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Abstract
The multi-source image fusion has been a hot topic during the recent years because of its
higher detection rate. To improve the accuracy of pig-body multi-feature detection, a
multi-source image fusion method was adopted in this field. However, the traditional
multi-source image fusion methods could not obtain better contrast and more details of
the fused image. To better detect shape and temperature feature of pig-body, a novel
infrared and visible image fusion method was proposed in non-subsampled contourlet
transform (NSCT) domain and named NSCT-GF-IAG. Through this technique, the
visible and infrared images were first decomposed into a series of multi-scale and
multi-directional sub-bands using NSCT. Then, to better represent the fine-scale of
texture information and coarse-scale detail information, Gabor filter with even-
symmetry and improved average gradient (IAG) were employed to fuse low-frequency
and high-frequency sub-bands, respectively. Next, the fused coefficients were recon-
structed into a final fusion image by inverse NSCT. Finally, the shape feature of pig-body
was obtained by automatic threshold segmentation and optimized by morphological
processing. Moreover, the highest temperature was extracted based on shape segmenta-
tion of pig-body. Experimental results showed that the proposed fusion method for
detecting multi-feature was capable of achieving 2.175–5.129% higher average segmen-
tation rate than the prevailing conventional methods. Besides this, the proposed method
also improved efficiency in terms of time consumption.
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1 Introduction

Nowadays, the universal law of life has been recognized by the study of phenotypic features of
common modal animals, such as zebrafish [10, 18], mouse [26], and rat [32] etc. Traditional
modal animals have made contributions to the understanding of the elements, such as cells,
tissues functions, and the basic mechanisms of life. Therefore, the modal animal phenotypic
feature analysis is an effective way to understand human physiology and pathology. However,
the life ways of small-scale modal animals are different from human, which do not meet the
needs of human major diseases research. So the study on multi-feature representation method
of large-scale modal animals has become an important research area. In this regard, the subject
of this study encompasses the detection of pig-body shape and temperature feature for
breeding purposes.

The current pig-body shape segmentation systems capture pig-bodies in a controlled
environment as part of the body shape segmentation process. It is possible to control the
illumination, background, and quality of images. Under these conditions, the performance of
pig-body shape segmentation algorithms is greatly enhanced. However, there is still a need for
more robust and efficient pig-body shape segmentation algorithms to address challenges such
as variations in illumination, pose, etc.

With the development of imaging technology, the pig-body segmentation method based on
visible images (VI) is proposed, which has achieved high accuracy [15]. However, it cannot
effectively segment pig-body in low light, especially the tail and legs, as shown in Fig. 1e,g.
As the hidden targets can be found in infrared (IR) images based on dim environment, the pig-
body segmentation through IR images is achieved according to bull-body segmentation [34].
However, it cannot detect ears effectively, as shown in Fig. 1b, d, f, h. Under different
environments, the segmentation results of various parts pig-body, such as ears, legs, and tails,
are different in VI and IR images, as shown in Fig. 1. Therefore, the IR and VI image fusion
can provide comprehensive and useful information through integrating complementary infor-
mation and removing redundancy in a multi-source image [2, 42]. Moreover, the temperature
feature of pig-body can effectively extract based on more accurate pig-body shape segmenta-
tion results and infrared pig-body images.

The structure of this paper is that the related works are introduced in section 2, materials
and methods are presented in section 3, experimental results and discussion are provided in
section 4, and the conclusions and future work are given in section 5.

2 Related works

2.1 Pig-body segmentation

Pig-body is important due to its unique shape and structure. So several methods have been
devised to segment pig-body. To exactly recognize the size and features of pigs’ bodies, Shen
and Luo [33] proposed a segmentation system based on visual image analysis. To automat-
ically segment the three-dimensional structure of a pig-body, a 3D visual imaging based pig-
body reconstruction system was proposed by Font-I-Furnols et al. [7]. However, the pig-body
segmentation method based on visible images varies due to environmental changes, such as
illumination, etc. Therefore, it is hard to obtain good results concerning a pig-body segmen-
tation. Based on the advantages of the infrared imaging [34], some multi-source image fusion
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methods have been proposed for target segmentation [6, 27, 45]. The experimental results
reveal that these methods, based on visible and infrared image fusion, achieve better
segmentation.

2.2 Multi-source image fusion

The traditional multi-focus image fusion algorithms usually are divided into two aspects, based
on spatial and transform domain. Spatial domain based fusion methods, such as principal
component analysis (PCA) [14] and intensity hue saturation (IHS) [17], provide a fused image
with lower contrast information. As the image features with various scales are sensitive to the
human visual system [4], multi-scale transformations are effective for fusing the information of
multi-focus images. For example discrete wavelet transform (DWT) [44], discrete cosine
transform (DCT) [13, 37], contourlet pyramid (CT) [8], and shearlet transform (ST) [35].
However, there are two drawbacks. One is that these transform methods cannot fully represent
the curves and edges of multisource images. The other is that ST and CT are sensitive to shift
variance and easily cause Gibbs phenomenon in the fused image due to sampling operator.
Nowadays, the learning-based fusion methods has proposed to improve the adaptability of
algorithm, such as convolutional neural network (CNN) [21], generative adversarial network
(GAN) [25]. However, they are time consuming for training and have high hardware
requirements.

To effectively solve the above issues and improve the performance of pig-body segmen-
tation rate, a novel multisource image fusion method is proposed for pig-body shape segmen-
tation and temperature detection based on Gabor feature and IAG, named as NSCT-GF-IAG.
Through this procedure, a pig-body multi-feature detection model is achieved to segment the
shape feature by fusing VI and IR images using Gabor energy map and improved average
gradient (IAG) in the NSCT domain. Then the fused images are segmented by automatic

(a) (b)

(g) (h)

(c) (d)

(e) (f)

Fig. 1 The segmentation of pig-body shape based on visible and infrared images under different situations. a-d
the detection results based on clearer environment, e-h the detection results based on the dimmer environment
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threshold method and morphological processing. Next, the temperature of pig-bodies is
detected based on segmentation results. Finally, the experimental results show that the
proposed fusion method has a better effect in the pig-body shape segmentation and provides
a higher accuracy rate in a homemade database. The flowchart of the proposed method is
shown in Fig. 2.

Generally, the advantages of the proposed method are summarized as follows:

(1) In the low-frequency sub-bands, to construct a new significant measuring method, the
local energy features of multisource pig-body images are extracted by even-symmetry
Gabor filter with different parameters, respectively. Then, an effective fusion rule of low-
frequency sub-bands is proposed based on the new significant measures for detecting
pig-body.

(2) In the high-frequency sub-bands, to better represent large-scale texture and edge infor-
mation, the high-frequency energy features are extracted by improved average gradient
based on pig-body images. Then, the maximum strategy is adopted for fusing high
frequency sub-bands.

(3) The proposed pig-body segmentation framework achieves a better segmentation rate than
other prevailing methods, and improve the detection rate of pig-body shape and
temperature.

3 Materials and methods

The goal of this work was to improve the segmentation rate of pig-body images based on
situations with different illumination. For this purpose, an effective method was proposed
based on Gabor filter with even-symmetry and improved average gradient in NSCT domain.
The algorithm was divided into four major phases. First, IR and VI images were decomposed
into a series of multi-scale and multi-directional sub-bands by NSCT. Next, the proposed
fusion rules were adapted to fuse the low and high-frequency coefficients. Then, the fused
images of pig-body were obtained by inverse NSCT based on different situations. Finally,
binary images were presented by automatic threshold segmentation and morphological oper-
ation, and the temperature features were obtained based on segmentation results.

3.1 Non-subsampled contourlet transform

Due to the shift invariance of NSCT, the IR and VI images were decomposed into
multiscale and multidirectional sub-bands using the non-subsampled pyramid filter
bank (NSPFB) and the non-subsampled directional filter bank (NSDFB). First, the
multiscale sub-bands were obtained by pyramid filter bank (PFB) without up-sampling
and down-sampling. Thus, one low-frequency and one high-frequency sub-band were
generated at each decomposition level. Non-subsampled pyramid (NSP) decomposition
was achieved by iteratively decomposing the low-frequency sub-band. For the number
of decomposition level (k), sub-bands (k + 1) were obtained by NSP, which were the
same size as the original images. Then, the high-frequency sub-bands at each level
were decomposed by NSDFB at l directions. There were 2l directional sub-bands
generated, which contained richer directional information. The processing of decom-
position with NSCT is shown in Fig. 3.
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Fig. 2 Flowchart of the proposed detection framework
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Here, H0(z) and H1(z) represent a low-pass and a high-pass filters respectively, in first step,
H0(z2) and H1(z2) are low and high pass filters respectively in the second step, k = 3.

3.2 The fusion rule of low-frequency sub-bands

To enhance the curve structure and fine-scale texture information [38], the low-frequency sub-
bands were described by Gabor filter with even-symmetry. The magnitude feature with eight
orientations (0°, 22.5°, 45°, 67.5°, 90°, 112.5°, 135°, and 157.5°) [39] were extracted through
Gabor filter with even-symmetry, which is represented by M{i}. The formula of Gabor filter
with even symmetrical and multi-orientation is shown as

G 1f g x; yð Þ ¼ γ
2πσ2

exp −
1

2

x2θi þ γ2y2θi
σ2

 !( )
exp bj2πxθi� �

ð2Þ

M if g x; yð Þ ¼ I x; yð Þ⨂Re G if g x; yð Þð Þ ð3Þ

xθi
yθi

� �
¼ cosθi sinθi

−sinθi cosθ

� �
x
y

� �
ð4Þ

Where, fi is the center frequency of the ith orientation, θi is the angle of the ith orientation, i =
8, σ and γ are the scale of Gabor filter and the length-width radio of envelope respectively.
Due to the different curve structure of IR and VI images, varying parameters were adapted in
multisource images. σIR = 3 and σVI = 6, I(x, y) represents IR or VI image, and Re(G{i}) is the
real part of G{i}.

Then, the Gabor energy feature was obtained by choosing the maximum of all directions in
the m × m local window and the formula is shown as follows:

E x; yð Þ ¼ MAX abs M if g x; yð Þð Þð Þ2
� �

ð5Þ

Where, i represents the number of orientations,MAX(.) is the maximum value in the energy of
all orientations, E(.) is the Gabor energy feature, m = 7.

source image

NSPFB

k=1

NSPFB

k=2

NSDFB

NSDFB

Fig. 3 The multi-scale and multi-directional decompositions of NSCT
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Finally, to better fine-scale feature description of pig-body in low-frequency sub-bands, the
maximum fusion rule was adopted based on local Gabor-based energy feature.

LF F ¼ LFIR EIR
L x; yð Þ≥EVI

L x; yð Þ
LFVI EIR

L x; yð Þ < EVI
L x; yð Þ

�
ð6Þ

Where, EIR
L and EVI

L are Gabor energy map of IR and VI low-frequency sub-bands, respec-
tively. LFF represents the low-frequency fused sub-bands.

3.3 The fusion rule of high-frequency sub-bands

Previously, the average gradient fusion rule represented better coarse-scale textures of high-
frequency sub-bands [8]. However, the diagonal gradients were ignored in the fusion rule. In
this work, an improved average gradient (IAG) was adopted to enhance the representation of
coarse-scale details in high-frequency coefficients fusion. For this purpose, the average
gradient of region R was computed first, and formulated as follows:

G ¼ 1

M−1ð Þ N−1ð Þ ∑
M−1

i¼1
∑
N−1

J¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ΔI2x x; yð Þ þ ΔI2y x; yð Þ

r
þ ΔI2d x; yð Þ þ ΔI2b x; yð Þ

�
=4 ð7Þ

Where, ΔIx is derivative of I(x, y)in X direction, ΔIy is derivative of I(x, y) in Y direction, ΔId is
derivative of I(x, y)in diagonal direction,ΔIb is derivative of I(x, y) in back-diagonal direction. The size
of region R isM × N.

Next, the fusion rule of high-frequency sub-bands was determined by choosing the
maximum based on IAG.

HF F ¼ HFIR; GIR
H x; yð Þ≥GVI

H x; yð Þ
HFVI ; GIR

H x; yð Þ < GVI
H x; yð Þ

�
ð8Þ

Where, GIR
H and GVI

H are IAG of IR and VI high-frequency sub-bands, respectively. HFF is the
high-frequency fused sub-bands.

3.4 Image reconstruction and binarization

To achieve pig-body image reconstruction, inverse non-subsampled contourlet transform
(INSCT) was used to obtain the final fused image. Then, the binary pig-body images were
obtained by automatic threshold segmentation, to remove the holes and noise, the morpho-
logical operation was adopted to optimize the binary pig-body image. Finally, highest tem-
perature of pig-body was detected based on segmentation results.

4 Experimental results and discussion

The proposed detection framework was implemented using MATLAB R2014a on a standard
desktop PC, which was equipped with an Intel(R) Core(TM) i5–6200 CPU @2.3GHz and
4GB RAM. To analyze the performance of the proposed pig-body multi-feature detection
method, a homemade database was built by FLIR C2. In this section, the schematic diagram of
mulit-source image pairs were shown in Fig. 4. The figure showed the difference illumination
situation of visible pig-body images in each line. Moreover, in the following detailed
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Fig. 4 The schematic diagram of homemade database (a) VI pig-body images (b) IR pig-body images
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Fig. 5 Source images of pig-body and comparable results (a) VI pig-body image (b) IR pig-body image (c)
Fused image obtained by the proposed fusion method (d) comparison of information entropy (e) comparison of
standard deviation
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experimental image results, a pair of multi-source images were selected under different
illumination situations, and there were four pairs of images in total, which to test performance
of proposed method under illumination variation situations.

4.1 Objective evaluation

In this study, seven objective metrics were adopted to evaluate the fusion and detection results,
which were average gradient (AG) [1], information entropy (IE) [23], standard deviation (SD)
[24], spatial frequency (SF) [16], average pixel intensity (API) [31], similarity of structure
information measure (SSIM) [22] and Accuracy (Acc).

AG was used to measure the sharpness of the fused image and defined as:

AG ¼ 1

M−1ð Þ N−1ð Þ � ∑
M−1

i¼1
∑
N−1

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔI2x þ ΔI2y
� �

=2

r
ð9Þ

Where M and N is the number of row and column in the fused image respectively.
IE was used to measure the abundance of information in the fused image and defined as:

IE ¼ − ∑
L

i¼0
Pilog2Pi ð10Þ

Where Pi ¼ Ni
N , Ni is the number of pixels whose value is i, and N is the number of total pixels.

SD was used to measure the contrast of the fused image and defined as:

SD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

M−1ð Þ N−1ð Þ ∑
M−1

i¼1
∑
N−1

j¼1
I i; jð Þ−I i; jð Þ
� �s

ð11Þ

Where, I i; jð Þ is the average of the fused image.
SF was used to measure the overall structural information in the fused image and defined as:

SF ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
RFð Þ2

q
þ CFð Þ2 ð12Þ

Table 1 Performance of proposed fusion model in different situations

Situations Images Performance

AG API IE SD SF

#1 VI 2.515 2.583 5.393 4.463 2.370
IR 0.571 0.680 3.017 2.845 2.399
Fused 8.763 10.389 7.876 21.965 19.670

#2 VI 3.285 3.406 5.836 5.528 3.960
IR 0.836 0.975 3.601 3.191 2.998
Fused 10.672 11.194 8.126 15.763 17.489

#3 VI 2.982 3.038 5.829 3.635 2.064
IR 0.653 0.738 3.253 2.158 1.952
Fused 6.844 6.801 7.507 6.523 6.397

#4 VI 1.521 1.580 4.258 3.493 2.012
IR 0.985 1.052 3.557 3.150 1.753
Fused 5.985 7.473 7.272 12.544 12.135
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Where, RF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M�N ∑
M

i¼1
∑
N

j¼2
I i; jð Þ−I i; j−1ð Þð Þ2;CF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M�N ∑
M

i¼2
∑
N

j¼1
I i; jð Þ−I i−1; jð Þð Þ2

svuut
API was used to measure the average brightness of the fused image and defined as:

API ¼ 1

M � N
∑
M−1

i¼1
∑
N−1

j¼1
I i; jð Þ ð13Þ

Where I(i, j) is the intensity of pixel at (i, j),M and N are the number of row and column in the
fused image respectively.

(a)
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(b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)
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(e) (f) (g) (h)

(i) (j) (k) (l)
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(e) (f) (g) (h)

(i) (j) (k) (l)
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Fig. 6 The fusion results of different methods based on different situations (a) VI pig-body image, (b) IR pig-
body image, (c) DWT, (d) DCT, (e) ST, (f) CT, (g) NSCT, (h) NSCT-PCNN, (i) NSST, (j) CNN, (k) GAN, (l)
Proposed

Table 2 The difference fusion methods based on low-frequency and high-frequency subbands

Fusion methods Low-frequency subbands High-frequency subbands

The proposed method Gabor filter with even-symmetry Improved average gradient (IAG)
GAN maximum maximum
CNN maximum maximum
NSST visual saliency spike cortical model (SCM)
NSCT-PCNN pulse coupled neural network (PCNN) pulse coupled neural network (PCNN)
NSCT maximum entropy gradient feature
ST maximum spatial frequency maximum spatial frequency
CT maximum spatial frequency maximum spatial frequency
DCT maximum spatial frequency maximum spatial frequency
DWT maximum directive contrast maximum directive contrast
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SSIM was used to measure the similarity of image structure information and defined as:

SSIMX ;F ¼ ∑
x; f

2μxμ f þ C1

μ2
x þ μ2

f þ C1
:
2σxσ f þ C2

σ2
x þ σ2f þ C2

:
σxf þ C3

σxσ f þ C3
ð14Þ

SSIM ¼ SSIMA;F þ SSIMB;F ð15Þ

Fig. 7 The comparison of different methods with objective evaluations based on different situations (a-b)
brighter environment (c-d) dimmer environment

Fig. 8 The comparison of different methods with objective evaluations in homemade database
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Where A and B are multi-source images, μx and σx are mean and variance of multisource
image, respectively. μf and σf are mean and variance of fused image, respectively. σxf is
covariance between multisource image and fused image.

Table 4 Computation times of various fusion methods

Evaluations Situations Fusion methods

DWT DCT ST CT NSCT NSCT-PCNN NSST Proposed

Time/s #1 1.193 0.999 1.447 1.151 22.739 33.328 18.363 17.787
#2 1.425 1.062 1.276 1.192 22.285 33.886 18.626 17.170
#3 2.676 1.443 1.197 1.585 22.821 36.152 18.347 16.584
#4 0.988 1.069 1.290 1.291 22.631 33.528 18.260 17.637

#1

(a)

 

#2 #3 #4

 

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

Fig. 9 The segmentation results of different methods based on different illumination situations (a) IR pig-body
image, bVI pig-body image, cDWT, dDCT, e ST, f CT, gNSCT, hNSCT-PCNN, iNSST, j CNN, kGAN and
l Proposed
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Acc was used to measure the detection rate of the fused image and defined as:

Acc ¼ TP þ TN
TP þ TN þ FP þ FN

� 100% ð16Þ

Where TP and TN are true positive and true negative respectively, FP and FN are false positive
and false negative respectively.

4.2 Fusion performance of the proposed model

To verify the performance of the proposed fusion method, four pairs of multisource pig-body
were selected based on different situations and shown in Fig. 5a-b. The corresponding fused
images based on the proposed method are shown in Fig. 5c. It can be clearly noticed that the
fused pig-body images were approximately similar to the VI images by fusing the features of
VI and IR images. Moreover, the visual effects of VI, IR, and the fused images were also
verified by computing AG, API, IE, SD and SF. The results are shown in Table 1. Further-
more, the comparative results of IE and SD are shown in Fig. 5d-e, which depict that higher
information entropy and standard deviation were obtained by the proposed fusion model. They
also reflect that the proposed fusion model had a great improvement in information and
contrast of fused images.
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CNN
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%Fig. 10 The comparison of
detection accuracy in homemade
database

Fig. 11 The detection and position of highest temperature and the position in different situations
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4.3 Fusion results of the proposed detection model

The performance of the proposed multi-source image fusion method was evaluated by
different experimentation with pig-body images, which was further utilized to extract pig-
body regions. To verify the performance of the fusion method, four VI and IR pig-body image
pairs in different illumination were considered and shown in Fig. 6a-b. Moreover, the proposed
fusion method was compared with six existing methods, namely, discrete wavelet transform
(DWT) [3, 30], discrete cosine transform (DCT) [19, 29], contourlet transform (CT) [28, 41],
shearlet transform (ST) [9, 20], NSCT [5, 43], NSCT-PCNN [36, 40], NSST [11, 12], CNN
[21], GAN [25]. The main difference between proposed method and other considered methods
was that the fusion methods of low-frequency and high-frequency subbands were different,
which were shown in Table 2. The final fused images of different fusion methods based on
different situations are shown in Fig. 6c-l. The figure shows that the proposed method had
some advantages in the visual effect, especially in dimmer situations, it clearly represents the
pig-body shape feature.

Furthermore, it was also superior to the other nine image fusion methods in objective
evaluations, as shown in Table 3. To intuitively compare the performance of different
multisource fusion methods, the comparative results are represented in scatter diagrams as
shown in Fig. 7. This also reflects that due to the better description of Gabor filter with even-
symmetry and IAG, the proposed method provided a significant improvement in visual effect,
as well as, the objective evaluation based on different situations, especially dimmer situations.

To testify the performance of the proposed fusion model in homemade database, the
comparative results were represented in line charts as shown in Fig. 8. The x-axis of Fig. 8
represented the number of multi-source image pairs of breeding pigs. The figure shows that the
fused image quality is best among 10 fusion methods in homemade database with different
situations. Moreover, the running times of various fusion methods based on transform domain
are shown in Table 4. Compared with NSCT-PCNN, NSCT and NSST, the proposed fusion
method consumed less running time. Because of the train processing of CNN and GAN take a
long time, respectively, they are not advantageous in running time.

4.4 Pig-body segmentation results

To verify the performance of the proposed pig-body segmentation model, 24 pig-body image
pairs were processed with the proposed fusion method and other existing fusion methods as

0 2 4 6 8 10 12 14 16 18 20 22 24 26

33

36

39Fig. 12 The detection and position
of highest temperature and the
position in different situations
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mentioned above. After obtaining all the 240 fused images with 10 different fusion methods,
shape features of pig-bodies were extracted by the automatic threshold method. To optimize
the segmentation results, the morphological operation was utilized to remove holes and noise.
To assess the performance of pig-body segmentation results based on 4 image pairs in different
situations, the VI and IR pig-body images with different illumination were segmented in Fig.
9a-b, respectively. The binarization of fused images with different situations based on different
fusion methods are shown in Fig. 9c-l. The extracted binary images in Fig. 9, reveal that the
proposed pig-body segmentation model is capable to segment higher integrity of pig-body
regions, especially the ears, legs, and tail, based on dimmer situations.

The proposed pig-body detection method achieved higher segmentation accuracy than all
the considered fusion methods, as shown in Table 5 above. As per Table 5, the average
performance of the proposed segmentation was 94.452%, which is 2.175–5.129% higher than
other considered methods. To prove the segmentation performance of proposed method, the
results were represented in line charts and shown in Fig. 10. The x-axis of Fig. 10 represented
the number of multi-source image pairs of breeding pigs. The figure shows that the proposed
detection method achieves highest segmentation rate among 10 different methods.

4.5 Pig-body temperature detection results

To eliminate the influence of ambient temperature on pig-body temperature detection, the
highest temperature of pig-body was computed based on pig-body shape segmentation and the
pixels of infrared pig-body image. Firstly, the shape segmentation results were normalized and
multiplied with infrared pig-body image. Then, because of each pixel value was the temper-
ature of pixel in infrared images, the highest temperature was extracted by comparing pixel by
pixel. Finally, the position of reference temperature in different situations were obtained by
FLIR Tools, as shown in Fig. 11. To detect the health degree of pig in a homemade database,
the highest temperature of pig-bodies were represented in line charts as shown in Fig. 12. This
figure shows that the highest temperature of pigs are all in the normal temperature range in the
homemade database.

5 Conclusion and future works

A novel infrared and visible image fusion method for pig-body detection was proposed based
on different illumination, named NSCT-GF-IAG. First, the NSCT was adapted to decompose
multisource images into a series of multi-scale and multi-directional sub-bands. Then, Gabor
filter with even-symmetry and IAG were used to fuse low-frequency and high-frequency sub-
bands, respectively. Next, the fused coefficients were directly fused into final pig-body fusion
image. Finally, the binary images of pig-body were presented by the automatic threshold
method and morphological operation. Further, the highest temperature of pig-body was
obtained based on segmentation results. The experimental results show that the proposed
detection method had a superior performance in improving the average detection rate
(94.452%) based on pig-body images in four different situations, which is 2.175–5.129%
higher than other considered methods. It lays a foundation for accurately measuring the
maximum temperature of pig-body.

This work mainly focused on improving the problem of pig-body shape and temperature
detection under different situations. Some parameters of the proposed algorithm were not
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selected automatically for optimal fusion performance. Future studies should focus on the
automatic selection of algorithm parameters, which may replace the process of parameter
determination with empirical values and experimentation. Moreover, the running time of the
proposed algorithm needs to be further reduced.
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