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Abstract
Support Vector Machine (SVM) is widely applied in classification and regression tasks
where support vectors are pursued through convex quadratic programming technique due
to its effectiveness and efficiency. However, existing studies ignore the importance of train-
ing samples when they are fed into the model. In this paper, we propose a novel Iterative
Factoring Support Vector Machine (If-SVM) method. Sample factoring is introduced in our
proposed model to measure the significance of each data point, where it can effectively
reduce the negative impact of trivial or noisy data points. In this way, our proposed model
is concentrates on the critical data points falling around the hyperplane. By introducing
this iterative factoring of data points into SVM, the classification accuracy of our pro-
posed method is above that of 1.45% than other comparative methods in image recognition
datasets. Experimental results on a variety of UCI demonstrate that, our proposed method
has superior performances in decreasing the total number of support vectors than the other
state-of-the-art SVM methods. More importantly, our further experiments also illustrate
that, the classification performance of the state-of-the-art SVM methods can be improved
1.29% by incorporating our sample factoring idea into their models, which demonstrate our
idea is a useful tool to improve the state-of-art SVM models.

Keywords Support vector machine (SVM) · Factoring · Iterative · Noisy samples

1 Introduction

Support Vector Machine (SVM) based on statistical learning theory is a machine learning
algorithm proposed by Vapnik in [3, 4, 10]. The SVM seeks an optimal separation hyper-
plane between limited positive and negative sample information, and to find the optimal
compromise between the complexity of the model and generalization ability has shown its
advantages of effectiveness and efficiency in classification and regression task with support
vectors being pursued through convex quadratic programming technique[2, 20, 31].
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In order to improve the classification performance of SVM, various improved methods
were proposed subsequently. One of such the methods applied mutual information (MI)
to measure the relevance between two random variables [18, 24, 25], and to estimate the
MI between each feature and the given class labels [12, 22]. The weights of each feature
estimated by the MI method improve the generalization ability of the traditional SVMs,
whereas show bad performance in high dimensions. Therefore, a novel radius-margin-based
SVM model for joint learning of feature transformation and the SVM classifier [7, 21, 26–
29] was proposed. However, most suffer computational expense and simplified forms of
transformation. A central SVM (CSVM) [1, 9, 35] which uses class centers to construct
support vector machine was proposed. Euclidean metric criterion extended to Minkowski
metric was proposed to directly calculate weight of each feature [5, 16, 17]. Nevertheless,
it is difficult to tune the additional parameter.

To the best of our knowledge, the importance of training samples before feeding into
a model has not been considering in SVM. It is well known that all samples are assumed
to have identical contributions to obtain optimal hyperplane in conventional SVM and its
improved methods [8, 15, 19]. However, available training data are often contaminated by
noise and outliers in many practical applications. Therefore, the performance of SVM may
be dominated by weakly related or even irrelevant samples. A robust support vector machine
[11, 23] was proposed, where a general method is able to form an adaptive margin by using
the distance between each class of training data center and data points. Lin et al proposed
a Fuzzy Support Vector Machine (FSVM) [13, 14] applying the fuzzy membership degree
to the training data to relax the influence of outliers. However, the selection of membership
function has always been a difficult problem in the fuzzy support vector machine.

From the above discussion, we propose a novel Iterative Factoring Support Vector
Machine (If-SVM), where sample factoring is introduced in our proposed model to measure
the significance of each data point. It can effectively decrease the negative impact of trivial
or noisy data points. Thus, it avoids training the classifier on trivial or noisy samples. Com-
pared with existing weighted SVM methods, we can derive novel better dataset in training.
Therefore, the influences of non-critical samples in SVM are decreased. By introducing this
iterative factoring data points in SVM, the classification accuracy of our proposed method
is above that of 1.45% than other comparative methods in image recognition datasets. We
also will extend and apply our idea to other image processing applications in future work,
such as image segmentation [30, 32, 34].

1) We introduced a sample factor into the proposed model to measure the significance of
each data point. This indicator variable can determine whether a data point is a critical
sample or not.

2) We further propose a novel Iterative Factoring Support Vector Machine (If-SVM)
method which iteratively evaluates the importance of each sample to reduce the influ-
ence of non-critical samples. This significantly decreases negative impacts of trivial or
noisy data points on the classifier model.

3) Our further experiments also demonstrate that, the performance of the state-of-the-art
SVM methods can also be improved by incorporating our sample factoring idea into
their models, which demonstrate our idea is a useful tool to improve the state-of-art
SVM models.

The remainder of this paper is organized as follows. Section 2 briefly reviews the basic
theory of standard SVM and introduces some improved methods. We present the theoretical
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deduction of our proposed algorithm in detail. Next, it is extended into kernel space in
Section 3. Experimental evaluation is reported and discussed in Section 4. Finally, we
conclude the paper with future work in Section 5.

2 Related work

In order to effectively reduce noise and maximally improve classification accuracy, many
researchers proposed some methods to improve the performance of support vector machine.
In this section, we briefly review the traditional SVM for classification and present several
improved methods.

Suppose the training set of the classification problem is T = {(xi , yi)}ni=1, xi represents
the ith training sample, yi ∈ {−1, 1} stands for the corresponding class label of xi , with
i = 1, ..., n. The classic SVM algorithm aims to obtain optimal hyperplane by the following
optimization problem

min
1

2
‖w‖2 + C

n∑

i=1

ξi

s.t. yi(wTxi + b) ≥ 1 − ξi, i = 1, ..., n,

ξi ≥ 0, i = 1, ..., n, (1)

where w is a normal vector of hyperplane wTxi + b = 0 in the feature space, b is the scalar
offset of hyperplane, ξi is a slack variable and C is a penalty parameter.

In this way, the optimization problem can be transformed into a convex quadratic
programming problem. To solve this quadratic programming problem, we construct a
Lagrangian and transform into the dual

max
n∑

i=1

αi − 1

2

n∑

i=1

n∑

j=1

αiαjyiyjxiT xj

s.t.
N∑

i=1

αi yi = 0,

0 ≤ αi ≤ C, i = 1, ..., n, (2)

where α = [α1, ..., αn]T is the vector of nonnegative Lagrange multipliers. The correspond-

ing decision function is sgn
n∑

i=1
yiαixi

T x + b.

Since, traditional classification algorithm of support vector machine assumes each sam-
ple vector has the same importance for classification, the discrepancies of training samples
were ignored when fed into the model. Therefore, this may affect the classification perfor-
mance of support vector machine when we predict a sample category. To solve this problem,
researchers proposed sample weighted methods, which give large weight to the training
samples with high relevance, and small weight to the training samples with low relevance.

Extending the original probabilistic c-means (PCM) algorithm into a kernel space based
on kernel methods, Yang developed the KPCM algorithm where partitioned relative val-
ues are used as weights for the proposed W-SVM [29]. The weights used in WSVM are
generated by kernel-based probabilistic c-means (KPCM) algorithm, the corresponding
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optimization problem can be formulated as

max
n∑

i=1

αi − 1

2

n∑

i=1

n∑

j=1

αiαjyiyjK(xi, xj)

s.t.
N∑

i=1

αi yi = 0,

0 ≤ αi ≤ C ∗ ui, i = 1, ..., n, (3)

where K(xi , xj ) can be represented by a dot product in the feature space as
K(xi , xj )= ϕxi · ϕxj , the nonlinear mapping function ϕ maps an input vector x in the input
space X onto ϕx in the feature space F , that is ϕ : X → F . Note that a weight is assigned
to the data point xi in (3). Penalty parameter C is a constant, and C ∗ ui will set different
penalty parameters for each training sample. It can be drawn from formula (3) that the larger
the C ∗ ui , the smaller the possibility of misclassification of sample xi .

Cui et al [6] combined an outlier detection approach and adaptive weight value for the
training samples. Suppose the weight is ui and the error ξi

2 is weighted, the optimization
problem is presented as follows

min
1

2
‖w‖2 + C

n∑

i=1

ξi
2ui

s.t. yi(wTxi + b) ≥ 1 − ξi, i = 1, ..., n, ,

ξi ≥ 0, i = 1, ..., n, (4)

where the initial weight is calculated according to the fitting error of each data sample, the
larger the fitting error of data sample, the smaller the weight. By this way, the interference of
noise and isolated points can be reduced in classification, while the normal samples remain
unchanged in classification.

In addition, with regards to features of the sample vector, some features are strongly cor-
related with the classification, whereas others are weakly correlated or even unrelated. If
we do not consider the distinct importance of different features in the classification, then
the kernel function may be determined by the weak related or unrelated features leading
to performance degradation. Therefore, many improved feature weighted methods were
proposed.

Do et al [7] introduced a vector of parameters ui , which in fact performs feature weight-
ing. The weight ui will be used to calculation of kernel function. The radius R is bounded

with uiRi
2 ≤ Ri

2 ≤
n∑

i=1
uiRi

2 ≤ 1. The MR-SVM solves the following convex relaxation

problem

1

2

n∑

i=1

wi
2

ui

+ C
n∑

i=1
uiRi

2

n∑

i=1

ξi
2

s.t. yi = wTxi + b + ξi, i = 1, ..., n,

ξi ≥ 0, i = 1, ..., n, (5)

where ui is a weight for the ith feature and Ri is the radius of dimensions i. This vector ui

weights the different features in the feature space. Under the sparsity constraint, it forces
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many trivial features to have a zero weight. Therefore, it can reduce a larger number of
trivial features at each iteration.

Wu et al [27] proposed a convex radius-margin-based SVM model for joint learning
of feature transformation and SVM classifier. The generalized block coordinate descent
method is used to solve the F-SVM model, and the feature transformation is updated by
gradient descent. F-SVM introduces a linear transformation matrix A and integrates the
radius information, the radius-margin-based model given as follows

min
1

2
‖w‖2Ri

2 + C

n∑

i=1

ξi
2ui

s.t. yi = wTAxi + b + ξi, i = 1, ..., n,

ξi ≥ 0, i = 1, ..., n, (6)

where the radius R is bounded with ‖Axi − Ax0‖ ≤ 1, ξi , i = 1, ..., n. In this way, the
computation of kernel function can avoid being dominated by irrelevant or trivial features.

3 The proposed if-SVM

This section presents our proposed novel Iterative Factoring Support Vector Machine
method which can effectively decrease the influence of non-critical samples and improve
the classification performance. We introduce a scaling factor in order to measure the sig-
nificance of each data point. The proposed If-SVM is formulated to in the following
section.

3.1 The proposedmethod

Given a training data set T in feature space, to obtain optimal separating hyperplane, the
traditional SVM model in (1) can be designed as follows

min
1

2
‖w‖2 + C

n∑

i=1

ξi

s.t. yi(wTxidi + b) ≥ 1 − ξi, i = 1, ..., n,

ξi ≥ 0, i = 1, ..., n,

di ≥ 0, i = 1, ..., n, (7)

where C is a constant which determines the trade-off between margin maximization and the
amount of misclassification. Note that as shown in (7), a sample factoring di is introduced
in the standard SVM to measure the significance of each data point.
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The above optimization problem can be solved by its dual problem. Then we construct
the Lagrange function as follows

L(w, b, ξ, d, α) = 1

2
‖w‖2 + C

n∑

i=1

ξi

-
n∑

i=1

αiyi(wTxidi + b) - 1 + ξi

-
n∑

i=1

Viξi − γ (

n∑

i=1

di − 1) −
n∑

i=1

ϕidi, (8)

By taking the derivative of the Lagrange L(w, b, ξ, d, α) with respect to parameters,
w, b, ξ, d, α the following dual optimization problem is presented

∂L

∂w
= w −

n∑

i=1

αiyixiT di = 0, (9)

∂L

∂b
= −

n∑

i=1

αiyi = 0, (10)

∂L

∂ξi

= C − αi − Vi = 0, (11)

∂L

∂di

= −αiyixiT di + γ − ϕi = 0. (12)

According to the Karush-Kuhn-Tuker conditions, the following expression can be
defined

ϕidi = 0. (13)

It can be observed that if Lagrange parameter ϕi �= 0 the di = 0 , then we further obtain
wTxidi = 0, which means xi is not a support vector since it is not involved in training the
model. From this observation, the physical explanation of sample factoring di is an indicator
variable to determine whether the data point xi is a critical sample or not. That is to say that,
if di �= 0, αi has a non-trivial solution with a high probability.

With this explanation of sample factoring, substituting (9)-(12) into the Lagrange (8),
yields the following dual optimization problem

min
1

2

n∑
i=1

n∑
j=1

αiαjyiyjxiT xjdidj -
n∑

i=1
αi

s.t.
n∑

i=1
αiyi = 0, i = 1, ..., n,

0 ≤ αi ≤ C, i = 1, ..., n. (14)

For a test sample xi, its class label can be determined by the following function

F(xi) = sign(

n∑

i=1

αiyixiT dix + b). (15)
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For the nonlinear SVM, the optimization problem can be generalized for nonlinear
kernels as follows

1

2

n∑

i=1

n∑

j=1

αiαjyiyjK(xi, xj)didj -
n∑

i=1

αi

s.t.
n∑

i=1

αiyi = 0, i = 1, ..., n,

0 ≤ αi ≤ C, i = 1, ..., n. (16)

Finally, the decision function can be generalized for nonlinear kernels as follows:

F(xi) = sign(

n∑

i=1

αiyiK(xi, xj)didj + b) (17)

3.2 Obtaining sample factors

Since the sample factor di is able to indicate whether the data point xi is a critical sample or
not, which is illustrated in Fig. 1, we obtain the value of sample factor as follows

si = (wTxi + b)
/∥∥∥w2

∥∥∥, (18)

di = max(0, 1 − si), (19)

where si is the distance between data point xi and the hyperplane. As di is an indicator of
xi being a support vector or not, we use hinge loss distance di to evaluate the importance
of xi. If xi is close to the hyperplane, we set a larger factor value. On the contrary, if xi
is far away from the hyperplane, it means that xi is less important with a smaller factor
value. If xi is 0, namely, not a support vector, it will be discarded and have no any impact
in the next iteration of modeling. By this way, our proposed If-SVM model is capable of
focusing on the critical data falling around the hyperplane, and abandons those data which
are far away from the hyperplane. With this sample factoring setting, our If-SVM can obtain

Fig. 1 SVM optimal separation hyperplane
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Table 1 The steps of If-SVM

Algorithm 1 Iterative Factoring Support Vector Machine (If-SVM) method.

Input:T = {(xi , yi )}ni=1

Initialize {di = 1} ∀i

Output: If-SVM classification decision model according to eq. (17)

1: While loss and (w, b)not converged do

2: Train the model by using the off ¨ Cthe-shelf-SVM solver

3: Obtain the parameters w, b

4: Update the di according to the eq. (18) and eq. (19)

5: Update the dataset Ti+1 = T ∗ di

6: End While

better hyperplane with this iterative data reducing model. For conciseness, the main steps
of our If-SVM optimization algorithm are listed in Table 1 and Fig. 2. In the initialization
stage, we assume di=1 and initialize w,b using the off-the-shelf SVM solver. Then, di is
updated according to the (18) and (19) and the dataset is updated by Ti+1 = T ∗ di . Our
If-SVM algorithm alternates between updating w,b and di until convergence. As a result,
our proposed model can concentrate on the critical data around the hyperplane to achieve a
better classification hyperplane.

Fig. 2 The flowchart of If-SVM
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Table 2 Description of the USPS, MNIST, Extended Yale B and CIFAR-10 datasets used in the experiments

Dataset Number of samples Feature dimensions

USPS 9298 256

MNIST 70000 256

Extended Yale B 2414 1024

CIFAR-100 60000 1024

4 Experiments

In this section, we evaluate the performance of our proposed If-SVMmethod in comparison
with several state-of-the-art methods including SVM [33], WSVM [16], RMM [14] and
FWSVM [34]. Experiments have been conducted on the 11 UCI data sets as described in
Table 3, the LFW database and four large-scale image data sets, USPS, Extended Yale B,
CIFAR-10 and MNIST.

4.1 Dataset description

We select 15 publicly available datasets for the evaluation of the performance of our algo-
rithm: UCI, USPS, Extended Yale B, CIFAR-10 and MNIST. 11 of them were taken
from the UCI repository. Experiments are conducted on USPS, MNIST, Extended Yale B,
CIFAR-10 and UCI datasets as described in Tables 2 and 3. The results for the various
methods are shown in Tables 4 and 5 with best results in bold.

The USPS dataset: This dataset consists of handwritten numbers from 0 to 9. The training
and testing sets consist of 7291 examples and 2007 examples respectively. Each example
has 256 attributes or pixels that describe each number.

The Extended Yale B dataset: The Extended Yale B database consists of 2,414 frontal-
face images of 38 subjects. The cropped 192¡Á168 face images were captured under various
laboratory-controlled lighting conditions and with different facial expressions. For each sub-
ject, half of the images are randomly selected for training (i.e., about 32 images per subject),
and the left half for testing.

Table 3 Description of the 11 UCI datasets used in the experiments

Dataset Number of samples Feature dimensions

Breast 4770 9

Ionosphere 351 34

Liver 345 6

Musk 6598 166

Parkinsons 195 22

Titanic 3300 5

Wpbc 198 13

Ringnorm 7400 20

Twonorm 7400 20

German 5000 20

Image 7500 18
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Table 4 Comparison of the average classification accuracy by linear SVM, linear WSVM, linear RMM,
linear FWSVM and linear If-SVM

Dataset SVM WSVM FWSVM RMM If-SVM

Breast 70.71 73.62 73.46 72.71 74.85

Ionosphere 89.17 90.01 90.64 90.64 91.24

Liver 70.00 71.17 71.23 71.70 73.10

Musk 91.98 92.72 92.28 92.20 92.38

Parkinsons 89.06 90.13 91.34 90.01 90.86

Titanic 90.60 91.64 91.91 90.81 93.67

Wpbc 79.50 81.31 82.25 82.50 83.50

Ringnorm 75.58 75.12 75.71 75.60 76.35

Twonorm 96.65 96.94 96.32 96.60 97.32

German 76.73 77.30 77.92 77.02 78.93

Image 85.09 85.54 85.30 85.14 85.99

The CIFAR-100 dataset: The CIFAR-100 dataset consists of 60000 natural color images
and has 100 classes. The dataset contains a training set of 50000 images and a test set of
10000 images. Each example has 1024 attributes or pixels that describe each image.

The MNIST dataset: The MNIST dataset comes from the National Institute of Standards
and Technology (NIST). The training set consists of 250 different handwritten digits. The
training and testing sets consist of 60000 examples and 10000 examples respectively. Each
example has 256 attributes or pixels that describe each number.

4.2 Experiment settings

For each dataset, we use the average classification accuracy obtained by 10 runs of the ten-
fold cross validation (CV) as the performance indicators. In our tenfold CV, the training set
of n samples is randomly divided into 10 folds of size n/10. Then, the classifier is trained
using 9 folds while the learned classifier is evaluated using the retained test fold. Therefore,

Table 5 Comparison of the average classification accuracy by kernel SVM, kernel WSVM, kernel RMM,
kernel FWSVM and kernel If-SVM

Dataset SVM WSVM FWSVM RMM If-SVM

Breast 75.71 75.53 75.86 75.65 76.88

Ionosphere 91.94 93.11 92.58 92.80 95.46

Liver 74.00 75.12 74.73 74.20 76.45

Musk 99.73 99.31 98.28 98.20 99.65

Parkinsons 85.37 87.01 86.95 86.77 89.16

Titanic 90.93 91.24 90.91 91.22 92.27

Wpbc 78.00 80.15 82.37 83.00 83.45

Ringnorm 98.01 98.15 98.86 98.30 99.32

Twonorm 97.81 97.97 98.12 98.00 98.53

German 75.50 76.90 78.41 76.59 78.81

Image 84.97 84.88 85.13 83.92 85.43
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all samples in the dataset are used as training set and test set, and each sample is verified
once. Finally, the results on the ten test folds are averaged to produce a single estimation.
Moreover, the running time of each method is provided according to the ten runs of our ten-
fold CV. All the experiments are conducted on a desktop PC with Intel(R) Xeon(R) CPU
(3.30 GHz) and 32GB RAM under the MATLAB 2017b programming environment. In
experiments, a coarse-to-fine search strategy is adopted for determining the hyper parame-
ters. The grid search method is first adopted for coarse searching, and then the line bisection
method is exploited to refine the hyper parameters within a small range. Concretely, we
set penalty parameter C ∈ { 10min:step:max} with min=-3, step=1, max =5 in linear If-SVM
and σ ∈ { 2min:step:max} with min=-10, step=1, max =5 for Gaussian RBF kernel in kernel
If-SVM.

4.3 Experimental results on UCI datasets

For each UCI dataset, the If-SVM method is compared with several existing methods,
including the LIBSVM, WSVM [29], RMM [21] and FWSVM [33].

1) Evaluation on Linear If-SVM: Table 4 presents the classification accuracy of our pro-
posed linear If-SVM and the competing methods. As we can see in Table 4, If-SVM
achieves the best or the second best classification accuracy on 11 UCI data sets. The
classification accuracy of If-SVM is 85.29% above that of 2.10% to traditional SVM,
that of WSVM 1.15% , that of FWSVM 0.89% , that of RMM 1.21% , Specifically, the
improvement of If-SVM over SVM is higher than 3.0% by accuracy on 3 data sets, i.e.,
Breast, Titanic and Wpbc. We also evaluate the effect of hyper parameter C in linear
If-SVM on Wpbc dataset. It can be seen from Fig. 3 that when C < 0.1, the accuracy is
relatively low. The classification accuracy can be improved along with the increase of
C to 10. Nevertheless, the accuracy decreases significantly when C > 100.

2) Evaluation on Kernel If-SVM: Table 5 lists the classification accuracy of our pro-
posed kernel If-SVM and the competing methods. As shown in Table 5, Kernel If-SVM
achieves the highest classification accuracy on 10 of the 11 data sets among the com-
peting methods. The classification accuracy of If-SVM is 88.67% in excess of 2.13%

Fig. 3 Parameters C of If-SVM on the Wpbc dataset
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Fig. 4 Parameters analysis on the Liver dataset

to traditional SVM, 1.46% to W-SVM, 1.20% to FWSVM, 1.52% to RMM. Specifi-
cally, the improvement of If-SVM over SVM is higher than 3.0% by accuracy on 4 data
sets, i.e., Ionosphere, Parkinsons, Wpbc and German. As shown in Fig. 4, we evaluate
the effect of hyper parameters using the Liver dataset, including the tradeoff C and the
kernel parameter σ in kernel F-SVM. We can see that better accuracy can be obtained
by using larger C (e.g., C=100) and smaller σ (e.g., σ =0.25). Similar conclusion can
be drawn from other data sets.

4.4 Experimental results on image classification datasets

For each dataset, the If-SVM method is compared with several existing methods, including
the LIBSVM,WSVM [29], RMM [21] and FWSVM [33]

1) Evaluation on Linear If-SVM: Table 6 and Fig. 5 presents the classification accuracy
and average classification accuracy of our proposed linear If-SVM and the competing
methods. As shown in Table 6, If-SVM achieves the best or the second best classifica-
tion accuracy on USPS, Extended Yale B, CIFAR-100 and MNIST datasets. It is shown
in Fig. 5 that the classification accuracy of If-SVM is 76.37% above that of 2.50% to
traditional SVM, that of WSVM 1.59% , that of FWSVM 1.13% , that of RMM 1.01% .

Table 6 Comparison of the average classification accuracy by linear SVM, linear WSVM, linear RMM,
linear FWSVM and linear If-SVM

Dataset SVM WSVM FWSVM RMM If-SVM

USPS 69.05 71.75 67.01 72.15 72.56

MNIST 80.02 80.77 81.52 81.30 82.13

E Yale B 71.98 72.29 73.01 72.56 74.04

CIFAR-100 74.43 74.32 75.43 75.22 76.76
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Fig. 5 The average classification accuracy of linear SVM, linear WSVM, linear RMM, linear FWSVM and
linear If-SVM on LFW database

2) Evaluation on Kernel If-SVM: Table 7 and Fig. 6 present the classification accuracy
and average classification accuracy of our proposed kernel If-SVM and the compet-
ing methods. As we can see in Table 6, the average classification accuracy of If-SVM
is 83.13% in excess of 2.75% to traditional SVM, 1.83% to W-SVM, 1.09% to
FWSVM, 1.73% to RMM. In order to further compare the performance of various
methods, we use the box diagrams and line chart to display intuitively. The accuracy of
five methods onMNIST dataset is depicted in Fig. 7, which shows that the median accu-
racy of If-SVM is better than the comparative methods on MNIST dataset. It means that
the proposed method can effectively improve the classification accuracy. In addition,
the shape of each box diagram of If-SVM is relatively narrow, which is an indication
that our method is more stable than the others.

4.5 Experimental results on LFW database

The face recognition method can be evaluated with two test protocols for LFW: the restricted
and the unrestricted settings. In our experiments, the performance is evaluated by our tenfold
CV on a set of 300 positive and 300 negative image pairs under the restricted settings. The
only information available is whether each pair of training images is the same person. We

Table 7 Comparison of the average classification accuracy by kernel SVM, kernel WSVM, kernel RMM,
kernel FWSVM and kernel If-SVM

Dataset SVM WSVM FWSVM RMM If-SVM

USPS 72.58 73.04 74.05 72.11 75.73

MNIST 90.69 94.20 95.26 93.82 95.84

E Yale B 79.04 80.19 81.20 79.05 81.90

CIFAR-100 76.22 77.76 77.66 76.62 79.06
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Fig. 6 The average classification accuracy of kernel SVM, kernel WSVM, kernel RMM, kernel FWSVM
and kernel If-SVM on LFW database

use SIFT features to extract 128 features at nine fiducial points on three scales, and finally
get 3456 dimensional feature vector. However, due to the large scale of dimension and the
limitation of computational overhead, we use the PCA for dimensionality reduction to 100.
We compare the accuracy of face recognition with other state-of-the-art algorithms, and the
results are illustrated in Table 8. From Table 8, the accuracy of our If-SVM is higher than
other state-of-the-art methods. The performance of kernel If-SVM is 0.85% higher than
that of W-SVM on LFW database. Moreover, kernel If-SVM can still get an improvement
of 0.75% over FWSVM. Figure 8 shows the ROC curves of the competing methods. It can
be seen from Fig. 8 that If-SVM algorithm has better classification performance to the other
algorithm.

The disadvantages and advantages of five methods are listed in Table 9. Compared
with the existing SVM and RMM methods, our If-SVM model improves the robustness

Fig. 7 The accuracy of five methods on MNIST dataset
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Table 8 Comparison the average classification accuracy by SVM, W-SVM, RMM, FWSVM and If-SVM in
LFW database

SVM methods Linear Kernel

SVM 72.71 73.57

W-SVM++ 79.50 80.00

RMM 78.33 78.93

FWSVM 79.16 80.35

IFSVM 80.35 81.10

and shows better classification performance by reducing the adverse impact of trivial or
noisy data points on the classifier. Unlike the WSVM and FWSVM which are difficult to
tune additional parameter, our proposed method has robustness with a roughly parameters
searching.

4.6 Applying sample factoring idea into state-of-the-art methods

Moreover, our further experiments also demonstrate that, by applying our sample factoring
idea into other state-of-the-art kernel methods, it can also improve the performance of those
methods.

In order to clearly show the advantages of our method over the comparative methods, we
discuss and analyze the results in this section. From Table 10, it is obvious that the accuracy

Fig. 8 Roc curves on LFW database
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Table 9 Summary of the characteristics of five methods

Methods SVM WSVM RMM FWSVM If-SVM

Impact of outliers High Normal High Low Low

Classification accuracy Low Normal Normal Normal High

Selection of parameter Normal Difficult Normal Difficult Normal

of classification has been improved by combining our sample factoring idea with other state-
of-the-art kernel algorithm. In the image classification dataset, as we can see the average
classification accuracy of If-SVM above that of F-SVM 1.49% , that of R-SVM 1.26% , that
of W-SVM 1.72% . This indicates that the samples being extracted by the proposed If-SVM
are more discriminatory as compare to those by comparative methods, which indicates that
If-SVM is more stable than others. The reason is that our methods can reduce the effect
of those imperfect samples through a factor weighting in the model. For a comprehensive
illustration, we also present some experimental results on the number of samples and run
time in training.

In each step of the iteration, we have to compute the solution of a standard SVM which
has a complexity O(n2), where n is number of training samples. Moreover, we also need to
update the factor di which has a complexity O(n3). However, beneficial from our algorithm,
it can decrease the number of non-critical samples in SVM, and the number of samples in
the training set are used for training decreases dramatically at second iteration. Therefore,
time complexity increase is not very high.

In order to prove that our algorithm does not increase the time complexity of the algo-
rithm, we use the proposed method to classify four data sets from UCI. As can be seen from
Fig. 9, we reduced the scale of the training set and removed noise samples in the process of
iteration. In our proposed method, only 60% of the samples in the training set are used for

Fig. 9 The number of training samples on the Titanic, Image, Breast and German dataset
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Table 10 Comparison the average classification accuracy by F-SVM, F-SVM++, R − SV M+ [35], R −
SV M+++, W-SVM and W-SVM ++(++ means add sample factor idea to the original method

SVM methods USPS MINST E Yale B CIFAR-100

F-SVM 90.17 97.55 80.47 82.13

F-SVM++ 92.27 98.61 82.31 83.12

R − SV M+ 70.44 94.53 78.62 81.30

R − SV M+++ 71.10 95.81 81.07 81.95

W-SVM 70.90 93.65 75.05 74.83

W-SVM++ 72.25 94.57 79.17 75.32

training. Therefore, the run time of this algorithm has not increased too much (Figs. 10, 11
and 12).

To further prove the effect of our method, we use bar charts to show the run time on the
7 datasets in Fig. 10 to Fig. 13. If-SVM is about three times slower than SVM on Titanic
and German dataset. However, benefitted from our proposed algorithm, the number of non-
critical samples in SVM is decreased. Therefore, this method is about 70% time slower
than SVM in large data sets such as Ringnorm, Musk and Twonorm datasets. And with the
increase of training set amount, the effect of our proposed method is more obvious.

F-SVM++, R − SV M+++ and W-SVM++ is moderately quicker than original methods
without sample factor. From Fig. 11, it is shown that the run time of F-SVM++ and the
original methods without sample factor on the 7 datasets in training. F-SVM++ spends less
run time on 6 of the 7 data sets than the original methods without sample factor. From
Fig. 12, it is shown that the run time of R − SV M+++ and the original methods without
sample factor on the 7 datasets. R − SV M+++ is faster than the original methods without
sample factor on 7 data sets, From Fig. 13, it is shown that the run time ofW-SVM++ and the
original methods without sample factor on the 7 datasets. W-SVM++ achieves the less run

Fig. 10 Comparison of the run time (in seconds, s) of SVM and SVM++(++ means add sample factor idea
to the original method
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Fig. 11 Comparison of the run time (in seconds, s) of F-SVM and F-SVM++ (++ means add sample factor
idea to the original method

time on 5 of the 7 data sets than the original methods without sample factor. Although our
proposed method has a slight disadvantage in training time on Titanic, German and Breast
datasets. It is evident from Figs. 10 to 13 that F-SVM++, R − SV M+++ and W-SVM++
can spend less run time in larger datasets above 2000 samples than original methods without
sample factor methods. This reveals that, the proposed method ensures the classification
performance of SVMmodel, effectively reducing the amount of training data, which reduces
the run time in training.

Fig. 12 Comparison of the run time (in seconds, s) of R −SV M+ and R −SV M+++(++ means add sample
factor idea to the original method
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Fig. 13 Comparison of the run time (in seconds, s) of W-SVM and W-SVM ++(++ means add sample factor
idea to the original method

5 Conclusion

In this paper, we propose a novel If-SVM method. A sample factoring is introduced in the
standard SVM to measure the significance of each data point. It can avoid the classifier
being trained by trivial or noisy samples. Therefore the influence of non-critical samples
in SVM is decreased. By this way, our proposed model can pay more attention to the
critical data which fall around the hyperplane. And it can help to achieve a better classi-
fication hyperplane. Experimental results with several UCI datasets show that our If-SVM
can decrease the numbers of support vectors and have better classification performance
than state-of-the-art SVM methods. Extensive experiments on different image classifica-
tion datasets demonstrate that our proposed method have advantage of better performances
in image classification accuracy among the other comparative SVM methods. Our further
experiments also demonstrate that, by applying our sample factoring idea into other state-
of-the-art kernel methods, it can also help to improve the performance of those methods.
Finally, motivated by the recent success of image segmentation, we will extend and apply
our idea to other image processing applications in future work.
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