelection may use the data
provided by the other two elements to choose the next representation to download.

Concerning the implementation of the algorithms analyzed in this paper, with regard to the
default adaptive algorithm of ExoPlayer, the bandwidth estimator and the buffer manager of
this algorithm correspond to the default implementation offered by the ExoPlayer library. The
default bandwidth estimator uses the percentile 0.5 of a sliding window of weighted values
while the buffer manager basically instructs the upstream layers to start downloading segments
of the representation selected by the TrackSelection implementation when the buffer becomes
emptier than 25 s and up to it reaches 30s. On the other hand, due to the lack of information
regarding the bandwidth estimation and the buffer manager used by the Müller algorithm, in
this work we have used the same default implementations used by the ExoPlayer ABR
algorithm. Finally, regarding SARA, the algorithm uses a throughput estimation with weighted
harmonic mean, which we have implemented for the ExoPlayer library. As regards to the
buffer management, for similarity to the other analyzed studied, we have used the following
values of these buffer thresholds for SARA: I = 5, B=12.5, Bβ = 25 and Bmax = 30.

With respect to the algorithm proposed, we have only modified the TrackSelection interface
of ExoPlayer in order to add the new functionality. With the modifications carried out, the
implementation of that interface now receives callbacks when a new representation has been
initialized. Thanks to an intermediate abstract implementation provided by the library itself
(BaseTrackSelection), there is no need to update other implementations of the TrackSelection
interface but only the aforementioned intermediate abstract class.

Also, in order to carry out the measurements, we have developed an ExoPlayer module that
limits the HTTP connection bandwidth based on pre-configured tables of time-bitrate values.
The bandwidth limiter is in charge of managing the channel bandwidth by limiting the
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perceived bandwidth of the downstream elements: SegmentDownloader, LoadControl, etc.
Anyway, our proposal is open to be evaluated with different implementations of the bandwidth
estimation and buffer manager.

It is worth noting that Look Ahead does not require any modification (e. g. extra headers
nor MPD modifications) to the DASH standard. Specifically, with the objective of having all
the information regarding the segment sizes of the representations, the Look Ahead algorithm
instructs the underlying player to initialize all available representations before taking any
decision. This procedure generates a request of the Initialization-range and the SegmentBase-
indexRange of each representation file [17]. With the information provided by the indexRange,
the algorithm is able to compute the initial and final byte index of each segment and, thus, the
segment sizes. This process generates a little increase in the initial delay due to the network
request. For instance, when initializing a representation of a 45-min video with a segment size
of 10 s, the size of the initial download would be lower than 6 kB.

Finally, all video playbacks have been carried out using an instance of the official Android
8 emulator running on HP Pavilion dv6 (i7/6GB) with the Ubuntu 18.04 Linux distribution.
Also, on server-side, we have used a local instance of Apache 2.4 in order to avoid undesired
bandwidth limitations.

5.2 Testbed and evaluation parameters

The videos chosen to perform the evaluation have been created by the Blender Foundation [7]:
“Elephants Dream” and “Tears of Steel”. Also, it has been used a longer video, whose duration
is about 46 min. The video is made up of 4 open source videos: the aforementioned videos
“Elephants Dream” and “Tears of Steel” as well as the videos “Sintel” and “Big Buck Bunny”.
All representations have a Full HD resolution (1080p24) and a segment size of 10 s. The
videos have been encoded with VP9, the latest free video coding format developed by Google,
and one of the most used video codecs nowadays. Table 1 summarizes the main characteristics
of the videos used for the evaluation.

The videos have been encoded using CRF values between 5 (better quality) and 60 (lower
quality) in intervals of 5, that is, a total of 12 video qualities. We have encoded videos with
CRFs from 5 to 60 in steps of 5 in order to be systematic and to better evaluate the
performance of the algorithms in terms of representation switches even though some repre-
sentations could have never been selected by the player. Fig. 6 shows the bitrate over time of
the video “Elephants Dream” for different CRF values (note that, for the sake of clarity, only 4
qualities are shown in the figure).

It is worth highlighting the great variability of bitrate over play time, especially when the
sequence is encoded at high qualities. This is one of the key elements of the proposal, sincemany of
existing algorithms do not take into consideration bitrate variability but average bitrate. For

Table 1 Characteristics of the evaluation videos

Video Duration (s) Number of segments Frame size Codec

Elephants Dream 654 66 1920 × 1080 VP9
Tears of Steel 734 74 1920 × 1080 VP9
Mix (Sintel - Big Buck Bunny - Elephants

Dream - Tears of Steel)
2757 276 1920 × 1080 VP9
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instance, note the peak at 120 s with CRF = 5 (130Mbps), which quintuplicates the average bitrate
of the video (22.75 Mbps) for that quality. When CRF = 45, the value of the bitrate in the
aforementioned peak (11.74 Mbps) is ten times higher than the average bitrate (1.13 Mbps).

In the adaptation process, when choosing the representation of the next segment, ABR
algorithms will decide to keep the same representation or to change it, either increasing or
decreasing the representation. Note that users could perceive a video quality change, which
could lead to worsen their QoE, especially if quality decreases, although the more fine-grained
video representations, the more unlikely users could detect a quality change between adjacent
representations. In this sense, in the evaluation of the Look Ahead algorithm we have fixed the
value of θ= 1, meaning that the forthcoming segment (that is, 10 s of the video) will be
considered. We have used this value because it is the worst scenario for the proposed algorithm
regarding the number of stalls, as shown in the evaluation section. However, a specific
evaluation of θ is carried out in one of the studies to check how θ affects video playback.

On the other hand, the adaptation algorithms have been tested on different scenarios: 4
channels with constant bandwidth (1, 2, 5 and 10 Mbps); and 5 channels with variable
bandwidth. In particular, the first variable channel (staircase) switches between 2, 4, 8 and 4
Mbps, in loop, every 100 s, whereas the second switches between 2 and 8 Mbps in loop every
100 s. The other three are 4G scenarios obtained from traces of field measurements carried out
by the Ghent University, specifically a bus (two scenarios) and a car in motion, publicly
available in [11]. In that regard, Fig. 7 shows the throughput for two of these 4G channels. As
the figure depicts, although the throughput is high on average (higher than 10 Mbps), there are
instants of time where there is a sudden decrease of the throughput, which can lead to a buffer
emptying, thus causing stalls in video playback.

Regarding the evaluation parameters, as the ultimate goal of bitrate adaptation is to improve
the Quality of Experience of users [36], it is important to analyze the main parameters that
affect the QoE. Generally, it is considered that the three key elements of QoE in a video
streaming service are: total rebuffering time, average video quality and average quality
variations (we will be using representations instead of quality as stated above). These will
be the main parameters to analyze in the studies presented in the following section.

Fig. 6 Bitrate over time for different CRF values of the video “Elephants Dream”
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The algorithms under study have been also evaluated by using three QoE models: the Yin
et al. QoE model, the modified Yin et al. QoE model, and the VMAF-based QoE model. In
this regard, as no details about the q(·) function are shown in the proposal by Yin et al., we
have assumed, for simplicity, that q(x) = x, which accomplishes the only requirement of being
an increasing function.

Also, to obtain the data shown in the evaluation section, 5 iterations have been carried out
for each algorithm, channel and video under study, providing narrow confidence intervals.
Specifically, a total of 111 h and 25 min (that is, about 4.5 days) of video have been displayed
for the evaluation.

Finally, the authors have set up a web server where the most relevant information used to
carry out the evaluations presented in this paper is publicly available. The server can be found
in [16]. Among the information, an app with ExoPlayer using the Look Ahead algorithm is
available to download and test, as well as the MPD and different representations of the videos
used for the evaluation. In this way, interested users can prove the performance of the proposed
Look Ahead algorithm for the videos and channels presented in this paper. Furthermore, the
authors have developed a program in charge of encoding a video according to input parameters
such as target quality or bitrate. This program, publicly available in GitHub [13], calculates the
VMAF score of each segment for each representation. This is rather useful when calculating
the VMAF-based QoE model proposed in this paper.

6 Evaluation

6.1 Evaluation of look ahead

This section presents the evaluation carried out to compare the performance of the algorithms
under study. Specifically, the following parameters are considered when evaluating the four
algorithms into seven bandwidth environments for two videos (“Elephants Dream” and “Tears
of Steel”): number and duration of stalls, average representation, and number of representation
switches.

To summarize the results obtained in different scenarios, as an example, Fig. 8(a-d) show
the evaluations of a particular iteration in a 4G channel of a car in motion using the ExoPlayer,

Fig. 7 Throughput for the 4G-bus and 4G-car channels
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Müller, SARA and Look Ahead algorithms, respectively. As the figures depict, three param-
eters are analyzed: player buffer level (in seconds); displayed representation according to its
average bitrate; and estimation of available bandwidth (in Mbps).

Analyzing the figures, we first see that the adaptive algorithm of ExoPlayer causes several
stalls during the playback, whereas Müller causes one stall and SARA two. In contrast, no
stalls occur in the Look Ahead algorithm. The playback time when the buffer is empty
corresponds, generally, to those instants of time in which the average bitrate of the video is
higher or when there is a sudden fall of the throughput. As an example, as shown in Fig. 6, the
increase of video bitrate during the play time between 110 and 140 s causes several stalls using
the ExoPlayer algorithm (Fig. 8a). Likewise, analyzing Fig. 6 and Fig. 7 we can conclude that,
the peak of the video bitrate at the instant of playback around 500 s together with the fall in
throughput in the 4G-car channel also at that instant of time lead to one stall both in the Müller
and the SARA algorithms, as Fig. 8b and Fig. 8c show, respectively.

The situations of buffer emptiness cause an accumulative delay of the video displayed. In
fact, we can see that the video ends 163 s later than it should for the ExoPlayer algorithm (Fig.
8a), 21 s for the Müller algorithm (Fig. 8b) and 24 s for SARA (Fig. 8c). Regarding the buffer,
when using the Look Ahead algorithm, the buffer always keeps a stable level (the minimum
buffer level during the playback is 9 s) and, consequently, no playback stalls occur. For this
purpose, the algorithm selects lower representations when it detects a considerable increase in
the size of the following segments (e.g. at instant around 230 s), whereas it selects higher
representations when the following video segments have lower bitrates. We also see that most
algorithms cause several bitrate switches.

Fig. 8 Evaluation of different algorithms in 4G-car channel for the video “Elephants Dream”
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In order to perform a thorough evaluation of the algorithms under study, Table 2 and
Table 3 show a comparison for different scenarios in terms of number and duration of
interruptions, average representation (which range is between 0 and 11) and average number
of representation switches. The best value in each scenario is highlighted in bold in both tables.

Results are in line with those shown in the previous figures, that is, whereas the ExoPlayer,
Müller and SARA algorithms suffer from video playback stalls, Look Ahead avoids
rebufferings during the playback. In the ExoPlayer algorithm, the fact that a bandwidth
increase does not always involve a decrease in the number and duration of interruptions is
because the system detects a higher average channel bandwidth and chooses segments of better
qualities. Analyzing particular results, when bandwidth is 1 Mbps, the use of the ExoPlayer
adaptive algorithm causes up to 5 interruptions for a total time of 94 s, whereas Müller and
SARA have 1 stall which duration is about 6 s. In contrast, no playback stall occurs when
Look Ahead is used. Although it could seem that having, on average, 1 stall for 6 s for a video
of about 10 min is not very meaningful, this could imply an accumulated stalling of 9.17
millions of hours every day in YouTube, taking into account that, according to YouTube [37],
the total number of hours of video watched on YouTube every day is about 1 billion.

Moreover, Table 3 reflects that the lack of stalls does not imply a meaningful decrease in
the average representation using the Look Ahead algorithm. In fact, the average representation
obtained by Look Ahead for all the scenarios under consideration is slightly lower than the
average representation of the best case (SARA or Müller, depending on the scenario): 7.33%
lower for the video “Elephants Dream” and 9.56% for “Tears of Steel”. Also, we see that the
average representation for Look Ahead is higher than that obtained by ExoPlayer. Finally,
Look Ahead, SARA and Müller algorithms cause many representation switches in comparison
to ExoPlayer. The low number of representation switches of the adaptive ExoPlayer algorithm
can explain the high value of average number and duration of stalls of this algorithm.

In conclusion, Look Ahead causes less stalls (with less duration) than the other ABR
algorithms at the expense of hardly decreasing the average representation. Also, the tables

Table 2 Number and duration of stalls comparison for different adaptation algorithms and for videos ‘Elephants
Dream’ and ‘Tears of Steel’

Number of stalls Duration of stalls (s)

Channel Look
Ahead

SARA Müller ExoP. Look
Ahead

SARA Müller ExoP.

Elephants
Dream

1 Mbps 0.00 1.00 1.00 5.00 0.00 5.98 5.81 93.76
2 Mbps 0.00 1.00 1.00 5.00 0.00 5.95 5.48 93.24
5 Mbps 0.00 0.00 0.00 6.00 0.00 0.00 0.00 101.18
10 Mbps 0.00 0.00 0.00 5.20 0.00 0.00 0.00 77.81
2–4–8-4

Mbps
0.00 0.00 0.00 3.00 0.00 0.00 0.00 47.86

4G-bus 0.00 0.40 0.60 4.00 0.00 2.58 9.49 82.56
4G-car 0.00 2.00 0.80 7.80 0.00 21.46 13.00 156.73

Tears of Steel 1 Mbps 0.00 0.00 0.00 3.00 0.00 0.00 0.00 34.32
2 Mbps 0.00 0.00 0.00 3.00 0.00 0.00 0.00 34.20
5 Mbps 0.00 0.00 0.00 4.00 0.00 0.00 0.00 57.91
10 Mbps 0.00 0.00 0.00 5.40 0.00 0.00 0.00 51.27
2–4–8-4

Mbps
0.00 0.00 0.00 4.00 0.00 0.00 0.00 28.91

4G-bus 0.00 0.00 0.00 4.00 0.00 0.00 0.00 45.35
4G-car 0.00 2.60 0.80 7.80 0.00 30.04 7.43 94.66
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reflect that in the most demanding channels (such as 1 Mbps, 4G-bus or 4G-car) there are more
stalls than in the least demanding channels. Also, the higher the average channel bandwidth,
the higher the average representation.

6.2 Evaluation of QoE models

This section shows the evaluation of the QoE models proposed using the four algorithms, eight
bandwidth channels and three videos under consideration. Table 4 shows an evaluation of the
algorithms in terms of Quality of Experience. Specifically, three different models are used: the
QoE proposed by Yin et al., the QoE by Yin et al. modified and the VMAF-based QoE model.
We first see that ExoPlayer provides negative values of the QoE in most scenarios due, mainly,
to the duration of the stalls, as we saw in Table 2.

Taking the values of Table 4, Fig. 9 shows the evaluation of the Look Ahead, SARA and
Müller algorithms in terms of the relationship of the formula of QoE by Yin et al. divided by
the maximum QoE for different channels (highlighted in bold in Table 4). We have considered
the maximum QoE as the maximum value of the QoE for the four algorithms under
consideration in each particular case. For example, in a constant bandwidth channel of 2
Mbps for the video “Elephants Dream”, the best QoE value is provided by Look Ahead,
whereas in a constant 5 Mbps channel for the video “Elephants Dream” the best QoE value is
provided by SARA. In the figure, we have omitted the ExoPlayer algorithm for the sake of
clarity since, due to the high value of stalls duration in some channels, it provides negative
values in many cases (and in no case it provides the best value). The values shown in the figure
have been obtained by fixing λ = 1 and μ = 6000. That is, 1 s of rebuffering has the same
penalty as the bitrate reduction of a chunk by 6000 kbps. We have used these values as
suggested in [33]. Also, each algorithm, for each channel, contains a lower error bar that
represents the value obtained when μ = 9000 (a higher penalty for stalls) and an upper error bar
that represents the value obtained when μ = 3000. This value of μ is suggested by Yin et al. in

Table 3 Average representation and number of representation switches comparison for different adaptation
algorithms and for videos ‘Elephants Dream’ and ‘Tears of Steel’

Average representation [0–11] Number of representation switches

Channel Look
Ahead

SARA Müller ExoP. Look
Ahead

SARA Müller ExoP.

Elephants
Dream

1 Mbps 3.27 3.66 3.64 1.94 44.80 49.20 49.00 2.00
2 Mbps 3.30 3.66 3.64 1.94 45.20 49.20 49.20 2.00
5 Mbps 6.56 7.41 7.25 5.71 47.40 48.20 45.20 2.80
10 Mbps 8.17 8.79 8.66 6.66 37.20 40.40 42.40 3.00
2–4–8-4

Mbps
6.07 6.17 6.48 4.90 46.40 51.60 44.60 10.80

4G-bus 8.74 8.06 7.93 8.28 35.00 45.60 43.80 28.40
4G-car 8.53 9.10 8.74 8.67 38.00 38.60 37.80 27.60

Tears of Steel 1 Mbps 2.78 3.28 3.28 1.95 52.00 52.40 54.00 2.00
2 Mbps 2.77 3.29 3.28 1.95 52.60 53.80 54.60 2.00
5 Mbps 6.07 6.61 6.62 5.84 43.60 54.40 50.80 2.00
10 Mbps 7.09 7.95 7.94 6.81 48.60 48.20 46.20 2.20
2–4–8-4

Mbps
5.52 5.78 6.06 5.05 45.60 53.40 54.20 11.40

4G-bus 6.73 8.45 8.20 8.02 43.60 44.20 51.80 37.40
4G-car 7.99 8.23 8.17 8.26 50.20 43.80 43.20 18.80
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[36]. The figure shows that, in the most demanding scenarios (that is, in the 4G scenarios in
mobility or in the constant bandwidth channel of 1 and 2 Mbps), the Look Ahead algorithm
provides values of the QoE much better than SARA and Müller. The worst case for Look
Ahead is the case of a fixed 5 Mbps channel, in which it provides a QoE a 30% lower than
SARA. Considering the case of μ = 9000, as the penalty for stalls duration is lower, both
Müller and SARA are closer to Look Ahead, especially in the constant 1–2 Mbps channels. On
the other hand, when μ = 3000, the differences regarding Look Ahead are even higher in the
constant 1–2 Mbps channels.

Figure 10 shows the results obtained when the QoE model by Yin et al. modified is used. It
is worth remembering that this proposed model, in contrast to the original QoE model by Yin
et al., considers the specific bitrate in each segment instead of the average bitrate of the
representations. Results, compared to those shown in Fig. 9, are rather favorable for Look
Ahead in comparison to Müller and SARA. In those scenarios where Look Ahead behaved
better than the other two algorithms (e. g. 4G scenarios or 1 Mbps), the difference between
Look Ahead regarding Müller and SARA increases. On the other hand, in the 5 and 10 Mbps
bandwidth channels, the difference of Look Ahead regarding the best algorithm for these
scenarios is reduced, whereas in the staircase scenario Look Ahead is the algorithm that
provides the maximum QoE considering the modified QoE model. As in the previous figure,
the lower and upper bounds represent the QoE value obtained when μ = 9000 and μ = 3000,
respectively. In this way, we can conclude that, considering the QoE model by Yin et al.
modified, the benefits of the Look Ahead algorithm are more evident.

Fig. 9 Evaluation of the QoE model by Yin et al. (λ = 1, μ = 6000) for the video “Elephants Dream”

Fig. 10 Evaluation of the modified QoE model by Yin et al. modified (λ = 1, μ = 6000) for the video “Elephants
Dream”
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The evaluation of the proposed QoEVMAF model for the video “Elephants Dream” is shown
in Fig. 11 (fixing λ = 1 and γ = 900). To make an accurate comparison regarding the Yin et al.
QoE model shown in Fig. 9, throughout this section we do not consider the start-up delay,
since the formula of Yin et al. does not consider it, so δ = 0. As in the previous case, in order to
see the behavior of the QoEVMAF model under different conditions, we have also considered
the case of γ = 1500 (lower bound in Fig. 11) and γ = 300 (upper bound in Fig. 11). In this
case, Look Ahead provides the best results for the most demanding scenarios, whereas the
difference in the rest of channels compared to the best algorithm is now insignificant. Using
this QoE model it is possible to analyze each algorithm independently of the other algorithms.
The three algorithms provide good values of the QoEVMAF in all scenarios (the minimum value
is 61.95 in SARA for the 4G-car channel). As expected, the lowest values are obtained in the
most demanding channels. We can also see the great importance of the parameter γwhen there
are stalls. For instance, in the 4G-car channel for SARA, when γ = 300 then QoEVMAF = 81.64,
whereas this value gets worse considerably (QoEVMAF = 42.26) when γ = 1500.

In order to make a comparison among the analyzed QoE models, we are going to consider a
particular case. Specifically, the 4G-car scenario for the mixed video. Analyzing the param-
eters shown in Table 5, we see that whereas the SARA algorithm has, on average, 9.2 stalls
whose duration is 100.44 s, and Müller has 5.6 stalls of average duration 64.37 s, the Look
Ahead algorithm has only 4 stalls with a total duration of 24.37 s. The average representation is
slightly higher in SARA (8.87) than in Look Ahead (8.81) and Müller (8.66), and the number
of representation switches is rather similar in both algorithms (between 161.20 and 168.20).
Since the average representation and the number of representation switches are almost equal in
the three algorithms, it seems that Look Ahead behaves better than SARA and Müller because
of the difference in terms of number of stalls and stalls duration. However, the QoE model
proposed by Yin et al. is better in Müller (2.23 M) and SARA (2.12 M) than in Look Ahead
(2.10 M). In a real scenario, it is difficult to believe that users perceive a better experience
watching a video playback that uses an algorithm that causes more stalls than another that has
almost the same average quality and much less stalls. In contrast, the QoE model of Yin et al.
modified (proposed in Section 4.2) shows a completely different result since, in this case, the
QoE of Look Ahead (1.61 M) is better than the QoE of the SARA algorithm (1.11 M) and the
Müller algorithm (1.21 M). Likewise, this result is coherent with the VMAF-based QoE
model, which reflects a good value for the Look Ahead algorithm (88.37), a worse value for

Fig. 11 Evaluation of the proposed VMAF-based QoE model (λ = 1, γ = 900, δ = 0) for the video “Elephants
Dream”
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Müller (72.72) and a bad QoEVMAF for SARA (60.74). Similar conclusions arise when we
analyze other scenarios, for example, the staircase 8–2 Mbps channel using the mixed video.

In conclusion, we can say that both the QoE model by Yin et al. modified and the proposed
VMAF-based QoE model offer more realistic results in terms of Quality of Experience than
the QoE model proposed by Yin et al. [36].

6.3 Evaluation of θ in look ahead

Finally, we are going to analyze how the parameter θ affects the video playback. In this case,
we evaluate the number of stalls, average representation, number of representation switches
and QoEVMAF. We consider two different scenarios: one scenario where no stalls occur, and
other where there are stalls during video playback.

Regarding the first scenario, Fig. 12, Fig. 13 and Fig. 14 show the behavior of the Look
Ahead algorithm for different values of θ: 1, 2, 3, 5, 10, and 20, using the videos “Elephants
Dream” (ED) and “Tears of Steel” (ToS) in constant bandwidth channels of 1 and 5 Mbps, and
in the 4G-bus channel. In all cases, no stalls have occurred. Also, the initial buffering is not
very meaningful in none of the above cases, with values between 1.4 and 2 s for the 1 Mbps

Fig. 12 Average representation in Look Ahead for different

Fig. 13 Number of representation switches in Look Ahead for different
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channel, values between 0.7 and 1 s for the 5 Mbps channel and between 0.4 and 0.6 for the
4G-bus channel for both videos.

Fig. 12 shows the average representation for different values of θ. We can see how the
algorithm is more conservative as θ increases, causing that the average representation de-
creases. This occurs in both videos. Regarding the number of representation switches, Fig. 13
reflects that, in general, the higher the θ the lower the number of representation switches.
Respecting the QoE, Fig. 14 shows the VMAF-based QoE model in the scenarios under study,
with λ = 1, γ = 900 and δ = 0. As expected from the results shown in Fig. 12, low values of θ
provide the best QoEVMAF values, since no stalls occur.

We now analyze the second scenario (where stalls occur) in order to check how high values
of θ make the algorithm more conservative, thus reducing the number and duration of stalls.
For that, we use the mixed video in a highly variable channel, in this case another 4G scenario
for a bus in motion, which we call “4G-bus2.”

Fig. 15 shows the number of stalls, average representation (right axis) and QoEVMAF (left
axis) for different values of θ. First, we see that, in this case, as θ increases, the number of stalls
is reduced (from 3 stalls when θ = 1, to 0 stalls when θ = 4). The number of stalls affects

Fig. 14 QoEVMAF in Look Ahead for different (λ = 1, γ = 900, δ = 0)

Fig. 15 Evaluation of for Look Ahead in a 4G-bus2 channel using the mixed video

Multimedia Tools and Applications (2020) 79:25143–2517025166



directly the QoEVMAF. It can be seen that this parameter increases until there are not stalls
(when θ = 4), and then starts decreasing slightly because the average representation decreases
as θ increases, as we can see in the figure.

Following the previous study, Fig. 16 reflects the state of the buffer for different values of θ
for a specific iteration. Obviously, when the buffer empties stalls occur. In this way, we can see
that when θ = 1 there are three instants of time (in segments number 22, 116 and 162) where
the buffer gets empty, thus causing 3 stalls, as we saw in Fig. 15. When θ = 2 there is one stall.
Finally, the use of a higher θ (e. g. θ = 4) causes a softer fluctuation of the buffer state, not
causing any stall.

As conclusion, we can affirm that the optimum θ that provides the maximum QoEVMAF will
be the lowest θ that does not cause stalls.

7 Conclusion

This paper has shown that the instantaneous bitrate variability of video contents is a
key factor for DASH ABR algorithms. Even in constant bandwidth environments,
which would provide enough bandwidth for a continuous playback at the average
video bitrate, not considering this information about instantaneous bitrate can lead to
stalls during video playback.

The algorithm proposed in this paper, called Look Ahead, takes into account the variability
of the bitrate to choose the best representation in order to avoid interruptions. Results prove
that both the number and duration of video playback stalls (rebuffering) are highly reduced,
compared to the adaptive algorithm used by ExoPlayer, and to the SARA and Müller
algorithms. This turns out in good values of the QoE model proposed by Yin et al. [36].

In this sense, the modified QoE model by Yin et al. as well as the VMAF-based QoE model
proposed in this work, have been proved to be more accurate models compared to the QoE
model originally proposed by Yin et al., according to the evaluations presented in this paper.
These two proposed QoE models, although provide a good performance according to the

Fig. 16 Evaluation of the state of the buffer for different in a 4G-bus2 channel using the mixed video
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results shown, have limitations. So, as part of the future work, it is intended to analyze other
metrics to propose new QoE models, for example SSIM, PSNR or VQM.

Also, as future work, the proposed VMAF-based QoE model can be improved by consid-
ering other parameters that affect the user experience, as the number of stalls. In general, it is
more annoying for users having many but short stalls than having few although long stalls
[10]. For instance, in video playback, users usually prefer having 1 stall of 10 s than 10 stalls of
1 s. Moreover, it is worth analyzing how the number of representation switches affects the
QoE perceived by the users, a topic deeply analyzed in [27, 34]. In this regard, it is interesting
to perform different subjective studies that complete the objective evaluation presented and
validate the QoE models proposed.

Finally, it is important to emphasize that it is possible to check the performance of Look
Ahead by accessing a dedicated server set up by the authors [16], which includes a publicly
available App that contains the developed Look Ahead algorithm integrated into ExoPlayer.
The App allows to redo the evaluations presented in this paper using the videos and scenarios
hereby analyzed. Also, authors have made available a program in GitHub [13] to encode
videos and calculate the VMAF of each segment for each representation.

Acknowledgements This work is supported by the PAID-10-18 Program of the Universitat Politècnica de
València (Ayudas para contratos de acceso al sistema español de Ciencia, Tecnología e Innovación, en
estructuras de investigación de la Universitat Politècnica de València) and by the Project 20180810 from the
Universitat Politècnica de València (“Tecnologías de distribución y procesado de información multimedia y
QoE”).

References

1. Akhshabi S, Narayanaswamy S, Begen AC, Dovrolis C (2012) An experimental evaluation of rate-adaptive
video players over HTTP. Signal process. Image Commun 27(4):271–287. https://doi.org/10.1016/j.
image.2011.10.003

2. Android Developers webpage, ExoPlayer. Available online at: https://developer.android.
com/guide/topics/media/exoplayer.html. Accessed: Jun. (2019)

3. Bampis CG, Li Z, Bovik AC (2018) SpatioTemporal feature integration and model fusion for full reference
video quality assessment. IEEE Trans on Circuits and Syst for Video Tech 29:2256–2270. https://doi.
org/10.1109/TCSVT.2018.2868262

4. Barman N, Martini MG (2019) QoE modeling for HTTP adaptive video streaming - a survey and open
challenges. IEEE Access 7:30831–30859. https://doi.org/10.1109/ACCESS.2019.2901778

5. Belda R (2013) Algoritmo de adaptación DASH: Look Ahead. Master Thesis. Universitat Politècnica de
València. http://hdl.handle.net/10251/33359.

6. Belda R, de Fez I, Arce P, Guerri J C (2018) Look ahead: a DASH adaptation algorithm. Proc. of the IEEE
Int. Symp. On broadband multimed. Syst. And broadcast., Valencia, Spain: article no. 158. https://doi.
org/10.1109/BMSB.2018.8436718.

7. Blender Foundation webpage. Available online at: https://www.blender.org/foundation. Accessed: Jun.
(2019).

8. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20-3:273–297. https://doi.org/10.1023
/A:1022627411411

9. DASH Industry forum webpage. Available online at: http://dashif.org. Accessed: Jun. (2019)
10. Ghadiyaram D, Pan J, Bovik AC (2019) A subjective and objective study of stalling events in mobile

streaming videos. IEEE Trans on Circuits and Syst for Video Technol 29(1):183–197. https://doi.
org/10.1109/TCSVT.2017.2768542

11. Ghent University. 4G/LTE bandwidth logs. Available online at: http://users.ugent.be/~jvdrhoof/dataset-4g.
Accessed: Jun. (2019).

12. Github webpage. A DASH segment size aware rate adaptation model for DASH. Available online at:
https://github.com/pari685/AStream. Accessed: Jun. (2019)

Multimedia Tools and Applications (2020) 79:25143–2517025168

https://doi.org/10.1016/j.image.2011.10.003
https://doi.org/10.1016/j.image.2011.10.003
https://doi.org/10.1016/j.image.2011.10.003
https://doi.org/10.1016/j.image.2011.10.003
https://doi.org/10.1109/TCSVT.2018.2868262
https://doi.org/10.1109/TCSVT.2018.2868262
https://doi.org/10.1109/ACCESS.2019.2901778
https://doi.org/10.1016/j.image.2011.10.003
https://doi.org/10.1109/BMSB.2018.8436718
https://doi.org/10.1109/BMSB.2018.8436718
https://doi.org/10.1016/j.image.2011.10.003
https://doi.org/10.1023/A:1022627411411
https://doi.org/10.1023/A:1022627411411
https://doi.org/10.1016/j.image.2011.10.003
https://doi.org/10.1109/TCSVT.2017.2768542
https://doi.org/10.1109/TCSVT.2017.2768542
https://doi.org/10.1016/j.image.2011.10.003
https://doi.org/10.1016/j.image.2011.10.003


13. GitHub website. Dashgen, Multimedia Communications Group. Available online at: https://github.
com/comm-iteam/dashgen. Accessed: Jun. (2019).

14. van der Hooft J, Petrangeli S, Wauters T, Huysegems R, Alface PR, Bostoen T, De Turck F (2016) HTTP/
2-based adaptive streaming of HEVC video over 4G/LTE networks. IEEE Commun Lett 20(1):2177–2180.
https://doi.org/10.1109/LCOMM.2016.2601087

15. Huang TY, Johari R, McKeown N, Trunnell M, Watson M (2014) A buffer-based approach to rate
adaptation: evidence from a large video streaming service. Proc. of the 2014 ACM Conf. On
SIGCOMM, Chicago, IL, USA: 187-198. https://doi.org/10.1145/2619239.2626296

16. Institute of Telecommunications and Multimedia Applications website. Look Ahead Demo. Available
online at: https://lookahead.iteam.upv.es. Accessed: Jun. (2019)

17. ISO/IEC 23009–1:2014 (2014) Dynamic adaptive streaming over HTTP (DASH) - Part 1: media presen-
tation description and segment formats.

18. Juluri P, Tamarapalli V, Medhi D (2015) SARA: segment aware rate adaptation algorithm for dynamic
adaptive streaming over HTTP. Proc. of the IEEE Int. Conf. On Commun. Workshop (ICCW), London,
UK: 1765-1770. https://doi.org/10.1109/ICCW.2015.7247436.

19. Juluri P, Tamarapalli V, Medhi D (2016) QoE management in DASH systems using the segment aware rate
adaptation algorithm. Proc. of the IEEE/IFIP Netw. Oper. And Manag. Symp. (NOMS), Istanbul, Turkey:
129-136. https://doi.org/10.1109/NOMS.2016.7502805.

20. Kua J, Armitage G, Branch P (2017) A survey of rate adaptation techniques for dynamic adaptive streaming
over HTTP. IEEE Commun Surv & Tutor 19(3):1842–1866. https://doi.org/10.1109
/COMST.2017.2685630

21. Lee S, Youn K, Chung K (2015) Adaptive video quality control scheme to improve QoE of MPEG DASH.
Proc. of IEEE Int. Conf. On Consum. Electron. (ICCE), Las Vegas, NV, USA: 126-127. https://doi.
org/10.1109/ICCE.2015.7066348.

22. Li S, Zhang F, Ma L, Ngan K (2011) Image quality assessment by separately evaluating detail losses and
additive impairments. IEEE Trans. on Multimed. 13-5:935–949. https://doi.org/10.1109
/TMM.2011.2152382

23. Liu C, Bouazizi I, Gabbouj M (2011) Rate adaptation for adaptive HTTP streaming. Proc. of the second
annual ACM Conf. On multimed. Syst. (MMSys), San Jose, CA, USA: 169-174. https://doi.org/10.1145
/1943552.1943575.

24. Medium webpage (2016) Toward a practical perceptual video quality metric. Available online at:
https://medium.com/netflix-techblog/toward-a-practical-perceptual-video-quality-metric-653f208b9652.
Accessed: Jun. 2019.

25. Mobile Video Service Performance Study (2015) HUAWEI white paper. Available online at: http://www.
ctiforum.com/uploadfile/2015/0701/20150701091255294.pdf.

26. Mok RKP, Luo X, Chan EWW, Chang RKC (2012) QDASH: a QoE-aware DASH system. Proc. of
multim. Syst. Conf. (MMSys), Chapel Hill, NC, USA: 11-22. https://doi.org/10.1145/2155555.2155558

27. Moldovan C, Hagn K, Sieber C, Kellerer W, Hoßfeld T (2017) Keep calm and don’t switch: about the
relationship between switches and quality in HAS. Proc. of the Int. Teletraffic Congr. (ITC), Genoa, Italy:
pp. 1-6. https://doi.org/10.23919/ITC.2017.8065802

28. Müller C, Lederer S, Timmerer C (2012) An evaluation of dynamic adaptive streaming over HTTP in
vehicular environments. Proc. of the 4th workshop on mob. Video (MoVid), Chapel Hill, NC, USA: 37-42.
https://doi.org/10.1145/2151677.2151686

29. Nguyen T, Vu T, Nguyen DV, Ngoc NP, and Thang TC (2015) QoE optimization for adaptive streaming
with multiple VBR videos. Proc. of the Int. Conf. On comp., Manag. And Telecommun. (ComManTel),
DaNang, Vietnam: 189-193. https://doi.org/10.1109/ComManTel.2015.7394285.

30. Qin Y, H. Shuai, Pattipati K R, Qian F, Sen S, Wang B, Yue C (2018) ABR Streaming of VBR-encoded
videos: characterization, challenges, and solutions. Proc. of ACM CoNext 2018, Heraklion, Greece: 366–
378. https://doi.org/10.1145/3281411.3281439.

31. Samain J, Carofiglio G, Muscariello L, Papalini M, Sardara M, Tortelli M, Rossi D (2017) Dynamic
adaptive video streaming: towards a systematic comparison of ICN and TCP/IP. IEEE Trans on Multimed
19(10):2166–2181. https://doi.org/10.1109/TMM.2017.2733340

32. Sheikh H, Bovik A (2006) Image information and visual quality. IEEE Trans on Image Process 15(2):430–
444. https://doi.org/10.1109/TIP.2005.859378

33. Shuai Y, Herfet T (2016). A buffer dynamic stabilizer for low-latency adaptive video streaming. Proc. of the
Int. Conf. on Consum. Electron., Berlin: 1–5. https://doi.org/10.1109/ICCE-Berlin.2016.7684742.

34. Tavakoli S, Egger S, Seufert M, Schatz R, Brunnström K, García N (2016) Perceptual quality of HTTP
adaptive streaming strategies: cross-experimental analysis of multi-laboratory and crowdsourced subjective
studies. IEEE Journal on Select Areas in Commun 34-8:2141–2153. https://doi.org/10.1109
/JSAC.2016.2577361

Multimedia Tools and Applications (2020) 79:25143–25170 25169

https://doi.org/10.1016/j.image.2011.10.003
https://doi.org/10.1016/j.image.2011.10.003
https://doi.org/10.1109/LCOMM.2016.2601087
https://doi.org/10.1145/2619239.2626296
https://doi.org/10.1016/j.image.2011.10.003
https://doi.org/10.1109/ICCW.2015.7247436
https://doi.org/10.1109/NOMS.2016.7502805
https://doi.org/10.1109/COMST.2017.2685630
https://doi.org/10.1109/COMST.2017.2685630
https://doi.org/10.1109/ICCE.2015.7066348
https://doi.org/10.1109/ICCE.2015.7066348
https://doi.org/10.1109/TMM.2011.2152382
https://doi.org/10.1109/TMM.2011.2152382
https://doi.org/10.1145/1943552.1943575
https://doi.org/10.1145/1943552.1943575
https://doi.org/10.1016/j.image.2011.10.003
https://doi.org/10.1016/j.image.2011.10.003
https://doi.org/10.1016/j.image.2011.10.003
https://doi.org/10.1145/2155555.2155558
https://doi.org/10.23919/ITC.2017.8065802
https://doi.org/10.1145/2151677.2151686
https://doi.org/10.1109/ComManTel.2015.7394285
https://doi.org/10.1145/3281411.3281439
https://doi.org/10.1109/TMM.2017.2733340
https://doi.org/10.1109/TIP.2005.859378
https://doi.org/10.1109/ICCE-Berlin.2016.7684742
https://doi.org/10.1109/JSAC.2016.2577361
https://doi.org/10.1109/JSAC.2016.2577361


35. Yarnagula H K, Juluri P, Mehr S K, Tamarapalli V, Medhi D (2019) QoE for Mobile clients with segment-
aware rate adaptation algorithm (SARA) for DASH video streaming. ACM trans. On multimed. Comput.,
Commun., and Appl. (TOMM) 15(2):article no. 36 https://doi.org/10.1145/3311749.

36. Yin X, Sekar V, Sinopoli B (2014) Toward a principled framework to design dynamic adaptive streaming
algorithms over HTTP. Proc. of the 13th ACM workshop on hot topics in Netw. (HotNets), Los Angeles,
CA, USA: 1-7. https://doi.org/10.1145/2670518.2673877.

37. YouTube webpage (2019) Youtube press. Available online at: https://www.youtube.com/yt/about/press.
Accessed: Jun. 2019.

38. Youtube webpage, Google I/O ‘18: Building feature-rich media apps with ExoPlayer. Available online at:
https://youtu.be/svdq1BWl4r8?t=2m. Published: May (2018)

39. Yu L, Tillo T, Xiao J (2017) QoE-driven dynamic adaptive video streaming strategy with future informa-
tion. IEEE Trans on Broadcast 63-3:523–534. https://doi.org/10.1109/TBC.2017.2687698

40. Zhao S, Li Z, Medhi D, Lai P, Liu S (2017) Study of user QoE improvement for dynamic adaptive
streaming over HTTP (MPEG-DASH). Proc. of the Int. Conf. On Comput., network. And Commun.
(ICNC): multimed. Comput. And Commun., Santa Clara, CA, USA: 566-570. https://doi.org/10.1109
/ICCNC.2017.7876191.

41. Zhou Y, Duan Y, Sun J, Guo Z (2014) Towards a simple and smooth rate adaption for VBR video in
DASH. Proc. of the IEEE Vis. Commun. and Image Process. Conf, Valletta, pp 9–12. https://doi.
org/10.1109/VCIP.2014.7051491

42. Zhou C, Lin C-W, Guo Z (2016) mDASH: a Markov decision-based rate adaptation approach for dynamic
HTTP streaming. IEEE Trans. on Multimed 18(4):738–751. https://doi.org/10.1109/TMM.2016.2522650

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Affiliations

Román Belda1 & Ismael de Fez1 & Pau Arce1 & Juan Carlos Guerri1

Ismael de Fez
isdefez@iteam.upv.es

Pau Arce
paarvi@iteam.upv.es

Juan Carlos Guerri
jcguerri@dcom.upv.es

1 Institute of Telecommunications and Multimedia Applications (iTEAM), Universitat Politècnica de
València, Camino de Vera, 46022 Valencia, Spain

Multimedia Tools and Applications (2020) 79:25143–2517025170

https://doi.org/10.1145/3311749
https://doi.org/10.1145/2670518.2673877
https://doi.org/10.1016/j.image.2011.10.003
https://doi.org/10.1016/j.image.2011.10.003
https://doi.org/10.1109/TBC.2017.2687698
https://doi.org/10.1109/ICCNC.2017.7876191
https://doi.org/10.1109/ICCNC.2017.7876191
https://doi.org/10.1109/VCIP.2014.7051491
https://doi.org/10.1109/VCIP.2014.7051491
https://doi.org/10.1109/TMM.2016.2522650

	Look ahead to improve QoE in DASH streaming
	Abstract
	Introduction
	Contribution

	State of the art
	ABR algorithms
	ExoPlayer adaptive algorithm
	Müller algorithm
	Segment aware rate adaptation algorithm (SARA)
	Look ahead algorithm

	Quality of experience models
	Normalized QoE model
	QoE model modified
	VMAF-based QoE model

	Methodology
	Implementation and integration with ExoPlayer
	Testbed and evaluation parameters

	Evaluation
	Evaluation of look ahead
	Evaluation of QoE models
	Evaluation of θ in look ahead

	Conclusion
	References




