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Abstract
In this paper, a novel region-based multi-focus color image fusion method is proposed,
which employs the focused edges extracted from the source images to obtain a fused image
with better focus. At first, the edges are obtained from the source images, using two suitable
edge operators (Zero-cross and Canny). Then, a block-wise region comparison is performed
to extract out the focused edges which have been morphologically dilated, followed by
the selection of the largest component to remove isolated points. Any discontinuity in the
detected edges is removed by consulting with the edge detection output from the Canny
edge operator. The best reconstructed edge image is chosen, which is later converted into a
focused region. Finally, the fused image is constructed by selecting pixels from the source
images with the help of a prescribed color decision map. The proposed method has been
implemented and tested on a set of real 2-D multi-focus image pairs (both gray-scale and
color). The algorithm has a competitive performance with respect to the recent fusion
methods in terms of subjective and objective evaluation.

Keywords Multi-focus fusion · Canny edge operator · Morphological dilation ·
Morphological edge reconstruction · Euler number · Decision map

1 Introduction

The motivation for the study and research of multi-focus image fusion is to provide a practi-
cal approach to solve the problem of adaptive focusing ability of an imaging device. Normal
imaging devices generally contain converging (convex) lenses, which captures a bundle of
light rays originating from a specific point on the object and converges them to a single
point in the focal plane. Such lenses are unable to produce a homogeneous focused capture
of an object or scene due to its limited range of focus or Depth of Field (DoF). In optics,
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the range of focus is defined as the distance between the nearest and the farthest objects
in a scene that appears to be acceptably sharp in an image. Objects lying within the focal
range appear to be more sharp and clear compared to the objects which are away from it.
Focused capture of a scene comprises of more feature details and spatial information such
as edges, color, contour, texture, intensity. So, it is a necessary task to achieve uniform focus
throughout the image for better human understanding and machine perception. This can be
achieved by a multi-focus fusion algorithm which takes one or more input images with dif-
ferent levels of focus to produce a more interpretive all-in-focus image. The focussed image
can be utilized in solving many image processing problems such as feature extraction, con-
tour detection, object segmentation, and recognition. Image fusion is largely applicable in
the field of computer vision, geographic information systems, biomedical research, robotics,
navigation and, surveillance systems [2].

2 Related work

Fusion has been a widely researched domain in the field of image processing literature,
and yet it continues to be an active area of research. Image fusion algorithms generally
take place at different (a) levels of abstraction/information representation (pixel, feature,
and decision), (b) domains (spatial, spectral and hybrid) and (c) types of source images
(multi-focus, multi-sensor, multi-exposure and multispectral) [15]. Several algorithms for
multi-focus image fusion have been introduced for both gray-scale and color images in the
literature. Pixel level fusion methods can be further divided into three groups, i.e., coeffi-
cient based, window-based, and region-based. Coefficient based methods in pixel domain
follow a general three-step procedure, 1) application of an appropriate transform operation
on the image pixels to obtain the domain-specific coefficients, 2) combining the coeffi-
cients so obtained by employing suitably devised rules, 3) reconstruction of the fused image
by taking an inverse transform. Some notable transforms that are used in the literature
are discrete cosine transform (DCT), discrete wavelet transform (DWT), dual-tree complex
wavelet transform (DTCWT), log-Gabor transform, discrete cosine harmonic wavelet trans-
form (DCHWT), curvelet, contourlet and ripplet [7] transform, non-subsampled contourlet
transform (NSCT), scale-invariant feature transform (SIFT), non-subsampled shearlet trans-
form etc. [12]. The choice of transform depends on the type of the source images to
be fused. Transform domain methods modify the pixel values and require perfect inver-
sion to the spatial domain for proper visualization. Pixel-based methods in spatial domain
directly manipulates the pixel intensity or integrates spatial features (both global and local)
extracted from the source images to achieve a uniformly focused image. Few of the simplest
approaches include simple or weighted average and selection of maximum or minimum
pixel. The evaluation of focus measures (e.g., spatial frequency, sum-modified-laplacian,
Tenengrad measure, energy of gradient, index of fuzziness and moment-based measure)
on a block of pixel to measure/rank the activity level of a pixel/block has been popularly
used in this domain [10, 30]. Spatial level image fusion is also performed using different
(a) colour spaces (HSI, RGB, LUV) , (b) dimensionality reduction techniques (principal
component analysis (PCA) [27], independent component analysis (ICA) [20]) and (c) spe-
cialized filters (fast filter [38], guided filter [13], edge-preserving filters like bilateral filter
[25]). The methods discussed above are also applied in one or more combination at multi-
ple resolution levels (multi-resolution methods) to extract the coarse and fine features from
the image where the number of resolution levels largely determines the quality of the fused
images.
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The concepts of machine learning and deep learning [36] have also been utilized to
develop image fusion algorithms which uses pulse-coupled neural network (PCNN) [11],
convolutional neural network (CNN) [31], multi-scale CNN [4] etc. Although these methods
require the network to be trained with numerous training data prior to testing [18]. Zhang
et al. has presented a detailed review of multi-focus fusion techniques based on sparse rep-
resentation [23, 40]. Sparse coding mechanism which simulates the behaviour of human
vision are also used to develop algorithms using dictionary and sub-dictionaries like convo-
lutional sparse representation (CSR) [34],[37] adaptive sparse representation (ASR) [1, 33]
etc. However, computational complexity still happens to be a major issue in these algorithms
[5, 16].

Window/coefficient based methods in pixel domain often introduce intensity variation,
blocking artifacts, blurring effect, sensitivity to noise in the fused images resulting in the
introduction of region-based fusion approaches. In such techniques, the irregular semantic
regions are segmented/extracted at first, leading to the creation of a joint/separate seg-
mentation map prior to fusion [19]. Morphology has been repeatedly used to distinguish
between focussed and defocussed pixels. Li et al. has proposed a matting based fusion
approach where the focused region is roughly obtained by morphological filtering followed
by image matting to distinguish the foreground from the background [14]. A novel algo-
rithm to obtain a boundary between the focused and defocused regions within the image
using a multi-scale morphological focus measure is proposed in [35]. Baohua et al. have
used a graph-based visual saliency (GBVS) algorithm followed by morphological water-
shed transform to extract the focused regions by [39]. Similar region partitioning strategies
proposed for image fusion can be found in [6, 17]. In this paper, a novel region-based algo-
rithm for multi-focus images is proposed where the focused region is obtained from the
edges of the source images assuming the fact that the focused portion of an image contains
more prominent and clear edge features. Hence, the edge images are used as a starting point
to form a region for the fusion process. The efficacy of the proposed method has been evalu-
ated qualitatively and quantitatively with appropriate fusion metrics and compared with the
state-of-art.

The contribution of the paper is as follows:

– It is a region-based fusion method which uses edge features as a basis for focus/saliency
detection.

– The threshold values used in the edge detection procedure do not require any tuning.
– The focused edges are completely separated from the defocused ones using morpho-

logical edge by reconstruction, which are gradually converted into region.
– It produces significantly good results in less execution time and works for multiple

focus situation, as evident from experimental results.

The rest of the paper is organized as follows: Section 3 consists of a detailed description
of the proposed fusion algorithm. Section 4 presents the experimental results along with
subjective and objective evaluations with some future directions. The concluding remarks
are drawn in Section 5.

3 Proposedmethod

A multi-focus fusion algorithm should be able to isolate and extract the maximum amount
of focused information from the source images so as to construct the resultant fused image
by combining them. Accordingly, the proposed algorithm first separates the more focused
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features from the ill-focused features (Fig. 1a and c). The constituting color images, are
first converted into YUV format using the weighted sum of red, green and blue channel,
I = 0.299∗R+0.587∗G+0.114∗B prior to finding the edge features [8]. The edge features
from the constituting images are then extracted employing the zero crossing edge detector
using (1). The focused edges in the component images are those which have a significant
concentration of foreground pixels in the edge image, as obtained in Fig. 1b and d.

LoG(x, y) = [x
2 + y2 − 2σ 2

σ 4
]e −(x2+y2)

2σ2 ) (1)

For each of the source image, the edge detection is performed using two edge operators
with varying detection strength, i.e., (a) Zero-crossing with LoG and (b) Canny edge oper-
ator [3]. The edge output obtained from (a) is used in Section 3.1 as a starting edge map to
detect the focused edge pixels. The edge image obtained from (b) has been used for two dif-
ferent purposes: 1) It is used as a reference image for correcting the discontinuities that may
arise as a result of block-wise operation (Section 3.3). 2) It is used in Section 3.3.1 to per-
form XOR operation to find the number of edge pixels that lie in the focussed region. The
reason behind choosing two separate edge detectors is explained as follows: Being a weak
edge detector, zero-cross edge operator detects the edges belonging to the focused region of
the image alone (Fig. 2b and c). On the other hand, the Canny operator performs an optimal
edge detection and produces extra edges belonging to the poorly focused regions that may
be connected with the edges from the focussed regions (Fig. 2f). Such extra edges are unde-
sirable here, and to mitigate the problem, the upper and lower threshold values used in the
Canny edge detection algorithm could have been fine-tuned to control the amount of edges
to be detected. But, this approach becomes time consuming and image dependent because
the focused features in individual source images are present at different locations.

3.1 Blockwise Region Comparison

The binary edge images obtained from the zero-cross edge operator has separated the set
of focused features from those of defocused ones to a significant extent. The concentration
of the foreground pixels (white) in the focused regions are more than that corresponding to
the regions out of focus. However, due to false alarm in the edge detection process, some of
the non-focussed pixels will also have a contribution in the same, which are subsequently
removed by an additional block-based region comparative algorithm [29]. In this algorithm,
we compare the corresponding blocks (non-overlapping) of n × n pixels of the candidate
images and construct the focused edge image as:

EFA(m, n) =
{
1, if SA > SB and ERA(m, n) = 1

0, others
(2)

(a) (b) (c) (d)

Fig. 1 a Focus on Background; b Edge Image of (a); c Focus on Foreground; d Edge Image of c
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(a)

(b) (c)

(d) (e)
(f)

Fig. 2 aY component (Focus on the Background); b Edge image using Zero-cross; c Local magnified region
of (b); d Edge image using Canny; e Local magnified region of (d); f Extra edges captured from ill-focused
portion (Yellow Box)

EFB(m, n) =
{
1, if SA < SB and ERB(m, n) = 1

0, others
(3)

where, EFA and EFB are the edge pixels corresponding to focused edge features in the
source images A and B respectively,

SA =
∑

(m,n)∈Wn×n

ERA

SB =
∑

(m,n)∈Wn×n

ERB

and SA and SB denotes the total contribution of the white pixels from n × n block from the
binary edge images ERA and ERB obtained using zero-cross operator.

Wn×n = window of n × n pixels

This method eliminates the maximum number of foreground pixels belonging to the
out-of-focus edges of the image. It retains the pixels belonging only to the focused area
of the image, as shown in Fig. 3b and d. Nonetheless, this process comes along with two
drawbacks, as mentioned below:

(a) (b) (c) (d) (e)

Fig. 3 a, c Before region comparison; b, d After region comparison; e Isolated pixels(yellow box) and
introduced breaks(green box)
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– As shown in Fig. 3e (Yellow box), in spite of the maximal removal of the blurred edge
pixels, though a number of white pixels still remain in the picture. The block-wise area
comparison algorithm is unable to remove the white pixels as they are isolated in nature.

– The algorithm discussed above makes a comparison between the local region of two
source images, and this comparison tends to introduce breaks and dis-connectivity in
the outer edges of the main structure in the focused portion, as shown in the Fig. 3e
(Green Box).

The above two drawbacks are removed by performing the following steps (Sections 3.2
and 3.3).

3.2 Removal of isolated points

The isolated white foreground points against the dark background, as discussed above for
both the source images, are removed by performing binary morphological dilation (4) fol-
lowed by the largest connected component selection. The binary edge images obtained until
now consists of edge pixels in a disconnected and distributed manner resulting in more than
one connected component. Components that are not connected but exhibit a kind of coher-
ence in terms of size and local orientation are more likely to be parts of bigger components.
The dilation operation aims at doing justice to such coherent yet isolated components by
connecting them, provided they are in close proximity as assessed by the size of the structur-
ing element used in dilation. Binary morphological dilation is a procedure which thickens
the object boundaries and causes a growth in such reasons. Therefore, it reduces the num-
ber of connected components in the edge image by merging/unifying a significant number
of isolated components. The number of connected components before and after dilation for
some of the source images are shown in the Table 1. The reduction in the number of com-
ponents keeps the edge structure of the image intact. After dilation, the largest component
is kept discarding all the smaller components (which also includes the isolated pixels). For
all the input images, this combined approach of dilation followed by the largest component
selection has removed all the isolated pixels, thereby leaving the focused edge region alone.
However, binary dilation operation saturates after a certain number of iterations and fails to
restore any wide gaps/breaks that exist in the outer boundary of the images. To recover the
original edge structure of the image, morphological reconstruction is performed as briefly
discussed in the next section. This is where the canny edge counterpart of the source image
comes into play.

Dilation:I ⊕ s = {z|[(s′)z ∩ I ] ⊆ s] (4)

where, I and s are the image and structuring element respectively.

Table 1 Number of connected
components: before and after
dilation

Image I1(Background) I2(Foreground)

Before After Before After

Leg 2535 81 1846 51

Temple 5297 106 4504 18

Pot 1698 30 2801 113

Calender 319 3 261 4

The bold value indicates
significant reduction in the
number of components after
dilation operation for background
image
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3.3 Morphological edge reconstruction

Morphological reconstruction is a process in which an image known as ‘marker’ image
gets repeatedly morphologically processed/modified based on the characteristics/features of
another image called ‘mask’ [26]. The reconstruction takes place on the basis of specified
connectivity. The marker and mask images should preferably be same in size and the number
of elements in the marker image should be less than or equal to that in the mask image. In
this context, the respective edges images after dilation (obtained in Section 3.2) formed after
selecting the largest component becomes the marker image which gets morphologically
reconstructed with respect to canny edge image chosen as the mask image. Canny edge
image provides us with strongly connected edges containing the maximum amount of edge
information. This reconstruction procedure successfully restores the wide breaks that get
introduced as a result of the block-wise comparison. Figure 4 shows the reconstruction
taking place for the source images, as mentioned. It is obvious that the number of pixels in
the reconstructed image is less than its respective canny edge image counterpart for all the
source images. To simplify the process of region conversion, only one of the reconstructed
image is considered for region conversion. Hence, the next task would be to identify the
reconstructed image that is structurally complete enough to convert into a region. This is
obtained with the help of a focus measure, as discussed in the next section.

3.3.1 Choosing the best reconstructed image

For selecting the best-reconstructed image, we use a focus measure based on morphological
filtering used in [14]. It uses the bright and dark top-hat transforms to extract the high-
frequency details of the image. The initial focus information map (Fig. 5b, b1) is generated
by taking the maximum value among the two transforms at each pixel location using (5):

FI (x, y) = max[T b
I (x, y), T d

I (x, y)] (5)

where,
T b

I (x, y) = Bright top-hat transform of I(x,y)

T d
I (x, y) = Dark top-hat transform of I(x,y)

The image obtained is binarized using the condition given by (6). It provides better
visualization of the blurred and prominent pixels for further processing (Fig. 5c, c1).

RI (x, y) =
{
1, FI1(x, y) > FI2(x, y)

0, otherwise
(6)

(a) (b) (c) (d)

Fig. 4 a Foreground and b Background edge image with breaks (green box) and isolated pixels (yellow box);
c Foreground and d Background edge images after reconstruction
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Fig. 5 Process representing the selection of best reconstructed image: a, (a1) Color/Gray-scale image; b,
(b1) Initial focus map; c, (c1) Binary thresholded focus map; d, (d1) Cleaned focus map; e, (e1) Rough focus
region; f, (f1) Resultant XOR image; g, (g1) Reconstructed Image

The output from (6) provides better demarcation of focused features from the blurred
ones. The images obtained from (6) are further cleaned by sequential operation of morpho-
logical closing, I •s = (I ⊕s)�s followed by hole-filling for obtaining the focused regions
in a more prominent form that can serve the purpose (Fig. 5e, e1). Now, an exclusive OR
operation is performed between this binary image and the canny edge image to count the
number of edge pixels lying within the focused regions. To select the best reconstructed
image obtained in Section 3.3, a simple rule is followed which uses the difference in the
count of the dark pixels against bright background and vice-versa. Let Pd be the number of
dark pixels within the white area of the XOR image (Fig. 5f, f1) and Pb denote the bright
pixel count in the reconstructed image (RFA,RFB ). Let DIA

and DIB
be the absolute dif-

ferences in the pixel count given by, DIA
= Pd(IA) − Pb(IA), DIB

= Pd(IB) − Pb(IB).
Then, the best reconstructed edge image (IR) is given by,

IR=

{
RFA

, if DIA
< DIA

RFB
, if DIB

< DIB

(7)

Table 2 Difference in Pixel
Count Pixel counts

IA(Background) IB(Foreground)

Image Pb Pd DIA
Pb Pd DIB

Leg 9552 12288 2736 5471 5527 56

Temple 10801 23606 12805 14474 14482 8

Pot 7083 8359 1276 4839 5195 356

Calender 479 1339 860 859 1255 396

The bold value indicates least
absolute difference in the pixel
count for the best reconstructed
image
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The image with less absolute difference in the pixel count is considered to be the best-
reconstructed image because it signifies that the image has more number of pixels. The
observations are presented in Table 2 below for some of the source images, which show that
the near focused (foreground) object is better reconstructed as compared to the far-focused
(background).

3.4 Region conversion

The objects in the edge images are generally disconnected in nature with more than one
connected edge component. The best-reconstructed edge image selected by using (7) is
converted into an approximate binary region by carrying out an iterative step combining a
morphological closing operation and hole filling. For binary images, the holes are defined
as a set of its regional minima, which are not connected to the image border. The holes
are filled by removing all minima, which are not connected to the image border, by using
morphological reconstruction by erosion. The marker image is set to the maximum value
except along its border, where the values of the original images are kept. Closing operation
in a binary image enlarges the foreground regions keeping the original boundary intact
while the hole filling operation helps fasten the process of region conversion by reducing
the number of iterations (Fig. 6). To fill in the gaps between the edges, a square matrix is
chosen as the structuring element for the closing operation, the dimension of which changes
with every iteration. The number of iterations required till saturation differs for each input
edge image. The procedure is summarized in Algo. 2. It is observed that two different types
of regions are hence formed:

a) Type I: Region touching the image boundary: For regions touching the borders, the bor-
ders are identified as left, right, top or bottom (Fig. 6a and b). The small gaps between
the objects and the identified image borders if any, are filled up with bright pixels.

b) Type II: Regions away from image boundary: In this type, the region images obtained
after execution of Algo. 2 is perfect for carrying out the fusion procedure and do not
require any further processing.

An extra post-processing step is carried out for all the rough region images (Type I or
Type II) to detect and fill leftover holes (if any). Post-Processing of the images: For certain
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Fig. 6 Region conversion: a and b Type-I image; (a1-a4,b1-b4) Intermediate Images; (a4,b4) Partial region
image; (a5,b5) Final region image after border detection and filling; c Type-II image; (c1-c5) Intermediate
Images; (c5) Partial region image; (c6) Final region image after post-processing

region images, the hole filling scheme described above is not capable of vanishing all types
of holes from the regions. For example, there may be holes in the regions which are con-
nected to the background through narrow constriction (Fig. 6(c5)). To fill up such holes, we
have first dilated the image so as to fill up narrow constrictions, which leaves bigger holes
isolated from the background. Subsequently, we detect such holes by computing the Euler
Number corresponding to all such regions.

b) Detection of holes using Euler Number (Eu): It is defined as the differ-
ence between the number of components and the number of holes in a binary
image. Since all the region images obtained consists of a single component as
of now, image consisting holes will have either 0, or negative Euler number.
Hence, the Euler number is calculated after dilation to detect the presence of
holes.

Eu =
{
1, ,no hole is present

0, /less than 1 ,holes are present
(8)

After hole detection and filling, the resulting image is again eroded by the same structuring
element to bring the regions back to their original configuration, but with the holes dis-
appearing (Fig. 6(c6)). The region image formed at this step itself acts as an initial focus
information map for the fusion procedure.

3.5 Construction of decisionmap

A decision map (D) corresponding to the input image- color or gray-scale needs to be
constructed after the region formation described above.

Gray-scale Images: For gray-scale images, the decision map is simply the output from
the previous step, i.e., DIG

= RIF
.
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Color Images: For color input images, the binary region image from the previous step
is converted to a 2-color decision map as per (9). The color decision map is created as
follows:

DIC
(x, y) =

{
C1, if RI (x, y) = 0

C2, if RI (x, y) = 1
(9)

where C1 and C2 refers to different colors.

3.6 Image fusion

The fused image is formed by utilizing the decision map obtained in the previous section
for gray-scale as well as color images. Depending on the decision map, the pixels from the
respective source images are selected to construct the final fused image (Fig. 7). The fusion
process is executed by using the fusion rule as specified in (10) and (11).
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(a) (b)

Fig. 7 Diagram representing the fusion process using the decision map for (a) color image; (b) grayscale
image

Gray-scale images:

IFG
(x, y) =

{
I1(x, y), if DIG

(x, y) = 0

I2(x, y), if DIG
(x, y) = 1

(10)

where DIG
is the binary decision map.

Color Images:

IFC
(x, y) =

{
I1(x, y), if DIC

(x, y) = C1

I2(x, y), if DIC
(x, y) = C2

(11)

where DIC
is the colored decision map. The overall process flowchart of the fusion

algorithm is given in Fig. 8.

4 Experiment results and discussion

4.1 Parameters

The various parameters associated with this experiment are: block size (n), standard devi-
ation (σ1) of the Gaussian filter used in Canny, (σ2) of LoG filter, threshold values (t1, t2)
and (t3) used in Canny and zero-cross edge detection respectively and structuring element
(s) used for morphological operations. The block size chosen for region comparison to sep-
arate the focussed edges are chosen by trial and error such that it produces visually superior
results. The threshold values for edge detection are heuristically chosen by the edge detec-
tors depending on the features present in the source images. However, all the threshold
values lie between 0 and 1, some of which are presented in Table 3. The optimal value of σ

in the Gaussian kernel depends on image factors such as the resolution of the image and size
of the objects in it. For all such image dependent parameters, the default values are chosen
without any tuning. For binary morphological operations, disk-shaped structuring element
is chosen because of its isotropic property, which retains the image details without introduc-
ing block effects. Here, we have adopted the minimum value for the size of the structuring
element. The values used for the above-mentioned parameters are provided in Table 4.
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Fig. 8 Flowchart representing the fusion process: a and b Color Image; (a1,b1) Y-Component; (a2,b2) Canny
edge image; (a3,b3) Zero-cross edge image; (a4,b4) Block-wise compared image; (a5,b5) Dilated images;
(a6,b6) Removed isolated points; (a7,b7) Reconstructed image; c Best reconstructed image; d Region image;
e Color decision map; f Fused image

Table 3 Threshold values used
in edge detection Source 1 Source 2

Image Canny Log Canny Log

Leg (0.0500,0.1250) 0.0022 (0.0313,0.0041) 0.0055

Seascape (0.0688,0.1719) 0.0066 (0.0781,0.0563) 0.1406

Calender (0.0250,0.0625) 0.0025 (0.0250,0.0625) 0.0023

Jar (0.0250,0.0625) 0.0024 (0.0250,0.0625) 0.0020

Temple (0.0688,0.1719) 0.0059 (0.0563,0.1406) 0.1719

Multimedia Tools and Applications (2020) 79:24089–24117 24101



Table 4 Values of the parameters
used in the experiment Parameters Used value

Block Size (n × n) 18

Threshold value [(t1, t2),(t3)] (0,1)

Standard Deviation (σ1, σ2) (
√
2,2)

Structuring Element (s) Disk of Radius 2

4.2 Comparisonmethods

The proposed method has been tested on 30 pairs of 2-D colored and grayscale multi-focus
images, and the results are compared with other representative image fusion algorithms
in terms of visual/subjective perception and objective evaluation. In the paper, we have
presented the results for 16 pairs. All the algorithms selected for the purpose of compar-
ison are CPU executable pixel/region based fusion methods implemented using gradient
domain (GD) [21], adaptive block-based discrete wavelet transform (DWT-AB) [32], image
matting (IM) [14] and Gaussian curvature filter (GCF) [24]. Additionally, to establish the
efficacy of the proposed method with the state-of-art, it has also been compared with two
learning-based methods, e.g., adaptive sparse representation (ASR) [33], and convolutional
neural networks (CNN) [31]. In GD based method, ‘weighted sum’ is adopted to fuse the
chrominance channels while the fused luminance channel is obtained by a gradient recon-
struction technique based on ‘Haar’ wavelets. DWT-AB employs discrete wavelet transform
with three levels of decomposition, in which the low-frequency coefficients are fused using
adaptive block method, and high-frequency components are combined using local wavelet
energy. IM is a spatial method which applies image matting technique on a roughly seg-
mented result obtained by using morphological bright and dark top-hat transforms as focus
measure. GCF initially uses a gaussian curvature filter to obtain the salient (sharpest) regions
from the source images followed by a course fusion map using a synthetic focusing degree
criterion combining spatial frequency and local variance. ASR proposes a learning-based
fusion approach using sub-dictionaries, whereas CNN method uses convolutional neural
networks for the same. The proposed algorithm, as well as the comparison methods, are
implemented using Matlab programming language on a computer with 2.4 GHz CPU and
4GB RAM.

4.3 Objective evaluation

The quality of the fusion results can be quantitatively assessed by using several fusion met-
rics, which may or may not take reference (ground truth) image into account. In most of the
cases, no-reference based fusion metric is adopted due to unavailability of perfect ground
truth image. The concept of a perfectly fused image is subjective in nature because it is quite
challenging to measure the ‘perfectness’ of a fused image. Moreover, the quality of source
images, mis-registration, and illumination defects directly impact the results as well. Also
the process of combining information from the source images might create additional effects
such as contrast enhancement in the fused image, which is not desirable. So, for objective
evaluation of the fused results, fusion quality indices are extensively used by researchers.
Here, the results of the proposed algorithm are numerically evaluated using two groups of
quality metrics, a) image quality metrics, (b) fusion quality metrics. Average pixel intensity
(API), standard deviation (SD), average gradient (AG) judges the quality of fused image
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beyond fusion (for e.g., enhancement of features) and are independent of the source images.
On the other hand, feature mutual information (FMI), gradient-based metric (QF

AB ), Piella’s
edge-based metric (Qe), and Zhao’s metric (P ′

blind ) measures the degree of fusion with
respect to the source images. Each of the metrics mentioned above is briefly defined below.
To maintain the generality, the source images are denoted by ‘A’, ‘B’ whereas ‘F’ denotes
the fused image having a dimension of M × N .

1) Average pixel intensity (API): It serves as an index to measure the overall brightness in
an image and is given by (12):

API =
∑M

i=1
∑N

j=1 F(i, j)

MN
(12)

where F(i, j) is the pixel intensity.
2) Standard Deviation (SD): It is defined as the square root of variance and measures the

spread of the data from the mean value (13).

SD =
√∑M

i=1
∑N

j=1(F (i, j)−
lineF )

MN (13)

3) Average Gradient (AG): It measures the degree of clarity and sharpness which is given
by (14):

AG =
√

(F (i, j) − F(i + 1, j))2 + (F (i, j) − F(i, j + 1))2

MN
(14)

4) Feature Mutual Information (FMI) [9]: It is a non-reference objective image fusion
metric proposed by Haghighat et al. which measures the transfer of features from the
source image to the fused image. It is based on mutual information, and the uniqueness
of the algorithm lies in the choice of gradient map as an information feature. A gradi-
ent map contains information about pixel neighborhoods, edge strength and directions,
texture, contrast, and other region-based features. The authors have proved that a JPDF
(joint probability distribution function) can be constructed with a given marginal prob-
ability distribution function (MPDF). The normalized values of the gradient magnitude
at each pixel location in the feature images are used in marginal distributions. The
amount of feature information transferred to F from A and B are individually measured
by (15) and (16):

IFA =
∑
f,a

pFA log2
pFA

pF .pA

(15)

IFB =
∑
f,b

pFB log2
pFB

pF .pB

(16)

The FMI metric is expressed as:

FMIAB
F = IFA + IFB (17)

The normalized FMI is formulated as:

FMIAB
F = IFA

HF + HA

+ IFB

HF + HB

(18)

where HA, HB and HF are histogram based entropies of the images A,B and F
respectively. It lies in the interval of [0,1].

5) Gradient-Based fusion metric (QF
AB ) [28]: Xydeas and Petrovic proposed a pixel-level

fusion metric which measures the amount of transfer of edge information from source
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images to the fused image. It employs the Sobel edge detector and calculates the edge
strength and orientation at each edge pixel. This metric is widely used in analyzing the
edge strength and quality of fusion results. It is mathematically expressed in (19):

QF
AB =

∑M
m=1

∑N
n=1 QAF

m,nw
AF
m,n + QBF

m,nw
BF
m,n∑M

m=1
∑N

n=1 wAF
m,n + wBF

m,n

(19)

where QAF
m,n and QBF

m,n are edge preservation values weighted by wAF
m,n and wBF

m,n at
coordinate (x,y), respectively. The value of this metric lies within [0,1] where larger
value indicates better performance.

6) Piella’s metric (QE) [22]: This metric proposed by Piella and Heijmans quantifies
the transfer of salient information from the source images to the fused images. Three
different indices, namely, fusion quality index (QO ), weighted fusion quality index
(QW ), and edge dependent fusion quality index (QE) are evaluated separately. Keeping
up with the context of this paper, only QE is evaluated for this algorithm because it
measures the transfer of edges in the fused results. The mathematical representation of
this metric is given in (20):

QE(A,B, F ) = QW (A,B, F ).QW (A′, B ′, F ′)α (20)

where α ∈ [0, 1]. The parameter α denotes the relative contribution of the edge images
by the original images. The mathematical derivation of all the indices are elaborated in
the original paper.

7) Zhao’s Metric (P ′
blind ) [41]: Zhao et al. have relied on image features based on phase

congruency and principal moments to design a pixel level quantitative fusion metric. It
is defined as the product of three separate correlation coefficients.

P ′
blind = (Pp)α(PM)β(Pm)γ (21)

where p, M , m denotes the phase congruency, maximum and minimum moments
respectively. α, β, γ are the tunable parameters used in the algorithm. For local analy-
sis, a block-based approach is adopted, where the final value of P ′

blind is obtained by
averaging all the values computed over the number of blocks of the entire image.

P ′
blind = 1

K

K∑
k=1

P ′
blind (k) (22)

The above mentioned metrics have been evaluated on sets of colored and gray-scale
multi-focus image pairs as shown in Fig. 9. The values of API , SD, AG are provided
in Table 6 and FMIAB

F ,QF
AB ,QE and P ′

blind for all the images are presented in Table 5.

4.4 Subjective evaluation and fusion results

A good fusion algorithm should be able to produce accurate and reliable results by
simultaneously removing the redundant information and integrating the complementary
information. Besides, it should not introduce/enhance extra features, artifacts, or incon-
sistencies which are not a part of the source images. Below, we present a comparative
discussion on the results produced by the proposed method and the other six methods. Some
of the results are zoomed separately so as to illustrate the quality of results produced by the
algorithm ( See Figs. 10, 11, 12, 13 and 14). The quality of the source images determines the
quality of the fusion results. All the input source images are assumed to be pre-registered.
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Fig. 9 Sets of multi-focus images used in experiment

As evident from Fig. 10a and b, the features are not identically focused in both the pairs.
The results of the proposed fusion method, along with other methods for the first source
image, are presented in Fig. 10(c-i). It may be observed that the fused image obtained in
GD based method (Fig. 10c) produces an image with highly increased contrast and bright-
ness, which is an undesirable effect and modifies the intensity values taken from the source
images. In addition, it creates a strong shadow around lighter objects within the scene
(Fig. 10(c1)). In DWT-AB based approach, there is unnecessary distortion and distribution
of color components in the vicinity. In Fig. 10d, the blue color gets unevenly spread around
the text ‘Nature’ and in Fig. 10(d1), colors get introduced along the fold in the cloth within
the leg, which was not present earlier. Figure 10e presents the results of IM based approach,
which clearly shows the lack of clarity along the edges of the leg (Fig. 10(e1)). Figure 10f
presents the results of ASR based method which also casts shadows around lighter objects
(Fig. 10(f1)) similar to GD based method. In GCF based method, the details present in the
stone leg are not captured in the fused image (Fig. 10g). The results obtained from the CNN
(Fig. 10h) as well as the proposed method (Fig. 10i) are quite comparable. The respective
local magnified regions are presented in Fig. 10(h1) and (i1). The proposed method has
produced better results with no noticeable distortion and artifacts in less amount of time.

The second experiment has been performed on the ‘Seascape’ source images, as shown in
Fig. 11a and b. Originally, there is a color disparity in the input images, the reasons for which
could be many but not known to us in particular. This has in fact affected the fusion results in
all the methods except ours. Results from GD, DWT-AB, and ASR based method are shown
in Fig. 11c, d and f, respectively, clearly shows that there is a gross change/distortion in color
after the sea surface is brought to focus. It confirms the fact that these fusion algorithms
have taken color values from the foreground object in the far-focussed image, which is not
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Fig. 10 Source image “Leg” and fusion results: a Source image with focus on the background; b Second
source image with focus on foreground; cGD based result; dDWT-AB result; e IM based result; fASR based
result; g GCF based result; h CNN based result; i Result using proposed method; j Region image obtained
by our method; (c1), (d1), (e1), (f1), (g1), (h1) and (i1) are the local magnified regions of c, d, e, f, g, h and i
respectively

Fig. 11 Source image “Seascape” and fusion results: Same order as in Fig. 10
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Fig. 12 Source image “Calender” and fusion results: Same order as in Fig. 10

Fig. 13 Source image “Jar” and fusion results: Same order as in Fig. 10
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Fig. 14 Source image “Clock” and fusion results: Same order as in Fig. 10

desirable. Moreover, in the magnified regions (Fig. 11(c1 and d1), the edges of the rock
do not appear to be prominent. The magnified regions of IM based approach (Fig. 11(e1))
shows the presence of unnecessary pixels along the edges of the upper portion of the rock.
The GCF based method has fused the blurred version of the sea from the near focussed
image instead of capturing the details present in the far focussed source image (Fig. 11g).
Results from CNN based method lacks clarity along the curvature of the rock, as shown in
Fig. 11(h, h1). The results of the proposed algorithm and its magnified images presented in
Fig. 11i and i1, respectively, have outdone the other methods in terms of visual clarity. It
has perfectly combined the complementary features from the source images with adequate
edge clarity, no color distortion, shadow or blurriness.

In ‘Calendar’ source image, one of the source image is focused on the book (Fig. 12a)
with the blue background while the other image has its focus on the table calendar
(Fig. 12b). GD based result has led to an increase in the brightness as well as contrast,
thereby creating strong shadows around the text (Fig. 12(c1)). DWT-AB based results show
a slight spillover of blue color along the edges of the table calendar (Fig. 12(d1)). The
results of IM based technique shown in Fig. 12(e1) are satisfactory in terms of visual qual-
ity. Results using ASR have introduced shadow around the text, ‘IMAGE’ in the book, and
the top-left corner of the table calendar (Fig. 12(f1)). GCF based method has also produced
artifacts over the same text (Fig. 12(g1)). Taking into account all the defects mentioned
above, the CNN based method (Fig. 12(h, h1), and the proposed algorithm has produced
better results. (Fig. 12(i, i1).

The multi-focus image pair presented in Fig. 13a and b consist of blue jar focused at
foreground and orange jar focused at background, respectively. The results obtained by
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different fusion methods are presented in Fig. 13c-i. For a minute comparison, the magni-
fied images are presented in Fig. 13(c1)-(i1). From the results, it is perceived that the GD
based method has intensified the color and brightness and introduced shadows in the results
(Fig. 13(c1). DWT-AB results are slightly distorted in terms of color around the text ‘Flora’
in the orange jar (Fig. 13(d1)). Likewise, the GCF method has produced box effects, which
is clearly visible in Fig. 13(g, g1). IM based result is shown in Fig.13(e1) has some white
noise/dots spread over the bottom portion of the blue jar (Fig. 13(e1)). This is certainly a
drawback of the algorithm and could be attributed to ill measures of focus. Apart from the
presence of shadows around the dark text/objects, ASR based results are quite encouraging
(Fig. 13(f1)). The results from the CNN algorithm presented in Fig. 13(h, h1) and the pro-
posed method in Fig. 13(i, i1) are quite satisfactory.
For gray-scale images, the visual comparison has been demonstrated using only one of the
six images used in this experiment. The gray-scale image, ‘Clock’, consists of two clocks
of varying sizes where the focus is on the larger and smaller clock, respectively (Fig. 14a
and b). The observations regarding the results obtained from various methods are quite sim-
ilar to that of the color images. The results from the different fusion methods are provided
in Fig. 14c-i. GD based method suffers from a similar problem as discussed previously

Fig. 15 Results for other source images: a using GD; b using DWT-AB; c using IM; d using ASR; e using
GCF; f using CNN; g using proposed method
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Fig. 16 Results for other gray-scale images using the proposed method

(Fig. 14(c1)). In DWT-AB based method, the edge of the smaller clock lacks sharpness at
the region of overlap over the larger clock (Fig. 14(d1)). The edges are comparatively bet-
ter expressed in IM based method, but the edge of the smaller clock slightly bends along
the number ‘8’ of the larger clock (Fig. 14(e1)) which is more prominent in the results
obtained using ASR (Fig. 14(f1)). The GCF based result (Fig. 14(g1)) and CNN based result
(Fig. 14(h1)) clearly produces distortion and lacks clarity along the edges respectively. The
results of the proposed method presented in Fig. 14(i1) shows the superiority in terms of
quality the fused results.

The results on rest of the color and gray-scale source image pairs are provided in Figs. 15
and 16 respectively. Summarizing the observation in the obtained results, we can say the
gradient domain (GD) based method enhances the brightness as well as the contrast for all
the images, which is also established by the metric values from Table 6.

It also creates shadows around light objects in the dark background and vice-versa.
DWT-AB based method leads to incorrect scattering and spread of color components from
adjacent pixels. For certain color images, the focus measure used in image matting (IM)
based method fails to distinguish the focused and defocused pixel, thereby creating slight
noise along the edges. The GCF based method introduces block effects and fails to distin-
guish between focussed and defocussed pixels. Again, ASR based approach suffers from
similar problem i.e., shadows and construction of dictionaries increases the computational
complexity as well. The results from the CNN approach and the proposed method are quite
comparable in terms of fusion quality; however training a deep neural network requires a
significant amount of computation time and processing speed (Table 7).

4.5 Results using other source images

The proposed approach has been tested using source images obtained under different (a)
complex background environment, (b) illumination conditions, and (c) time to perform rig-
orous analysis of the algorithm. Figure 17 illustrates the results obtained after fusing source
images that satisfy the above criteria.

Table 6 Average values of image quality metrics

Metrics GD DWT-AB IM ASR GCF CNN Proposed

API 0.4700 0.4087 0.4078 0.0492 0.3509 0.4705 0.4079

SD 0.2153 0.2087 0.2101 0.2078 0.2093 0.2109 0.2104

AG 0.0556 0.0453 0.0522 0.0509 0.0518 0.0519 0.0523

The bold value indicates the highest value obtained in the metric
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Table 7 Average execution time of algorithms (in seconds)

GD DWT-AB IM ASR GCF CNN Proposed

1.1514 28.6434 4.4746 1048.838 550.3413 198.9899 1.7305

The bold value indicates the maximum time taken by the algorithm

4.6 Fusion withmultiple source images

Generally, to restore focus within a scene, we may need to deal with multiple partially
focussed source images. Though the algorithm demonstrates the two focus situation, but
it can be extended to process multiple source images by fusing them one by one. This is
illustrated by Fig. 18 which contains three source images.

4.7 Results on noisy source images

To study the performance of the proposed algorithm in the presence of noise, experiments
are performed on noisy image pairs generated by adding noise externally to the multi-
focus source images. The degree of noise degradation is an important factor exceeding
which highly reduces the quality and the focus information/content from the source images,
thereby producing results of less practical value. The source image pairs are corrupted with
two types of noise, a) Salt-and-pepper and b) Gaussian white noise prior to the application
of the proposed fusion algorithm. In case of salt-and-pepper, the maximum noise density
(d) that is acceptable to retain the focus content is 0.2, i.e., 20% of pixels. For Gaussian
white noise, keeping the variance constant, the acceptable mean (m) is found out to be 0.50.
Fig. 19 illustrates the results produced by the proposed algorithm in presence of noise.

Fig. 17 1stRow, 2ndRow: Image datasets with different (a1),(a2) complex background; (b1),(b2) artificial
lighting; c night time; d poor lighting; 3rdRow: Results obtained by proposed method
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Fig. 18 Results obtained by the proposed algorithm for multiple source images, a Focus on front seal; b
Focus on middle seal; c Focus on distant scenary; d Fused result of (a) and (b); e Fused result of (c) and (d)

4.8 Limitations of the algorithm

In case the source images chosen for fusion happen to contain weak edges, the proposed
algorithm does not perform well. The source image pair provided in Fig. 20 consists of a
sea beach focused on the left and right side, respectively. The proposed algorithm fails to
work on such source images due to (a) absence of strong and prominent edge content, (b)
absence of prominent structures/object. This is illustrated from the respective edge images
depicted alongside where the sky does not produce any strong edges due to smooth regions.
Also, we cannot differentiate between the edge pixels belonging to objects and pixels due to
noise. As the edge detectors are unable to locate the focused edge pixels primarily, features
depending solely on spatial intensity values of an image are not sufficient to use in such
cases. In addition to this, the proposed algorithm cannot deal with multi-modal or multi-
sensor image sets because features expressed in such images are partly complementary and
partly redundant.

Fig. 19 Results on noisy multi-focus source pairs, a and b Salt-and-pepper, d = 0.2; c and d Gaussian white
noise, m = 0.50; (a1),(b1),(c1),(d1) Results produced by the proposed approach
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Fig. 20 a Focus on the right; b Edge image of (a); c Focus on left; d Edge image of (c)

4.9 Future works

– Edge detectors used in the algorithm are based on brightness gradients alone, which
may give strong responses for irrelevant regions and weak for the relevant ones, thus
producing improper edge maps to start with. Moreover, it may not work with natural,
real-life images. Deep learning methods can be used to devise edge detector models,
which will directly respond to the relevant focussed edges, which can automate the
process to some extent.

– For real-time application, we can explore the possibility of FPGA (Field Programmable
Gate Arrays) implementation, which would further reduce the overall execution time.

5 Conclusion

This paper presents a multi-focus image fusion method which uses edges of focused features
from the source images as a basis for selecting the focused regions prior to constructing the
fusion result. A block-wise region comparison followed by morphological dilation opera-
tion is performed to enhance the clarity of the focused edges further. Morphological edge
by reconstruction is performed to restore and reconstruct any broken edge to maintain the
continuity. The best reconstructed source image is chosen based on a focus measure, which
in turn is used in constructing a binary region (initial decision map). For color images, the
binary region is further converted to a colored decision map for the ease of fusion proce-
dure. It is to be noted that the decision map is formed by using the best reconstructed edge
image out of the two source edge images. To form the fused image, the binary (or colored
decision map) is used to combine pixels from the gray-scale (or color) source images. The
method has been compared with other similar methods, both in terms of quantitative and
qualitative evaluation. It is observed that the visual quality of the outputs is superior in com-
parison to the results produced by other methods. The values of the fusion metrics obtained
as a part of quantitative evaluation is as good as the other state-of-the-art methods.
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