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Abstract
In this work, we suggest a new set of quaternion discrete radial Krawtchouk moments
(QDRKMs) for color image reconstruction and classification. These new discrete mo-
ments are represented over a disk by using discrete orthogonal radial Krawtchouk
moments. The use of Quaternion discrete moments for color image eliminates the
discretization errors produced when the Quaternion continuous moments are used.
Furthermore, this approach is suggested for highly accurate calculation of QDRKMs in
polar coordinates where the kernel is exactly calculated by over circular color pixels. The
translation, scaling, and rotation (TSR) invariances for QDRKMs are proved. Theoretical
analysis and numerical experiments investigation were shown in terms of the perfor-
mance description of TSR invariances, classification and robustness to different noises of
the QDRKMs compared with continuous quaternion Legendre–Fourier moments using
COIL 100 database.
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1 Introduction

In recent years, and with the fast progress of mathematics, computer science, and technological
development of digital cameras, almost of the images are chromatic. Indeed, to transmit or
stock more information, the digital color images have more potential than a gray level or
binary image. Moreover, the values associated of three colors such as green, blue, and red for
each level of the pixel or and as well its hue, brightness, and saturation, can be successful when
used in many images processing tasks such as reconstruction, object classification, recognition,
registration, and segmentation.

The traditional approach to treatment with digital color images has each level separate while
processing, employing a gray level method, and to combining the individual output results. As
a consequently, this method misses the inherent correlation between the entities of three colors
level. The main problem is therefore to handle three values of each pixel level in entirety.

To solve this problem, recently, algebra quaternion color image analysis to represent digital
color images by encoding three levels into the imaginary parts by B. J. Chen et al. [4]. The
performance of this quaternion algebra is widely seen when a digital color image is treated as a
vector space. Firstly, the quaternion algebra is exploited in digital color image processing for
the continuous moments by Chen et al. [3], as well as, [5] using the color image representa-
tions by the quaternion type moment functions. Moreover, and to ensure the rotation invari-
ance in the problems of classification; researchers introduced continuous radial moments.
Indeed, Xiao [25] came up with the radial moments of Legendre, and extended them in 3D
case by El Mallahi et al. [16]. The quaternion pseudo-Zernike moments their RST invariants
are defined by Chen et al. [6]. They used these continuous moments in color image recogni-
tion. The quaternion radial Fourier moments for digital color image processing are defined by
Xiang-Yang et al. [23]. The quaternion polar complex moments of TRS invariants for digital
color image representation defined by Wang et al. [22]. Unfortunately, their methods for
computing quaternion continuous moments are limited by the discretization error, the high
computational cost and the propagation of a numerical error in the computation of continuous
polynomials values [7, 8].

These methods result problems of redundancy, and discretization due to finding out errors
caused by numerical estimation of integrals in the computation of continuous moments.
Indeed, the computation of orthogonal continuous moments requires appropriate transforma-
tions of the coordinates of image representation in the interval of definition of the continuous
polynomials along with, the calculation of the integral using the finite summations. But, this
transformation causes an error of discretization. So as to solve that issue for the gray level
images, scientists suggested some methods based on the discrete moments using a discrete
polynomials such as the ones of Krawtchouk [2, 9, 11–13, 26] Tchebitchef’s [14–16, 24],
Meixner’s [14], Charlier’s [1, 15], Hahn’s [10, 19–21], dual Hahn’s [17, 20], and Racah’s [18]
for image processing. The calculation of discrete moments eliminates the need for numerical
approximation and satisfies exactly the orthogonality property in discrete space coordinates of
the image.

For conserving the color image, no work has been suggested to solve the problem. In this
work, and in order to solve this problem of the color image, we opt for an exact method to
eliminate the discretization errors and preserve the invariant to the rotation. This method is
based on discrete radial moments and classification using multilayer perceptron [1]. We them,
we suggest two contributions.
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We first introduce a new method for computing an exact, stable and fast computation of
higher order QDRKMs in circular coordinates. In this contribution, the use of a discrete form
of the Radial Tchebichef polynomials has removed the discretization error granting a height
stabilization of the aforementioned method.

Second, we put a new method for extracting translation, scaling and rotation invariants of
QDRKMs. The experimental results show highly accurate color image reconstruction of the
proposed approach.

These new discrete moments are represented over a disk by using discrete orthogonal
radial Krawtchouk moments. The use of discrete moments eliminates the discretization
errors produced when continuous moments are used. Furthermore, the method is sug-
gested for highly exact calculation of QDRKMs in polar coordinates where the kernel is
thoroughly calculated by over circular color pixels. The translation, scaling, and rotation
(TSR) invariances for QDRKMs are demonstrated. Theoretical analysis and numerical
experiments investigation were shown in terms of the description performance of TSR
invariances, classification, robustness to different noises, and computational times CPU
of the QDRKMs compared with continuous quaternion Legendre–Fourier moments using
COIL 100 data base.

This work is organized as follows: Section 2 introduces Quaternion Radial Krawtchouk
moments (QRKMs). In Sec. 3, the computations of the Quaternion Radial Krawtchouk
Moments are calculated. In Sec. 4, a color image reconstruction uses QRKMs. Section 5 takes
into account Quaternion Radial Krawtchouk Moments Invariants (QRKMIs) of a test color
image for different orders of reconstruction. Section 6 describes the training multilayer
perceptron. Some experimental results are presented in Sec. 7, where an evaluation of accurate
and computation through some color images have been used. Finally, the conclusions of this
research are seen in Sec. 8.

2 Computation of the quaternion radial Krawtchouk moments

2.1 Recurrence relation of Krawtchouk polynomials

The Hyper geometric Krawtchouk polynomial is defined as.

kn r; pjNð Þ¼2F1
−n;−r
−N j 1

p

� �
; n ¼ 0; 1; 2…N−1; r ¼ N j2;N > 0; p∈ 0; 1ð Þ ð1Þ

Where the orthogonal property of normalized orthogonal polynomial can be rewritten as.

∑
v−1

r¼0
kn r; pjNð Þkm r; pjNð Þ ¼ ∑

∞

k¼0

−nð Þk −xð Þk 1
p

� �k

1−Nð Þkk!
¼ δnm; að Þk

¼ a aþ 1ð Þ aþ 2ð Þ…: aþ k−1ð Þ ð2Þ

with (a)k is the Pochhammer symbol and δnm denote the Dirac function; therefore, the three
term recursive relation for the weighted Krawtchouk polynomials is given by.
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knþ1 r; pjNð Þ ¼ A� p� N þ 2pnþ n−rð Þ
p� N−nð Þ kn r; pjNð Þ− B� n 1−pð Þ

p� N−nð Þ � kn−1 r; pjNð Þ; ð3Þ

for n ¼ 0; 1; 2;…;N−1

Where.

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p N−nð Þ
nþ 1ð Þ 1−pð Þ ;

s
B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 N−nð Þ N þ 1−nð Þ

1−pð Þ2 nþ 1ð Þn

s

with n ≥ 2 and the first orders of discrete weighted Krawtchouk polynomials are defined as.

k0 r; pjNð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w 0; p;Nð Þ;

p
k1 r; pjNð Þ ¼ 1−

r
pN

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w 0; p;Nð Þ

p
w r þ 1; p;Nð Þ ¼ N−r

r þ 1

� �
p

1−p
w r; p;Nð Þ;w 0; p;Nð Þ ¼ 1−pð ÞN ¼ eN1n 1−pð Þ

ð4Þ

where

2.2 Proposed computations of quaternion radial Krawtchouk moments

The radial Krawtchouk Moments can be rewritten as.

Knm ¼ 1

6N
∑
N=2

r¼0
∑
6N

θ¼0
kn r; pjNð Þ f r; θð Þeμmθ

¼ 1

6N
∑
N=2

r¼0
∑
6N

θ¼0
kn r; pjNð Þ f R r; θð Þiþ f G

�
r; θ

�
jþ f B

�
r; θ

�
k

� �
eμmθ

¼ 1

6N
i ∑
N=2

r¼0
∑
6N

θ¼0
f R r; θð Þkn

�
r; pjN

�
eμmθ

�
þ j ∑

N=2

r¼0
∑
6N

θ¼0
f G r; θð Þkn r; pjNð Þeμmθþk ∑

N=2

r¼0
∑
6N

θ¼0
f B r; θð Þkn r; pjNð Þeμmθ

�
ð5Þ

Where

∑
N=2

r¼0
∑
6N

θ¼0
f r; θð Þkn r; pjNð Þeμmθ ¼ ∑

N=2

r¼0
∑
6N

θ¼0
f r; θð Þkn r; pjNð Þ cos mθð Þ þ iþ jþ kffiffiffi

3
p sin mθð Þ

� �
Taking into consideration the proposed value for the quaternion μ, The QRKMs of an RGB
image in polar pixels are given by

bKnm ¼ 1

6N
i Re Knm f Rð Þ½ � þ iþ jþ kffiffiffi

3
p Im Knm f Rð Þ½ �

	 

þ j Re Knm f Gð Þ½ � þ iþ jþ kffiffiffi

3
p Im Knm f Gð Þ½ �

	 
�
þ k Re Knm f Bð Þ½ � þ iþ jþ kffiffiffi

3
p Im Knm f Bð Þ½ �

	 
� ð6Þ

Finally,

bKnm ¼ Anm þ i Bnm þ Cnm þ kDnm ð7Þ
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Where,

Anm ¼ −
1ffiffiffi
3

p Im Knm f Rð Þ½ � þ Im Knm f Gð Þ½ � þ Im Knm f Bð Þ½ �f g

Bnm ¼ Re Knm f Rð Þ½ � þ 1ffiffiffi
3

p Im Knm f Gð Þ½ �−Im Knm f Bð Þ½ �f g

Cnm ¼ Re Knm f Gð Þ½ � þ 1ffiffiffi
3

p Im Knm f Bð Þ½ �−Im Knm f Rð Þ½ �f g

Dnm ¼ Re Knm f Bð Þ½ � þ 1ffiffiffi
3

p Im Knm f Rð Þ½ �−Im Knm f Gð Þ½ �f g

ð8Þ

3 Color image reconstruction using QRKMs

The color image f(r,θ) can be reconstructed using the inverse transformation of QRKMs is
given by

bf r; θð Þ ¼ bf A r; θð Þ þ bf B r; θð Þiþ bf C r; θð Þ jþ bf D r; θð Þk ð9Þ
With

bf A r; θð Þ ¼ Re bA r; θð Þ
h i

−
1ffiffiffi
3

p Im bB r; θð Þ
h in

þ Im bC r; θð Þ
h i

þ Im bD r; θð Þ
h io

bf B r; θð Þ ¼ Re bB r; θð Þ
h i

þ 1ffiffiffi
3

p Im bA r; θð Þ
h in

þ Im bC r; θð Þ
h i

−Im bD r; θð Þ
h io

bf C r; θð Þ ¼ Re bC r; θð Þ
h i

þ 1ffiffiffi
3

p Im bA r; θð Þ
h in

−Im bB r; θð Þ
h i

þ Im bD r; θð Þ
h io

bf D r; θð Þ ¼ Re bD r; θð Þ
h i

þ 1ffiffiffi
3

p Im bA r; θð Þ
h in

þ Im bB r; θð Þ
h i

−Im bC r; θð Þ
h io

ð10Þ

With

bA r; θð Þ ¼ ∑
N=2

n¼0
∑
6N

m
Anm kn r; pjNð Þeμmθ; bB r; θð Þ ¼ ∑

N=2

n¼0
∑
6N

m
Bnm kn r; pjNð Þeμmθ

bC r; θð Þ ¼ ∑
N=2

n¼0
∑
6N

m
Cnm kn r; pjNð Þeμmθ; bD r; θð Þ ¼ ∑

N=2

n¼0
∑
6N

m
Dnm kn r; pjNð Þeμmθ

ð11Þ

Note that bf B r; θð Þ, bf C r; θð Þ and bf D r; θð Þ represent the red, green, and blue color of the
reconstructed image, respectively, and L is the maximum order of QRKMIs used in the
reconstruction. Typically, the reconstruction formula has been used to recover the image
information up to a certain level of approximation.

The difference between the original image and the reconstructed image is measured using
the mean squared error (MSE).Which is defined as follows:

MSE ¼ ∑
N=2

r¼0
∑
6N

θ¼0
f r; θð Þ−bf �r; θ���� ��� ð12Þ
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Where f(r, θ) represents the original color image vector and bf r; θð Þ the reconstructed color
image.

4 Quaternion radial Krawtchouk moments invariants

In this section, we show a rotation, scaling and translation invariance of Quaternion Radial
Krawtchouk Moments invariants (QRKMIs) from [2].

For this, we will them show the invariant moment to be linear combination as well as radial
complex moment.

The translation invariance of QRKMs can be easily achieved by transforming the 2D color
image to the geometric centre before the calculation of QRKMs. In spite of the scaling and
rotation invariance which can be achieved then replacing complex moments, with the 2D
complex moment invariants due to Quaternion Radial Krawtchouk moments invariants can be
expressed as linear combination of 2D complex moments. In this subsection, we introduce a
new and direct method to derive the scaling and rotation invariance of quaternion radial
Krawtchouk moments invariants.

Let frs(r, θ) be the scaled, and rotated version of image function f(r, θ) with the scale factor λ
and rotation angle θ0 we have

f sr r; θð Þ ¼ f
r
λ
; θþ θ0

� �
According to Eq. (5), the QRKMs of scaled and rotated color image is:

K
0
nm ¼ 1

6N
∑
N
2

r0 ¼0

∑
6N

θ
0 ¼0

f
r
λ
; θþ θ0

� �
kn r; pjNð Þemμθ ð13Þ

By letting r
0 ¼ r

λ θ
0 ¼ θþ θ0.

Eq. (13) can be written as

K
0
nm ¼ 1

6N
∑
N=2

r0¼0
∑
6N

θ
0 ¼0

f r
0
; θ

0� �
kn λr0; pjNð Þemμ θ

0
−θ0

� 

ð14Þ

Where the polynomial of Krawtchouk is defined [38]

kn λr; pjNð Þ ¼ ∑
n

i¼0
C n; ið Þλiri

and
C n; ið Þ ¼ ∑

n−i

k¼0
Bn;n−ks n−k; ið Þ

Bn;n−k ¼ w r; p;Nð ÞBn;n−k

Bn;k ¼ −1kn! N−kð Þ!
N−kð Þ!N !k!pk
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and s(n-k,i) is the stirling numbers of the first kind, with s(k, 0) = s (0, i = 0, k ≥ 1, i ≥ 1) and
s(0,0)=1.

Therefore, the relationship between the original and rotation scaled QRKMs can be formed
as

φnm ¼ ∑
n

k¼0
∑
m

l¼0
ηn;kηm;lK

0
kl ¼ λnemμθ0 ∑

n

k¼0
∑
m

l¼0
ηn;kηm;lKkl

where

ηn;k ¼ 1 n ¼ kð Þ; ηn;k ¼ ∑
n−k−1

r¼0

−C n−r; kð Þηn;n−r
C k; kð Þ

To eliminate the scale factor, we construct the normalized rotation and scale invariants of
QRKMIs

ψnm ¼ φnmφ
γþ1
00

φnþγ;0φ0;mþγ
; n;m ¼ 0; 1; 2;…; γ ¼ 1; 2; 3;… ð15Þ

Then, nm is scaling and rotation invariance of QRKMs for any orders n, m.

5 Pattern classification of multi-layer perceptron

5.1 Descriptor vector of color image

These QRKMIs can be used to form the descriptor vector of each color image. Specially that
the latter composed of QRKMs up to order S, where S is experimentally selected.

Fig. 1 Quaternion Discrete Radial Krawtchouk convolutional neural networks architecture

Order 10 20 30 50 80 100
Proposed 
Method

NIRE of 
Proposed 
Method

0.0093 0.0092 0.0091 0.0046 0.0023 0.00198

NIRE 
QLFMs[20] 0.0353 0.0176 0.0113 0.0054 0.0026 0.0021

Fig. 2: Reconstructed color image using the proposed method compared with QLFMs. Color test image from (a)
diabetic retina and (b) normal retina, dataset benchmarking diabetic (http://www.it. lut.
fi/project/imageret/diaretdb1/).
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The characteristic vectors V2D is represented as

V2D Color Image ¼ ψnmjnþ m∈ 0; 1;…S½ �½ � ð16Þ
To perform the recognition of color image to its appropriate classes. We use multi-layer
perceptron from Vquery and Vtest where V represent the characteristic vectors V2D_Color_Image.

where the T-dimensional feature Vquery is represented as

Vquery ¼ V1
query;V

2
query;…;VT

query

h i
ð17Þ

and the T-dimensional training vector of class K is shown as

VK
test ¼ V1

test;V
2
test;…;VT

test

� � ð18Þ

(a) (b)

Color test image from (a) diabetic retina and (b) normal retina , dataset benchmarking diabetic [27]

Order 10 20 30 50 80 100

a: p=0.3

b: p=0.3

a : p=0.5

b : p=0.5

a : p=0.8

b : p=0.8

Fig. 3: Reconstructed color image of retina of size 128 × 128 using the proposed method.

26578 Multimedia Tools and Applications (2020) 79:26571–26586



5.2 Classification of 2D color object using a multi-layer perceptron

The Learning of Multilayer Perceptron MLP is the process to adapt the connection weights. in
order to obtain a minimal difference between the network output and the desired output. For
this reason in the literature some algorithms are used as an Ant colony, but the most used
called Back-propagation which is based on descent gradient techniques. Assuming that we
used an input Layer with n0 neurons V2D _Color _ Image = (r0,r1,…, rn) and a sigmoid activation
function f(x) where

f rð Þ ¼ 1

1þ e−r
ð19Þ

To get the network output, we need to compute the output of each unit in each layer. Now,
consider a set of the hidden layers (h1, h2, …, hN), assuming that Ni is the neurons number in
each hidden layer hi .

Fig. 4 MSE for Objects (a, b) with p = 0.3,0.5,0.8

Fig. 5 MSE for objects (a, b) with different values of p.
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For the output of first hidden layer

hi1 ¼ f ∑
k¼1

n0

w0
kjxk

� �
; j ¼ 1; 2;…; n ð20Þ

Let’s admit a set of hidden layers (h1, ℎ 2, …, hN), assuming that ni is the neurons number in

each hidden layer hi. For the outputs hj
i of neurons in the hidden layers are calculated as

follows:

hj
i ¼ f ∑

k¼0

ni−1

wi−1
kj h

k
i−1

� �
; i ¼ 2;…;N ; j ¼ 1;…; ni ð21Þ

Where wi
kj is the weight between the neuron k in the hidden layer i and the neuron j in the

hidden layer i+ 1, ni is the number of the neurons in the ith hidden layer, The output of the ith

layers can be formulated by.

hi ¼ t h1i ; h
2
i ;……:hnii

� 
 ð22Þ
The network outputs are computed by

yi ¼ f ∑
k¼1

nN

wN
kjh

k
n

� �
; Y ¼ y1; ::…; yi; ::…; yNþ1

� 
 ¼ F W ;Xð Þ ð23Þ

Where wN
kj is the weight between the neuron k of the Nth hidden layer and the neuron j of the

output layer, n is the number of the neurons in the Nth hidden layer, Y is the vector of the output

Fig. 6. color image Database Coil-100 (http://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php).

Original (128x128) S1 (100x100) S2 (80x80) S3 (60x60) S4 (40x40)

Fig 7 Scaled color images of the obj6 (Coil - 100)
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layer, F is the transfer function and W is the weights matrix, it’s defined as follows

Where X is the input of neural network and f is the activation function and Wi is the matrix of
weights between the ith hidden layer and the (i + 1)ℎ hidden layer for i= 1,…, N− 1, W0 is the
matrix of weights between the input layer and the first hidden layer, and WN is the matrix of
weights between the N th hidden layer and the output layer.

The Fig. 1 represent the Quaternion Discrete Radial Krawtchouk convolutional neural
networks architecture.

6 Numerical experiments

In this section, we show the reconstruction results obtained using some color test images. These RGB
test images are shown in Fig. 2 using Eq. (12), we have reconstructed the three cases of test images.

6.1 Reconstruction results using QRKMs for color images

In this experiment result, the color image reconstruction capability of QRKMs is shown for
Lena in Fig. 2 and diabetic retina in Fig.3. Several comparisons of means square error for

Table 1 Scaling invariances of the scaled images using the proposed method

Scaling Factor QRKMI1:1 QRKMI1:2 QRKMI2:1 QRKMI2:2 QRKMI2:3 QRKMI3:2

Original
(128 × 128)

0,032711399 0,027784444 0,030710125 0,133,626,263 0,024581251 0,03816812

S1 (100 × 100) 0,019466042 0,075414081 0,023994708 0,059765772 0,010332615 0,082692953
S2 (80 × 80) 0,019974595 0,089813706 0,024304697 0,07757921 0,007044542 0,056255515
S3 (60 × 60) 0,013468346 0,023986918 0,009906989 0,043417669 0,008520449 0,059531946
S4 (40 × 40) 0,001546845 0,000811837 0,003828326 0,002414154 0,000404792 0,005697043

σ/μ 0,01131493 0,04750533 0,01127255 0,0703759 0,01202974 0,04501641
Average σ/μ 0,928,139,949

T1 T2 T3 T4

Fig. 8 Translated color object from Coil – 100 database.

(24)
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different parameters of QRKMs in Figs.4 and 5 and the comparison with QLFMs is also given
in this part. We use the statistical computation of normalization image reconstruction error to
measure the performance of the color image reconstruction, we deduce that the QRKMs are
more convenient instead of QLFMs .

The means square Error (MSE) (Fig. 5) for color image has been usually used to describe
how well a color image can be retrieved by a small and big set of QRKMs.

6.2 Invariability for QRKMs

To validate the invariability for QRKMs of the QRKMIs, we use some objects from Coil-100
Database Fig. 6.

The selected order of the invariants (QRKMIs00; QRKMIs12; QRKMIs22; QRKMIs23,
QRKMIs32) are computed for each image. The results of simulation the scaling invariances
of color image Fig.7 are shown in Table 1, the translation invariances of color image Fig.8 are
shown in Table 2, the rotation invariances of color image Fig. 9 are shown in Table 3. Finally,
the ratio σ/μ can use to measure the capability of the proposed QRKMIs under different image
transformation, where σ represents the standard deviation of QRKMs the different factors of
each rotation, and μ is the equivalent mean value. The Table 1, 2 and 3 show that the ratio σ/μ
is very low and consequently the QRKMIs are very stable under different types of color image
Figs. 7, 8 and 9. Hence, the property of invariability of QRKMIs will be used to pattern
classification.

7 Classification the color image using QRKMs

In this subsection, we will discuss the classification the color image using QRKMs.
To validate the proposed approach for classification, we have taken the color image

from the benchmarking diabetic dataset [32]. The total number of color images is 2

Table 2 Translation invariances of the translated images using the proposed method

Translated images QRKMI1:1 QRKMI1:2 QRKMI2:1 QRKMI2:2 QRKMI2:3 QRKMI3:2

T1 0,01098284 0,00571108 0,02034120 0,00352828 0,00683267 0,01057263
T2 0,00435062 0,01763953 0,00589206 0,02845574 0,00453517 0,03454778
T3 0,02089574 0,02430416 0,02581992 0,02635603 0,01988594 0,02527690
T4 0,00290669 0,0375715 0,00791073 0,01539686 0,00596872 0,00771857
σ/μ 0,72,583,313 0,54,035,151 0,55,692,289 0,53,879,406 0,66,233,221 0,55,994,206

Average σ/μ 0,597,362,645

Fig. 9 Rotated color object from Coil – 100 database.
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distributed as 89 images for each object. All color images of this database have the size
128 × 128 (after adaptation). The test set also degraded by Gaussian and salt and pepper
noise with noise densities 1%, 2%, 3%, and 4%. Figure 10 show the densities of Salt and
Pepper Noise & Gaussian Noise for color image. The feature vector based on QRKMIs is
use to classify these images and its recognition accuracy is compared with that of
quaternion Legendre–Fourier momentsThe results of the classification using all features
are presented in Table 4.

8 Conclusion

In this paper, we suggested a new method to calculate the Quaternion Radial Krawtchouk
moments, we have also proposed a classification of multi-layer perceptron of Quaternion
Radial Krawtchouk moments. The performances of the proposed Quaternion Radial
Krawtchouk moments invariants have been tested under different color images. The
results obtained show that the representation capability is compared with different color
of the same image. This proposed approach has been significantly improved by using the
multi-layer perceptron for classification of Quaternion Radial Krawtchouk moments and
can highly be useful in the field of color image analysis, and the test of color images are

Table 4 Classification results of Princeton Shape Benchmark (PSB) using Multi-Layer Perceptron

Invariant moments Noise-free Salt and pepper noise

1% 2% 3% 4%

Quaternion Legendre–Fourier 100% 89,61% 86,25% 80,97% 61,36%
Proposed method 100% 93,25% 90,32% 85,35% 69,03%

Original Image [32]
1% 2% 3% 4%

Salt and pepper 
Noise

=1 =2 =3 =4
Gaussian Noise

Fig. 10: Computation of Salt and Pepper Noise & Gaussian Noise for color image.
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clearly classified from a set of images that are available in benchmarking diabetic dataset
for color image.
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