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Abstract
Recent growing interest in ambient intelligent environments has driven a desire for effective
models to reason about activities of multiple residents. Such models are the keystone for
the future of smart homes where occupants can be assisted with non-intrusive technologies.
Much attention has been put on this research, however current works tend to focus on devel-
oping statistical algorithms for prediction, whilst there still lacks a study to fully understand
the relations of residents’ behaviours and how they are reflected through the sensors’ states.
In this paper we investigate the dependencies of the activities from residents and their inter-
action with the environments. We represent such dependencies in Bayesian networks that
leads to construction of six variants of Hidden Markov Models (HMMs). Furthermore, we
argue that a complete model should embody more than one type of dependency. Therefore,
we propose an ensemble of HMMs, and then generalize it to a novel mixed-dependency
model. In the experiments we perform intensive evaluation of our study on multi-resident
activity recognition task. The results show that the proposed models outperform other
models in three smart home environments, thus asserting our hypothesis.
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1 Introduction

Activity monitoring in ambient smart homes has been attracting a great deal of attention
recently due to its promising application in aged care where privacy and obtrusiveness are
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the major concerns [3]. Different from visual-based approaches that employ video data for
learning and reasoning about the activities of multiple residents, ambient approaches rely
on low-cost, power-saving sensors placed in different locations in a smart home. Although
the use of cameras can provide rich information for accurately modelling human behaviour,
many users feel uncomfortable with the appearance of cameras and also fear that their iden-
tities and sensitive activities can be unnecessarily revealed. By contrast, ambient sensors
are only triggered when a resident performs an activity and therefore being less intrusive.
Wearable sensors, perhaps, are currently the most popular and successful tool for personal
activity tracking. However, in many cases, especially in aged care for multiple occupants,
this approach is expensive and is not always welcomed by senior citizens who are not com-
fortable with having an electronic device attached. Such limitations have motivated research
on the future of smart home where human activities and interactions can be measured
through sparse, indicative sensor data from ambient devices.

Research on activity monitoring in ambient environment have been active in the past fif-
teen years with the focus is shifting from static approaches such as k-Nearest Neibourgh,
Decision Trees, Multi-layer Perceptron [12, 29], incremental Decision Tree (IDT) [23] to
temporal approaches such as Hidden Markov Models (HMM) [1, 5, 8, 11, 25], Conditional
Random Field (CRF) [3, 10, 18, 30], and Recurrent Neural Networks [28]. The central idea
of these approaches is to employ a data-driven model to learn a classifier for activity recog-
nition with inputs are sensors’ values. Data-driven approaches have also been used to predict
the time when an activity will occur which would be useful for early prevention and anomaly
detection [20, 21]. With the success of deep learning recently, some sequence modelling
approaches have been adopted for activity recognition with ambient sensor data, most of
them are inspired by natural language processing. For example, in [28] the recognition mod-
ule of the Smarter Safer Home platform is built upon Gated Recurrent Unit [7] and Long
Short Term Memory [17]. In [31] the authors take the advantage of stacked Auto-encoders
in learning high-level, predictive features for activity recognition with binary sensor data. In
[16],sequence-to-sequence model [26] are used to learn temporal features. Besides investi-
gating new activity modelling approaches, a heterogeneous strategy was also used to transfer
activity information from one sensor platform to another to boost the performance [14].

As we can see, most of the research currently focuses on improving the prediction perfor-
mance, while in a multi-resident environment, there is an unanswered question of whether
the activities of a resident can influence the others. In [2], the activities are segmented to
detect activity transitions. However, this work does not show how the activities of residents
are related. We argue that the activity of a resident at a time step can be seen as a frequent
pattern, like a habit (having breakfast after getting up in the morning), or as a part of a col-
laborative event (one is cooking and the other is cleaning the dining table). This seems that
the activity of a resident depends on the previous activities and also from the activities of
other residents. In this paper, instead of developing a new model for performance improve-
ment, we are interested in study the relationship of activities in multi-resident smart home
environments.

In the first part of this paper we show an investigation into the behaviour dependen-
cies in smart home environments. We classify the dependencies of activities as: individual
dependency: Activities of a resident depend only on his previous activity; cross dependency:
Activities of a resident depends on the previous activities of all residents; and group depen-
dency: Activities of all residents depends on their previous activities. We also consider two
forms of interactions between activities and environment’s states. Here the states are trig-
gered either by each individual independently or by the activities of all residents at a time.
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We model the dependencies into six variants of Hidden Markov Models (HMMs), some of
which have not been used for multi-resident activity recognition in ambient environments
before.

The second part of this paper is a proposal of a novel approach for multi-resident mod-
elling. We argue that a complete model should embody more than one type of dependency
to be able to present the complexity of collaborative, interactive activities. We then propose
an ensemble of HMMs, which we call as multi-dependencies HMM (md-HMM), to imple-
ment the idea. A md-HMM is a combination of several HMMs having different transition
probability tables while sharing the same emission probability table. It is obvious that the
role of each type of dependency varies in different environments, depending on the living
styles of occupants. Therefore, we further generalize the ensemble to a mixed dependencies
model (MDM). Different from md-HMM where the model’s log-probability is the sum of
the other HMMs, MDM is represented by a weighted log-probability. At a special case, a
MDM can be seen very similar as md-HMM.

We carry out experiments on three smart home environments from CASAS [9, 18] and
ARAS [1] datasets. As far as we know, this is the first work that performs intensive empirical
evaluation using multiple smart home environments with different types of feature represen-
tation. For reproducibility we share our code at https://github.com/sFunzi/mdm. Among six
variants of HMMs we find that the HMMs with group dependency is more accurate than the
other variants of HMMs. We also find that representing the environment’s state as a result
of all residents’ activities is better than separate it for each individual. More importantly, the
empirical results confirm our hypothesis in which mixed dependencies indeed capture the
complexity of multi-resident activities. In particular, the md-HMM has better performance
than other models and MDM can even achieve further improvement.

The organization of this paper is as follows. In the next section, we discuss the depen-
dencies in ambient smart home environments with multiple occupants. Section 3 shows
how to combine such dependencies to construct different HMMs for activity modelling. In
Section 4 a ensemble of HMMs, called md-HMM, and its generalisation MDM are pro-
posed. Related work is presented in Section 5. We showcase the empirical study in Section 6
and perform intensive experiments on three smart home environments from two datasets.
The last section concludes the work.

2 Smart home environments

In a seamless smart homes we can utilise ambient devices to monitor the behaviour of resi-
dents by attaching them to various locations. Such devices such as motion and force sensors
are affordable with low-energy consumption which are very suitable for mass production in
future.

2.1 Notations

Let us denote am,t and ot as an activity of resident m and sensors’ state at time t respectively.
For ease of presentation we denote at = {a1,t , a2,t , .., aM,t } as activities of all M residents
at time t . We use t1 : t2 to denote a sequence of events/states from time t1 to t2. For example,
at1:t2 = {at1 , .., at2} is a sequence of activities performed by all residents from time t1 to t2.

23447Multimedia Tools and Applications (2020) 79:23445–23460

https://github.com/sFunzi/mdm


Table 1 First row (left to right): parallel dependency, cross dependency, group dependency ; First column
(top to bottom): individual interaction, group interaction; pHMM: parallel HMM, cHMM: coupled HMM,
gd-cHMM: coupled HMM with group dependency, fHMM: factorial HMM, cd-fHMM: factorial HMM with
cross dependency, gd-HMM: HMM with group dependency

pHMM cHMM gd-cHMM

fHMM cd-fHMM gd-HMM

2.2 Activity dependencies

For multiple residents there are three types of dependencies as being illustrated in the first
row of Table 1. Let us take two residents as an example. First, each resident’s activities are
seen as an independent Markov chain where there is no interactive link between them. We
call this parallel dependency, as shown in the left figure . Second, we assume that activity
of a resident at time t depends not only on his previous activity but also on the activities
of the others. This seems to make sense since in smart homes occupants tend to interact
with others. We call this cross dependency, as shown in the middle figure. Finally, we can
treat the group of activities of all residents as a single random variable where their current
combined activity depends on the previous one, as shown in the right figure. We call this
group dependency.

2.3 Environment interaction

We now consider two types of interactions between activities and environment’s states,
as can be seen in the first column of Table 1. The states of a smart home are normally
represented by the values of sensors, denoted as ot at time t . A state is recorded when one
or more residents perform some activities and therefore trigger the sensors. In the first case,
as shown in the top figure, each resident has his own interaction with the environment.
This based on the fact that a sensor can only be triggered by a single person. Note that in
non-intrusive ambient environments, it is difficult to associate the activated sensors to the
person who activates them. Instead, states of environment are replicated for each person.
In the second case, one may argue that since the environment is treated as one object, its
states should reflect the whole dynamic in it. Therefore, in this case the environment’s state
is modelled to be dependent on the activities of all residents, as shown in the bottom figure.

3 Multi-resident activities modelling

In this section we show how to model the activities of multiple residents in smart homes by
combining the dependencies discussed in the previous section.
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3.1 HiddenMarkovmodels

A HMM [24] consists of a single hidden y and an observation variable x which assumes a
Markov process. It represents a state sequence as a joint distribution as:

p(y1:T , x1:T ) = p(x1|y1)p(y1)

T∏

t=2

p(xt |yt )p(yt |yt−1) (1)

This is parameterised by the probability tables p(xt = i|yt = j), p(yt = j |yt−1 =
j ′), p(y1 = j), which are called emission, transition, and prior probabilities respectively.
In order to learn the model’s parameters, one would like to maximize the log-likelihood:
� = ∑

y1:T ,x1:T ∈D log(p(y1:T , x1:T ), where y1:T , x1:T ∈ D is a sequence of inputs and
output, e.g sensors’ states and activities, in the training data D. Given a new sequence of
observations, prediction can be performed by finding the most probable hidden states using
Viterbi algorithm.

3.2 Multi-resident activity models

HMM is perfectly useful for modelling the dependencies we have discussed in Section 2.
The activities of residents can be seen as multiple hidden variables while the environment’s
states can be either presented as a single variable or as multiple replicas of a variable. By
considering each type of dependencies and interactions we come up with six variants of
HMM as shown in Table 1. In what follows we discuss each of them in detail.

3.2.1 pHMM

We can model each resident’s activities by a separated HMM, similar to the model proposed
in [6]. However, it should be noted that in that work the data association is provided such
that the input of each HMM is tied with only the states of the sensors triggered by a specific
person. In the general case as we are studying in this paper such information is not avail-
able. Therefore the input for each HMM should be replicated for all residents. The joint
distribution of this parallel HMM is:1

p =
∏

m

[
p(o1|am,1)p(am,1)

T∏

t=2

p(ot |am,t )p(am,t |am,t−1)

]
(2)

The parameters in this model is different from those in the single HMM where we only
need three probability tables. Here, the model would have M transition probability tables,
M emission probability tables, and M priors. Each HMM will be learned independently
using the same algorithm. For prediction, each HMM will predict the activities of a resident
and the results are combined from all HMMs for evaluation.

3.2.2 cHMM

Parallel HMM has an issue in that it does not take into account the relations of residents’
activities. Each HMM assumes that the current activity of a resident depends only on his
previous activity. As we mentioned earlier, this may not reflect the real situation in smart

1Here p denotes p(a1:T , o1:T ) to save the presentation space.
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homes where activities of a resident depend on other residents at some time. Therefore,
by coupling the hidden variables of separate HMMs while maintaining the replication of
observation variables we can have a new model that capture such cross dependency, similar
as in [6]. In this case the joint distribution is:

p =
∏

m

[
p(o1|am,1)p(am,1)

T∏

t=2

p(ot |am,t )p(am,t |at−1)

]
(3)

Here, the emission probabilities are the same as those in the parallel HMM but the tran-
sition probabilities are different. We also use Viterbi algorithm to infer the most probable
activities given a sequence of sensors’ states. Due to the coupling, we are not able to per-
form parallel inference as in the previous model. Instead, we apply the Viterbi algorithm by
replacing p(xt |yt ) with

∏
m p(ot |am,t ), p(yt |yt−1) with

∏
m p(am,t |at−1), and p(y1) with∏

m p(am,1).

3.2.3 gd-cHMM

A gd-cHMM has similar structure as the coupled HMM, the only difference is that the
hidden variables are coupled by group dependency instead of cross dependency.

p =
∏

m

p(o1|am,1)p(a1)

T∏

t=2

∏

m

p(ot |am,t )p(at |at−1)

]
(4)

Since the same environment dependency is used, this model has the same emission prob-
abilities as pHMM and cHMM. The transition table in this case should have higher
storage complexity than two previous cases. For prediction, we replace p(xt |yt ) with∏

m p(ot |am,t ), p(yt |yt−1) with p(at |at−1), and p(y1) with p(a1) before applying the
Viterbi algorithm.

3.2.4 fHMM

Factorial HMM was proposed by Ghahramani and Jordan in [15]. This can be seen as a
generalization of HMMs where the single hidden variable is factored into multiple hidden
variables. To apply the model to multi-resident activity recognition, we assign each hidden
variable to represent a resident’s activities. One can see it as similar as the parallel HMM
except that there is only a single observation. We take into account that in pHMM and
cHMM the sensors depend on each individual’s activities separately, which is only valid
when the data association is available. Without this, separating the observation of each res-
ident may lead to drop in performance as what we will show in the experiments. Therefore,
factorial HMM has one single observation variable, hopefully to solve such problem. The
joint probability of the fHMM is:

p = p(o1|a1)
∏

m

p(am,1)

T∏

t=2

[
p(ot |at )

∏

m

p(am,t |am,t−1)

]
(5)

Similar to other HHM-based models this factorial HMM will be learned by maximizing
the log-likelihood. Once the parameters are learned, we can use the model to perform pre-
diction task through Viterbi algorithm, as in Section 3.1. In this case we just need to replace
p(xt |yt ) by p(ot |at ), p(yt |yt−1) by

∏
m p(am,t |am,t−1) and p(y1) by

∏
m p(am,1)
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3.2.5 cd-fHMM

In order to represent the relations between activities among residents as what has been
discussed in Section 2, we add cross connections from all hidden variables at time t − 1 to
each hidden variable at time t . This results in a fHMM model with cross dependency. In this
model, the joint probability of sensors’ states and activities of all residents is:

p = p(o1|a1)
∏

m

p(am,1)

T∏

t=2

(p(ot |at )
∏

m

p(am,t |at−1)) (6)

It can be seen that only the transition probabilities are changed in comparison to the
fHMM above. For inference, similar to the fHMM we can apply the Viterbi algorithm with
substitutions of

∏
m p(am,t |at−1) and p(a1) for p(at |at−1) and

∏
m p(am,1) respectively.

3.2.6 gd-HMM

The last variant we study in this paper is the HMM with group dependency which can be
seen as a single HMM with one hidden variable to represent the combined activities of all
residents. The joint distribution of this HMM for multi-resident activity modelling simply is:

p = p(o1|a1)p(a1)

T∏

t=2

p(ot |at )p(at |at−1) (7)

Compare to the other variants this model require larger storage for emission probability
table, similar as gd-cHMM. However, this may be useful for inference since it does not need
to combine M small transition probability tables as in the other HMMs, except pHMM.

4 Mixed-dependencymodels

Previous section studies various variants of HMMs, each represents a type of activity
dependency and interaction in smart home environments. We argue that the complexity of
multi-resident activities would require more than one type of dependency for better rea-
soning. In this section, first we propose an ensemble of HMMs to combine different type
of activity dependencies. Then we generalize the idea to propose another novel model that
mixes the dependencies and subsumes the ensemble.

4.1 Ensemblemodel

Let us consider an ensemble of fHMM, cd-HMM and gd-HMM where parallel dependency,
cross dependency and group dependency are combined. Note that for simplicity we only use
the HMMs that have the same representation of environment. The idea here is to constrain
the HMMs together such that the most likely sequence of activities must maximise the
combined probabilities of all HMMs. For example, we can represent the ensemble as the
sum of the probabilities as: pgd-hmm + pcd-hmm + pfhmm. With this, the learning is efficient
by applying maximum likelihood estimate to each model separately. However, we are not
sure that whether dynamic programming algorithm in HMMs, i.e. Viterbi, can be applicable
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to the sum of probabilities. Therefore, to ease the inference we propose an ensemble model
which is formularised in a closed form of the combined probabilities in log-space as:

φmd-HMM = log pgd-hmm + log pcd-hmm + log pfhmm (8)

We call this ensemble as mix-dependency HMM or md-HMM. After training the md-HMM
by maximising the log-likelihood of each HMM in the ensemble we can combine them for
prediction as:

a∗1:T = arg max
a1:T

(φmd-HMM(o1:T , a1:T )) (9)

This can be done through dynamic programming, similar as in HMMs. Let us denote μt =
maxa1:t−1 p(at = j, a1:t−1, o1:t ) we have:

μt(j) = log(p(ot |at = j)) + max
j ′ [log(pgd-hmm(at = j |at−1 = j ′))

+ log(pcd-hmm(at = j |at−1 = j ′)) + log(pfhmm(at = j |at−1 = j ′))
+μt−1(j

′)] (10)

In order to find the most probable activities, first we find a∗T = j∗ = arg maxj μT (j)

and then trace back to get a∗T −1 = arg maxj ′ [log(pgd-hmm(aT = j∗|aT −1 = j ′)) +
log(pcd-hmm(at = j |at−1 = j ′)) + log(pfhmm(aT = j∗|aT −1 = j ′)) + μT −1(j

′)] in (10).
We repeat this process to infer the whole sequence of activities a∗T , a∗T −1, ..., a∗1, which
can be done efficiently using dynamic programming.

4.2 Mixture of dependencies

We observe that the emission probability table does not have important role as the trans-
mission probabilities in activity modelling. We also find that the influence of each type
of dependency varies in different environments, depending on the complexity of the occu-
pants’ activities. Therefore we generalize the log-probability in the ensemble such that each
type of dependency is assigned with a different weights. This can be seen as a mixture of
weighted log-probabilities which we call mixed-dependency model (MDM). MDM is a sin-
gle model which capture all the dependencies, rather than an ensemble of different HMMs.
The combined log-probability of this model is:

φMDM = log p(ot |at ) + α log p(a0) + (β + γ )
∑

m

log p(am,0)

+
∑

t

[
α log p(at |at−1) +

∑

m

β log p(am,t |at−1) + γ log p(am,t |am,t−1)

]

(11)

where α, β, γ are non-negative weights. We can show that this MDM subsumes fHMM, cd-
fHMM, gd-HMM and also the ensemble md-HMM. Indeed, the combined log-probability
of MDM is equivalent to the log-probabilities of fHMM, cd-fHMM and gd-HMM with the
assignments (α = 0, β = 0, γ = 1), (α = 0, β = 1, γ = 0) and (α = 1, β = 0, γ = 0)

respectively. Similarly, if we set α = β = γ = 1/3 we would have φMDM ∝ φmd-HMM.
Interestingly, if we maximise the combined log-likelihood from φMDM given a constraint
that α + β + γ = 1 we end up in finding the best model among fHMM, cd-fHMM and
gd-HMM. This is similar as applying linear programming to maximise the log-likelihood of
MDM while setting α, β, γ as variables. In practice, these values are selected empirically
as shown in the experiments.
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Similar to (10) in md-HMM, inference in MDM is efficient with μt(j) as:

μt(j) = log(p(ot |at = j)) + max
j ′ [α log p(at |at−1)

+
∑

m

β log p(am,t |at−1) + γ log p(am,t |am,t−1) + μt−1(j
′)] (12)

5 Related work

In multi-resident smart homes, HMMs [24] have been studied intensively, as being showed
in previous studies [1, 5, 8, 25]. The first model could be employed is single HMM.
However, due to the complexity of multiple activities it may need some modification. For
example, the activities can be combined as joint labels so that they can be represented by
a single hidden variable [5]. Another method to model the activities of multiple residents
is to create multiple HMMs, one for each resident [6]. Such model, as known as parallel
HMM, has been evaluated in the case that data association is provided. Another approach
is coupling HMMs by assuming that the activity of a resident is dependent not only on his
previous activity but also on the previous activities of other residents. There were proposals
of coupled HMM and factorial HMM in computer vision domain [4], but only cHMM was
employed for sensor data [6]. Combining HMMs of the same type was studied in [13]. Dif-
ferent from that, in this paper we ensemble HMMs of various types for activity recognition.
Besides HMMs, Conditional Random Fields (CRFs) [10, 18] and incremental decision trees
(IDT) [23] also have been used for multi-resident activity recognition.

6 Experiments

6.1 Datasets

The CASAS data2 was collected in the Washington State University Smart D9epartment
Testbed with multi-residents where each resident performs 15 unique activities [9]. The data
is collected in 26 days in a smart home equipped with 37 ambient sensors

The ARAS data3 [1] is collected in two different houses, denoted as House A and House
B, in 30 days. In these environments, there are 20 sensors for two residents in each house.

6.2 Feature representations

There are several different ways to represent sensors’ state, as follows. The easiest way is,
one can treat each state of all sensors as a “word” in a vocabulary set which has the size
of

∏
i |si |, where |si | is the number of states of sensor i. Another representation method is

to store the values of all sensors in a vector, as in [25]. However, one may argue that only
a subset of sensors are triggered by human’s activities at a time. Therefore, it is still able
to use a vector to represent the observation, but an element i is set to 1 if and only if the
ith sensor changes its state, similar as [5]. Finally, we represent the sensors state as a one-
hot vector where all elements are set to 0s except one element whose corresponding sensor

2http://ailab.eecs.wsu.edu/casas/
3http://www.cmpe.boun.edu.tr/aras/
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Table 2 Evaluation results of six variants of HMMs using leave-one-out validation

CASAS ARAS House-A ARAS House-B

R1 R2 All R1 R2 All R1 R2 All

pHMM dis. 51.338 50.242 33.899 43.104 21.797 16.563 88.732 78.135 75.332

vec1. 32.664 26.464 11.927 53.696 23.025 16.556 88.968 77.429 74.794

vec2. 51.081 49.104 32.910 40.069 32.897 19.752 46.228 38.615 34.151

vec3. 52.091 51.023 34.777 n/a n/a n/a n/a n/a n/a

cHMM dis. 62.661 63.887 46.321 43.724 23.969 17.110 88.823 78.049 75.306

vec1. 32.733 26.618 12.780 43.716 37.336 17.036 89.051 77.473 74.821

vec2. 63.986 64.461 47.131 39.747 32.917 20.080 45.091 38.119 34.099

vec3. 64.858 64.289 48.183 n/a n/a n/a n/a n/a n/a

gd-cHMM dis. 70.760 69.144 59.330 43.606 24.024 17.039 88.752 78.101 75.305

vec1. 34.023 27.811 13.860 43.247 37.347 16.964 88.987 77.521 74.822

vec2. 70.554 68.670 58.907 39.588 32.812 19.885 49.140 46.496 40.247

vec3. 72.852 70.794 61.839 n/a n/a n/a n/a n/a n/a

fHMM dis. 59.747 56.780 43.547 34.281 42.571 21.985 90.251 81.456 79.267

vec1. 32.206 26.646 15.866 38.395 44.509 26.718 90.735 81.733 79.386

vec2. 56.098 52.627 38.662 23.550 30.632 07.985 66.147 62.769 45.928

vec3. 58.248 55.793 41.259 n/a n/a n/a n/a n/a n/a

cd-fHMM dis. 71.653 69.710 56.554 37.887 44.615 25.278 89.563 84.246 81.652

vec1. 33.694 28.665 17.255 40.812 42.729 28.267 89.337 83.398 80.847

vec2. 69.157 67.062 53.550 40.976 48.309 18.586 74.931 67.201 59.822

vec3. 71.976 69.254 56.511 n/a n/a n/a n/a n/a n/a

gd-HMM dis. 77.368 78.267 69.114 38.017 45.398 25.487 89.449 84.318 81.717

vec1. 34.346 29.882 18.403 40.692 43.333 28.250 89.119 83.456 80.802

vec2. 75.617 75.188 66.542 41.236 48.056 18.520 79.546 71.039 67.382

vec3. 77.706 77.540 69.127 n/a n/a n/a n/a n/a n/a

md-HMM dis. 57.939 60.567 47.314 45.369 52.850 31.857 90.227 86.035 83.173

vec1. 34.415 28.055 17.095 46.600 50.588 33.331 89.918 85.023 82.285

vec2. 56.542 58.887 45.210 48.292 62.438 31.475 82.241 78.610 73.664

vec3. 59.307 61.388 47.889 n/a n/a n/a n/a n/a n/a

MDM dis. 77.791 78.529 69.335 64.688 80.453 57.125 94.492 91.998 89.821

vec1. 34.592 29.921 18.658 60.813 78.413 53.119 94.449 72.216 90.109

vec2. 75.245 75.128 66.983 48.291 62.438 31.475 82.840 78.610 73.664

vec3. 78.459 78.014 69.865 n/a n/a n/a n/a n/a n/a

“R1”, “R2” indicate the average accuracy for each resident and “All” indicates the accuracy for all residents

has its value recorded along with the activities (no matter if the value is “ON” or “OFF”).
This element is set to 1. This type of representation can only be obtained from the CASAS
dataset. In Table 2 the notations “dis.”, “vec1.”, “vec2”, “vec3” indicate four different ways
to represent the sensors’ states as discussed above respectively.

In the experiments we use leave-one-out cross validation for all datasets. In particular,
the data of one day (one file) is employed for evaluation and the data of the other days
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are for training the models. We repeat the evaluation for every day and report the average
accuracy.

6.3 Experimental results

6.3.1 Single dependency

In CASAS dataset, gd-HMM achieves much higher performance than the other variants with
69.127% accuracy. In comparison with other works which use the same evaluation method,
in [18] the iterative CRF achieves 64.16% and in [6] pHMM achieves 61.78% accuracy.
In [25] and [5], the authors report the accuracy of 60.60% and 75.77% respectively, but
different from us they use threefold cross-validation. Also note that all these methods rely
on the prior knowledge of data association while our HMMs do not. In ARAS House A
and ARAS House B, cd-fHMM and gd-HMM achieve similar results which suggest that
the current activities should be dependent on the combination of previous acitivities. The
results in ARAS House A are small due to the complexity in its collected data, i.e. the
number of available sensor states is ∼ 9 times larger than CASAS and ∼ 3 times larger
than ARAS House B. For completeness, we also report the results in [1] with 61.5% and
76.2% for ARAS House A and ARAS House B respectively. Different from us, in that work
the activities of each residents are grouped into 6 categories while we use all 27 activities.
Overall, without data association the performance of parallel HMM drops dramatically.
When coupling the activities using crossed dependencies, as in cHMM and cd-fHMM, we
can observe improvement of performance. This means that activities of a resident indeed
depend on the others’.

For feature representation, despite being simple discrete representation of sensors’ states
works very effectively in all three datasets. In practice the number of the states would grow
exponentially with respect to the number of sensors. Fortunately, not all states are available,
for example in CASAS, ARAS House A, and ARAS House B we have only 73, 655, and 200
states of sensors respectively. However, for a larger dataset with more residents, it would be
more preferable to use vector representation for the sensors’ states.

6.3.2 Mix dependency

From the results of six HMMs we find that modelling the interaction between residents and
environment separately is not effective. Therefore we decide to construct an ensemble from
fHMM, cdFHMM and gd-HMM, those consider the environment’s state as a result of all
residents’ activities, as described in Section 4. Here α, β and γ are selected empirically.
Two last rows in Table 2 show the results of ensemble model (md-HMM) and the mixed-
dependency model (MDM) in comparison to the best accuracy from six HMMs extracted
from Table 2. The results indicate that the ensemble model seems not very useful in CASAS
data. This is because there are many misclassified activities from the parallel part which
performs poorly in this case. In ARAS data, md-HMM performs very well and achieves
better results than all variants. Combine with the performance of MDM, we can confirm
our hypothesis that complexity of activities must be captured by multiple dependencies.
Our MDM achieves impressive results in all three datasets, notably in ARAS data where it
outperforms the others model with large margins. In particular, compare to the best HMMs
from six variants MDM achieves higher accuracy of 0.738% in CASAS dataset, 28.858%
in ARAS house A, and 8.392% in ARAS house B.
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Fig. 1 Performance of all models on CASAS, ARAS House A and ARAS House B environments using
model selection

6.3.3 Model selection

One concern over the selection of α, β and γ may be raised when applying MDM in practice.
In order to show the effectiveness of our model we now evaluate MDM with a held-out
test set. We apply grid-like search to select the α, β and γ using a separate validation set.
In CASAS data we use 24 days for training, 1 day for validation and 1 day for testing. In
ARAS House A and ARAS House B we partition the data into 10 days for training, 10 days
for validation, and 10 days for testing. The results are shown in Fig. 1. As we can see, MDM
performs better than other models. In CASAS, MDM is slightly better than the best result
from other models (0.69%). In ARAS House B, MDM is 2.14% better than the best HMMs
and 1.59% better than the ensembles. Especially in ARAS House A MDM achieves at least
22.80% higher than other models. However, we observe that MDM may get overfitting
in the case of CASAS data if the training data size small. This makes sense because the
activities in CASAS is much less complex than the activities in ARAS.

For completeness we also compare MDM with incremental decision trees [23]. Similar
to them, for training we use the first 1, 7, 14 and 21 days and we test the models on days
from 22 to 28. We use days 29 and 30 for model selection. The results in Fig. 2 show that
MDM peforms better than IDT. With different number of days for training, in House A
MDM has 0.86%, 2.52%, 4.18%, and 3.81% higher accuracy than IDT; and in House B
MDM is 0.43%, 1.41%, 2.32% and 4.13% higher.

6.3.4 Compare with deep learning methods

Recently, deep learning has been employed for multi-resident activity recognition [22, 27].
In this experiment, we compare our MDM model with two notable deep learning models
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Fig. 2 MDM v.s IDT in ARAS House A & B

for sequence classification, namely Long Short-term Memory (LSTM) [17, 19] and Gated
Recurrent Unit (GRU) [7]. In order to apply LSTM and GRU for the task in this paper we
use multi ouputs to present activities of the residents. As we mentioned earlier, this work
focuses on investigating the influence of multi-residents’ activities on their future actions,
not on performance improvement. HMM is used because it is simple and easy to explain the
dependencies of the activities. As we can see in Table 3, its simplicity is also a disadvantage
in comparison to complex deep learning models. It intrigues an idea for future work on
incorporating mixed-dependency with deep recurrent neural networks.

7 Conclusions

This paper studies smart home environment with ambient settings, aiming to understand the
insights of the behaviours of multiple residents. First, we break down the dynamics in such
environment into activity dependencies and human-environment interaction. From that we
construct six variants of HMMs for multi-resident activity modelling. We show that, good
results can be achieved by using simple HMMs that capture the combined activities of all

Table 3 MDM versus LSTM and
GRU ARAS A ARAS B CASAS

LSTM 64.25 74.19 77.49

GRU 65.16 75.28 77.91

MDM 50.43 75.03 57.27
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residents. Second, the key contribution of the paper is our proposal of a mixed-dependency
model to deal with the complexity of multiple residents’ activities. The experimental results
show that our model outperforms other dynamic Bayesian counterparts such as HMMs and
CRFs which have been employed for activity recognition in ambient environment. Although
the proposed MDM is less effective than deep learning approaches, it has shown a promising
idea of incorporating mixed dependency with recurrent neural networks, which will be a
future work.
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