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Abstract
Despite excellent performance shown by spatially regularized discriminative correlation fil-
ters (SRDCF) for visual tracking, some issues remain open that hinder further boosting
their performance: first, SRDCF utilizes multiple training images to formulate its model,
which makes it unable to exploit the circulant structure of the training samples in learning,
leading to high computational burden; second, SRDCF is unable to efficiently exploit the
powerfully discriminative nonlinear kernels, further negatively affecting its performance.
In this paper, we present a novel spatial-temporally regularized complementary kernelized
CFs (STRCKCF) based tracking approach. First, by introducing spatial-temporal regular-
ization to the filter learning, the STRCKCF formulates its model with only one training
image, which can not only facilitate exploiting the circulant structure in learning, but also
reasonably approximate the SRDCF with multiple training images. Furthermore, by incor-
porating two types of kernels whose matrices are circulant, the STRCKCF is able to fully
take advantage of the complementary traits of the color and HOG features to learn a robust
target representation efficiently. Besides, our STRCKCF can be efficiently optimized via
the alternating direction method of multipliers (ADMM). Extensive evaluations on OTB100
and VOT2016 visual tracking benchmarks demonstrate that the proposed method achieves
favorable performance against state-of-the-art trackers with a speed of 40 fps on a single
CPU. Compared with SRDCF, STRCKCF provides a 8× speedup and achieves a gain of
5.5% AUC score on OTB100 and 8.4% EAO score on VOT2016.
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1 Introduction

Visual tracking is one of the most challenging tasks in computer vision with various appli-
cations such as intelligent video surveillance, video analysis, scene understanding, and so
on [4, 23, 42]. In the past decades, much attention has been attracted on model-free tracking
that initializes a bounding-box of an unknown target at the first frame. Generally, based on
the different appearance models, these trackers can be categorized into generative and dis-
criminative methods[5, 18, 53–57, 64]. Among them, the generative methods only exploit
target information while the discriminative ones also consider rich information from back-
grounds, thereby usually yielding much better performance than the generative ones [50].
Therefore, most state-of-the-art trackers are discriminative with much effort being expended
to improve their core components such as target representation, sampling, or online update
strategy [49].

Recent years have witnessed an explosive popularity of discriminative correlation filters
(DCF) for visual tracking [1, 15, 16, 25, 37, 39, 44, 52, 59–61, 63] because of their high effi-
ciency and accuracy. The standard DCF [16] facilitates using a variety of high-dimensional
features such as HOGs [16] and convolutional network (CNN) features [32] to design an
efficient and effective target representation. Furthermore, it employs efficient dense sam-
pling in learning and detection through circulantly shifting a base sample, which can use
FFT for acceleration. However, due to the circularity, the learned filters suffer from bound-
ary effects. Besides, it simply utilizes linear interpolation for online model update, which
causes severe errors when suffering from significant appearance variations. To address these
issues, the SRDCF [10] has been proposed that employs a spatial Gaussian window to
penalize CF coefficients depending on their spatial locations. Besides, SRDCF formulates
its model on multiple training images from historical frames, and couples DCF learning and
model updating, which does benefit the tracking accuracy. Galoogahi et al. [20] present
background-aware CFs for visual tracking that enables to learn CFs with real negative exam-
ples from the background. Mueller et al. [34] alleviate the boundary effects by explicitly
modelling global context in CF learning. Li et al. [25] introduce spatial-temporal regulariza-
tion into CF learning to handle the boundary effects. Lin et al. [29] utilize localization-aware
meta learning to guide the object tracking, aiming to handle the occluded or changed fea-
tures. However, these DCF-based approaches lead to some issues: first, it makes DCF
unable to exploit the circularity in learning, resulting in high computational cost; second, it
makes DCF difficult to efficiently exploit nonlinear kernels, and so DCF concatenates a set
of features into a high-dimensional feature vector and then learn rigid regression as a lin-
ear predictor, which may confuse the invariance-discriminative power of the features [47],
further affecting the performance boosting. Consequently, a natural choice is to exploit a
multi-kernel feature that combines several kernels to yield one strong feature.

In this paper, we study how to benefit from both spatial regularization and large train-
ing set as SRDCF and how to make full use of the invariance-discriminative power of the
features via multiple kernel learning (MKL), yet without losing efficiency. Specifically, we
introduce temporal regularization to reformulate the SRDCF with only one training image,
and find that our formulation can reasonably approximate the SRDCF with multiple training
images, but the former can be efficiently solved via ADMM. Furthermore, we introduce two
types of kernels with circulant data matrices into our formulation, fully taking advantages
of the complementary traits of color and Histogram of Oriented Gridients (HOG) features
to construct a robust representation. By exploiting the circularity, the proposed tracking is
formulated as learning CFs and the weight for each kernel via FFTs. We conduct extensive
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experiments on OTB100 and VOT2016, demonstrating that the proposed tracker achieves
favorable performance against a variety of state-of-the-art trackers with a speed of 40 fps on
a single CPU (8× speed up against SRDCF). Meanwhile, compared to SRDCF, our tracker
achieves a gain of 5.5% AUC score on OTB100 and 8.4% EAO score on VOT2016.

In the related work section, we briefly review the correlation filter tracking methods
and the spatial-temporal CF approaches. In the third section, we present our STRCKCF
model, which contains multiple kernels in the correlation filter learning. Furthermore, in
the experiment part, we make the state-of-the-art comparisons on the VOT and OTB bench-
marks, respectively. Finally, we obtain our conclusion in the last section. The The main
contributions of this paper are summarized as three-fold:

1. An effective color-kernel and hog-kernel complementary tracking model is proposed to
yield the robustness to the target color variations.

2. A novel spatial-temporal regularized correlation filter is formulated to constrain the ker-
nelized CF coefficients, which solves the temporal variation problem of object tracking
task very well.

3. The proposed STRCKCF with hand-crafted features achieves competitive results on the
OTB100 and VOT2016 datasets in terms of both accuracy and speed.

2 Related work

In the following, we briefly introduce some most related works to our method, and please
refer to [23, 26, 51] for detailed surveys about visual tracking.

Since Bolme et al. [3] introduce MOSSE into adaptive visual tracking that learns CFs
with a few samples in the frequency domain, numerous effort has been made to greatly
advance state-of-the-art tracking performance. Galoogahi et al. [19] present a multi-channel
MOSSE with promising performance. Henriques et al. [16] learn a kernelized CF (KCF)
via kernel trick with circulant kernel matrix and multi-channel features. Danelljan et al. [9]
further improve the multi-channel KCF with adaptive color attributes. In [24], Li and Zhu
learn the multi-channel KCF with a combination of the HOG and color naming (CN) fea-
tures and present an effective scale estimation scheme for visual tracking. Hong et al. [17]
and Ma et al. [33] integrate both short-term and long-term memories for robust tracking
with KCF as the short-term tracker. Ma et al. [32] ensemble the response maps of CFs with
a set of CNN features in a coarse-to-fine manner to accurately estimate the target location.
Bertinetto et al. [1] present a simple and efficient tracker that linearly combines color his-
tograms and HOGs in a ridge regression framework. Choi et al. [7] propose an ensemble
tracking approach with various CFs, each of which is weighted by a spatially attentional
weight map. Qi et al. [36] present a robust tracking that employs an adaptive hedge scheme
to effectively ensemble the response maps of CFs from deep CNN features. Liu et al. [30]
present a structural CF tracking approach that makes use of circulant shifts of part-based
CF tracking to model motions. Zhang et al. [58, 59] model the interdependencies among
different features to jointly learn some CFs for visual tracking. In [61], Zhang et al. further
present correlation particle filter based tracking that integrates the strength of each particle.
Tang et al. [46] improve the MKL version of KCF [45] by optimizing the upper bound of
its objective function, thereby alleviating the negative mutual interference of different ker-
nels effectively. Danelljan et al. [12] introduce a factorized convolution operator into the
discriminative correlation filter tracking framework, drastically reduces the size of model.
Bertinetto et al. [2] equip the tracking algorithm with a fully-convolutional Siamese Net,
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achieving a significant breakthrough based on the correlation filter trackers. Furthermore,
based on subspace learning Chen et al. [6] propose a novel robust object tracking technique
to solve the drift problems caused by occlusions and illuminative variations.

The CF trackers mentioned-above undergo the boundary effects due to periodic rep-
etitions when learning a CF for tracking, thereby significantly degrading the tracking
performance. To address this issue, Danelljan et al. [10] present the SRDCF that regularizes
the coefficients of the learned CFs by a spatial Gaussian function depending on their spa-
tial locations. Cui et al. [8] learn a spatial matrix predicted with a multi-directional RNN as
the spatial regularization term, and Zhang et al. [62] learns a spatial regularization mask via
video segmentation technique. As SRDCF, Lukezic et al. [31] tackle the boundary effects
using a spatial reliability map to restrict the coefficients of the learned CFs. Different from
SRDCF that employs fixed spatial regularization weights, Sun et al. [44] learn a dynamic
spatial regularization weight matrix that focuses on the reliability information of the target.
Qi et al. [40] leverage contextual attribute information to facilitate training an effective clas-
sifier for visual tracking. Ding et al. [13] propose a scalable tracker to estimate the scale
based on the four corners. Fan et al. [14] utilize recurrent neural network (RNN) to model
object structure, improving the robustness to similar distractors. Very recently, Li et al. [28]
employ the discriminative power in the gradients to dynamically update the template in the
siamese net tracker. Li et al. [27] exploit the dependence among the input features to learn
a target-oriented feature representations for visual tracking.

3 Spatial-temporal regularized complementary KCFs

In this section, we first introduce the KCF with complementary kernel learning (CKL), and
then introduce the SRDCF and its approximated version. Next, we present our STRCKCF
model that is solved via ADMM. The fast detection process is presented at last.

3.1 Complementary KCFs

We first set the size of the basis sample to 1.5× the target size, including some useful con-
text. Afterwards, we represent it by color histograms and HOGs denoted by x1 ∈ R

MND ,
where M , N and D are the width, height and channel number, respectively. Then, we
construct a circulant matrix X = [x�

1 ; . . . ; x�
MN ] whose element xi is designed by cir-

cularly shifting the vector x1 along M and N dimensions. The circulant matrix X can be
diagonalized by discrete Fourier transform (DFT) [16] as

X = Fdiag(x̂1)F
H , (1)

where x̂1 = √
MNFx1 is the DFT of the vector x1, FH is the Hermitian transpose of

the Fourier matrix F , and diag(·) denotes the diagonal matrix from a vector. Given the
training samples in the circulant matrix X with their corresponding regression scores y =
[y(1), . . . , y(MN)]�, the objective of KCF [16] is to find a function f (x) that minimizes
the ridge regression loss as follows

min
f

∑

i

(f (xi) − y(i))2 + λ‖f ‖2
k, (2)

where f (·) lies in a bounded convex subset of a Reproducing Kernel Hilbert Space defined
by a positive definite kernel function k(·), λ > 0 is the regularization parameter.
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By means of the Representer Theorem [41], the solution of (2) can be represented as

f (x) =
MN∑

i=1

αik(xi, x), (3)

and then ‖f ‖2
k � α�Kα, where α = [α1, . . . , αMN ]� and K is a positive semi-definite

kernel matrix with its elements κij = k(xi, xj ). Replacing f by (3), (2) can be reformulated
as

min
α

‖y − Kα‖2
2 + λα�Kα. (4)

Recently, some works [43, 45, 46] have demonstrated that using MKL in KCF enables to
improve the tracking performance, and hence we employ two types of kernels to ensemble
the complementary advantages of color and HOG features. Given that xi = {xcolor

i , xHOG
i },

where xcolor
i and xHOG

i denotes the RGB color and HOG features, respectively, we employ
the kernel k(xi, xj ) = γ k1(x

color
i , xcolor

j ) + (1 − γ )k2(x
HOG
i , xHOG

j ) that convexly com-
bines two base kernels with weight 0 ≤ γ ≤ 1. Here, we choose interaction and Gaussian
kernels as the base kernels

k1(x
color
i , xcolor

j ) =
∑

m

min(xcolor
i (m), xcolor

j (m)),

k2(x
HOG
i , xHOG

j ) = exp

(
−‖xHOG

i − xHOG
j ‖2

2

σ

)
, σ > 0. (5)

These base kernels construct the base kernel matrices K1 and K2, respectively, and we
have

K = γK1 + (1 − γ )K2, (6)

Replacing K in (4) by (6), we have the objective function F(α, γ ) of the complementary
KCF as follows

min
α,0≤γ≤1

F(α, γ ) = ‖(γK1 + (1 − γ )K2)α − y‖2
2

+ λα�(γK1 + (1 − γ )K2)α. (7)

3.2 Spatially regularized DCF

The SRDCF [10] aims to learn a D-channel CF w with a set of T training images whose
feature representations are denoted by {(Xd

t , yt )}d=1,...,D
t=1,...,T , where Xd

t is the d-th channel
circulant matrix of the base sample xt , and yt denotes its class label vector. The SRDCF is
formulated by minimizing the objective as

arg min
w

FT (w) =
T∑

t=1

βt‖
D∑

d=1

Xd
t wd − yt‖2

2 +
D∑

d=1

‖m � wd‖2
2, (8)

where � denotes the Hadamard product, m is the spatial regularization matrix, and βt is the
weight that emphasizes more to the recent samples.

Although in (8) the SRDCF enables to well handle the negative boundary effects and
make online model update stable via introducing the spatial regularization matrix m and
jointly training CFs with multiple samples, it fails in exploiting the circulant matrix struc-
ture for efficient computation. In [10], Danelljan et al. employ the Gauss-Seidel method to
iteratively update the CFs, resulting in solving a DMN ×DMN large sparse linear equation
system. While the Gauss-Seidel method can solve (8) using the property of sparse matrix,
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it still takes high computational cost. Moreover, the SRDCF also needs a long start-up time
to learn the CFs in the first frame because the Gauss-Seidel method converges very slow. In
addition, since the SRDCF cannot exploit the circularity, it is difficult to efficiently extend
the SRDCF to the kernel space, further limiting to boost its performance.

To solve the above issues, we first show some interesting findings by further analyzing
the objective of SRDCF, serving as the guide to design our STRCKCF tracker. The objective
of SRDCF (8) can be reformulated by

FT (w) = FT −1(w) + βT ‖
D∑

d=1

Xd
T wd − yT ‖2

2. (9)

Given the optimal CFs at frame T − 1 as wT −1 = arg minw FT −1(w), we have the 2rd
order Taylor expansion of FT −1(w) as FT −1(w) ≈ FT −1(wT −1) + 1

2 (w − wT −1)
�H(w −

wT −1), where H is the Hessian matrix, and for simplicity, we assume that the Hessian
matrix is an identity matrix as H = I . Replacing FT −1(w) in (9) and reducing the constant
term FT −1(wT −1), we have

FT (w) ≈ 1

2
‖w − wT −1‖2

2 + βT ‖
D∑

d=1

Xd
T wd − yT ‖2

2. (10)

Here, ‖w−wT −1‖2
2 can be seen as a temporal regularization term, and FT (w) only contains

one training image, thereby facilitating using the circularity for efficient computation.

3.3 Proposed STRCKCF

Our work is inspired by the STRCF [25] that introduces spatial-temporal regularization to
regularize CF learning for visual tracking, but our work extends spatial-temporal regularized
CF learning to multi-kernel condition. Motivated by the findings from further analyzing the
objective of SRDCF (10), we introduce a temporal regularization term ‖α − αt−1‖2

2 and the
spatial regularization matrix m into the complementary KCF (7), yielding the objective of
our STRCKCF as

min
α,0≤γ≤1

F(α, γ ) = ‖(γK1 + (1 − γ )K2)α − y‖2
2

+ λ(m � α)�(γK1 + (1 − γ )K2)(m � α)

+ ρ‖α − αt−1‖2
2, (11)

where ρ > 0 is a regularization parameter.
In Fig. 1, we show the relationships of the STRCKCF, SRDCF and approximated SRDCF

on learning CFs. From it we can observe that similar to the approximated SRDCF, STR-
CKCF also implements simultaneous learning CFs and updating models by introducing
the temporal regularizer, and thus it can rationally approximate the SRDCF with multiple
training images.

The above model in (11) is convex that can be minimized to yield the globally optimal
solution via ADMM. To this end, we introduce an auxiliary variable g that requires g = α,
and then the Augmented Lagrangian form of (11) can be formulated as

L(α, g, γ, s) = ‖(γK1 + (1 − γ )K2)α − y‖2
2

+ λ(m � g)�(γK1 + (1 − γ )K2)(m � g)

+ (α − g)�s + μ

2
‖α − g‖2

2 + ρ‖α − αt−1‖2
2, (12)
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Fig. 1 Comparison of the SRDCF (see (8)), the approximated SRDCF (see (10)) and our STRCKCF (see
(11)) on learning CFs. The SRDCF learns the CFs with multiple historical samples and pays more attention
on the recent samples, while the approximated SRDCF learns its CFs with the current sample and the former
learned CFs. Different from the SRDCF and the approximated SRDCF that learn the CFs on the primal space,
our STRCKCF learns its CFs on the dual space with the complementary kernel that ensembles the merits of
both color and HOGs features

where s and μ are the Lagrange multiplier and penalty factor. By setting h = s
μ

, (12) can
be reformulated as

L(α, g, γ, h) = ‖(γK1 + (1 − γ )K2)α − y‖2
2

+ λ(m � g)�(γK1 + (1 − γ )K2)(m � g)

+ μ

2
‖α − g + h‖2

2 + ρ‖α − αt−1‖2
2. (13)

The subproblem to minimize L(α, g, γ, h) in (13) on each variable has a closed-form
solution when other two variables are known, and the above optimization problem can be
efficiently solved via ADMM by alternatingly solving the following subproblems:

αi+1 = arg min
α

‖Kα − y‖2
2 + μ

2
‖α − g + h‖2

2

+ρ‖α − αt−1‖2
2, (14)

Multimedia Tools and Applications (2020) 79:25171–25188 25177



gi+1 = arg min
g

λ(m � g)�K(m � g)

+μ

2
‖α − g + h‖2

2, (15)

hi+1 = hi + αi+1 − gi+1, (16)

γ i+1 = arg min
0≤γ≤0

‖(γK1 + (1 − γ )K2)α − y‖2
2

+λ(m � g)�(γK1 + (1 − γ )K2)(m � g), (17)

where K is denoted by (6).
The solution to each subproblem is detailed below:
Step 1: update α. Fixing γ , g and h, by setting the gradient of the right formulation in

(14) to zero, we have

(2K�K + (μ + 2ρ)I)α = 2K�y + μ(g − h) + 2ραt−1, (18)

where I is an identity matrix.
Since the base kernels K1 and K2 are circulant, and the sum of circulant matrices are

still circulant [16], K is circulant. With the property of circulant matrix (1), (18) can be
transformed into the Fourier domain as

(2k̂∗ � k̂ + μ + 2ρ) � α̂ = 2k̂∗ � ŷ + μ(ĝ − ĥ) + 2ρα̂t−1, (19)

where k̂ = γ k̂1 + (1 − γ )k̂2 with k̂1 and k̂2 denoting the kernel correlation of xcolor
1 and

xHOG
1 with themselves in the Fourier domain,∗ denotes the conjugate operator, and the

solution of (19) is:

α = F−1

(
2k̂∗ � ŷ + μ(ĝ − ĥ) + 2ρα̂t−1

2k̂∗ � k̂ + μ + 2ρ

)
, (20)

where F−1 is the inverse FFT.
Step 2: update g. Fixing γ , α and h, and let M = diag(m) that is a diagonal matrix. The

subproblem on g can be reformulated as:

min
g

‖g − α − h‖2
2 + 2λ

μ
(Mg)�KMg. (21)

Solving (21), we has the closed-form solution as

g = (M�KM + μ

2λ
I)−1(α + h). (22)

Step 3: update h. Fixing α and g, update h via (16).
Step 4: update γ . Fixing α and g, (17) can be reformulated as

min
0≤γ≤1

F(γ ) = ‖γ (K1 − K2)α + K2α − y‖2
2

+ λγ ((m � g)�(K1 − K2)(m � g)). (23)

The partial derivative of F(γ ) with respect to γ is

∂F (γ )

∂γ
= 2(α�(K1 − K2)

�(K1 − K2)α)γ

+ λ(m � g)�(K1 − K2)(m � g)

+ 2α�(K1 − K2)
�(K2α − y). (24)
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Setting ∂F (γ )
∂γ

= 0, we have

γ = −λ(m � g)�(K1 − K2)(m � g) + 2α�(K1 − K2)
�(K2α − y)

2(α�(K1 − K2)�(K1 − K2)α)

= α�F−1(q̂) + 2CF−1(p̂)�(F−1(k̂2 ◦ α̂) − y)

2F−1(p̂)�F−1(p̂)
, (25)

where p̂ = (k̂1 − k̂2)
∗ ◦ α̂ and q̂ = (k̂1 − k̂2)

∗ ◦ ̂(m � g).
Considering the constraint 0 ≤ γ ≤ 1, the solution γ 	 of (23) is

γ 	 =
⎧
⎨

⎩

γ, if 0 ≤ γ ≤ 1,

0, if γ < 0,

1, if γ > 1.
(26)

Step 5: update μ: μ is updated by

μi+1 = min(μmax, εμi), (27)

where μmax is the maximum value of μ and ε denotes the scale factor.

3.4 Fast detecting

As KCF [16], we model the densely sampled object patches by circularly shifting the base
sample z1 = {zcolor

1 , zHOG
1 }, which enlarges the tracked object rectangle to 1.5× the target

size to include more useful context information.
Then, we design the kernel matrix Kz1 as

Kz1 = γK
zcolor

1 xcolor

1 + (1 − γ )K
zHOG

1 xHOG

2 , (28)

where the first row of the circulant matrix K
zcolor

1 xcolor

1 is the intersection kernel correlation

of zcolor
1 and xcolor , and so does the circulant matrix K

zHOG
1 xHOG

2 whose first row is the
Gaussian kernel correlation of zHOG

1 and xHOG.
The classifier scores in (3) for all the candidate samples z = {z1, . . . , zMN } can be

calculated by
f (z) = Kz1 �

α, (29)

where f (z) = [f (z1), . . . , f (zMN)]�, which can be efficiently calculated by FFT as

f (z) = F−1(k̂z1 ◦ α̂), (30)

where kz1 denotes the first row of Kz1 . Finally, maximizing f (z) yields the tracked
object location. To extend the CKSCF with multiple scale estimation, as [24], we com-
pute responses on several scales in parallel and take the maximum response as the tracking
results.

3.5 Complexity analysis of the proposedmethod

Since most of the matrices in the algorithm 1 has circulant structures, we only need to
compute the first row of these matrix (e.g. kz). Thus, we can employ fast fourier transform
to operate the calculations and the our complexity burden mainly lies in the optimization
iterations in solving α. The complexity of solving α is O (NIterHWD log HW), where
NIter denotes the numbers of iterations, meanwhile H, W and D indicates feature’s height,
weight and channel dimension, respectively.
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Furthermore, the computational cost for g(O (HWD log HW)) and h(O (HWD)) is
lower than α, for simplicity, we do not pay much attention on it. More details can refer to
algorithm 1.

4 Results

4.1 Experimental setup

We first resize the resolutions of the videos to 240 × 320 pixels, which are helpful to adapt
varying target sizes during tracking [49]. Then, each image patch is resized to a canonical
size of 64 × 64 pixels to extract RGB color and HOG features. Specifically, the original
image patches are employed to extract the raw intensity and HOG features for the gray
videos, and for the color videos, the image patches are used to extract RGB color features,
and the original RGB image patches are taken to extract the HOG features. Also, we conduct
the experiments on the popular convolution network based feature, which further enhances
the discriminative power of our model.

The hyper-parameters are based on the experiments and experience. Here we show the
optimal parameters in brief. The search radius for training and detection is set automati-
cally based on the square root of the target area, and to make a trade-off between accuracy
and speed, the size of image patch is normalized to 400 pixels. As suggested by [24], we
employ the parameter set {1, 0.995, 0.990, 0.885, 1.005} to estimate scale. We employ a
spatial Gaussian function with respect to the object position to model the regression scores
y. The parameters λ and ρ in (11) is set to λ = 20 and ρ = 10. We set the initial parame-
ter μ0, the maximum value μmax and scale factor ε to 10, 90 and 1.1, respectively. We set
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the kernel parameter for the Gaussian kernel to σ = 0.8, and fix all the parameters during
experiments.We empirically find that the proposed ADMM can converge within 5 iterations
on most of the sequences, and thus we set the iteration number to 5 for efficiency.

We implement our tracker in MATLAB that runs at 40 fps on a desktop computer with
Intel i7 CPU (3.60 GHz) and 12 GB memory.

4.2 Evaluation datasets

We employ two popular visual tracking benchmarks including VOT-2016 [21] and OTB-
2015 [51] for the performance comparisons. Furthermore, the sequences in OTB-2015 are
annotated into 11 attributes for more detailed analysis [51].we analyze the compared track-
ers using success rate and precision plots quantitatively [50]. The area under curve (AUC)
of each success plot is leveraged to rank the evaluated trackers. We report the results of both
success and precision plots in one-pass evaluation (OPE). We demonstrate the success plots
of OPE of the evaluated trackers and use the AUC score to rank them

In VOT-2016, we mainly apply the expected average overlap (EAO) for the comparison
as suggested by [21]. Follow the common practice in the VOT community, we also report
the accuracy and robustness score in the form of table.

4.3 Results on the OTB100 dataset

OTB100 is provided by [51], including the results of 29 popular trackers evaluated on 100
videos. To measure the tracking performance, it uses one-pass evaluation (OPE) of suc-
cess plot and precision plot. Among them, the success plot shows the percentage of frames
with overlap between the tracked bounding box and the ground truth larger than all thresh-
olds in [0, 1], and it employs the Area Under the Curve (AUC) metric as the measurement
index. The precision plot shows the percentage of frames whose tracked locations fall within
the threshold = 20 pixels to the ground truth. Specifically, we compare the results of our
STRCKCF with 8 state-of-the-art tracking approaches, such as BACF [20], SRDCF [10],
Staple [1], ECO [12], ECO-HC [12], STRCF [25], STRCF [25], SiamFC [2].

4.3.1 Analysis of overall performance

Figure 2 shows the overall OPE success and precision plots on OTB100. Among all the
other demonstrated CF based trackers as BACF, Staple, SRDCF, ECO, and STRCF that only
employ single kernel to measure feature similarities, the proposed STRCKCF yields the best
performance with an AUC score of 68.4%, significantly outperforming the second best deep
CNN feature based method (ECO) that achieves an AUC score of 67.0% by 1.4%, validating
the effectiveness of introducing the temporal regularizer and the CKL. Although the ECO
performs better than our hand-crafted version (STRCKCF-HC), the complex feature extrac-
tion phase of ECO is computationally expensive. However, it sacrifice its real-time ability
and our STRCKCF-HC has a high speed. In contrast to our method, the Staple and SRDCF
use color and HOG features for visual tracking, yet both only employ a linear kernel to
measure the feature similarities, thereby achieving similar performance in terms of both suc-
cess and precision plots. Among them, Staple yields an AUC score of 57.9% while SRDCF
achieves an AUC score of 59.8%, and both are much worse than our STRCKCF-HC, show-
ing the effectiveness of our CKL strategy. Furthermore, although STRCF employs deep
CNN features that are much more discriminative than the color and HOG features in our
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Fig. 2 Overall one pass mode success-precision plots of the 9 trackers in the OTB, where the ranking scores
for each tracker are shown in the legend

method, the proposed STRCKCF-HC performs a little worse than STRCF by a tiny margin
(0.7%), further demonstrating the powerful discrimination of the adopted CKL strategy.

Table 1 lists the results of comparing speed between our STRCKCF-HC and other 5
trackers shown in Fig. 2, among which we can observe that STRCKCF achieves the 3rd
place with 40 fps, following KCF and Staple with a speed of 106 and 65 fps, respec-
tively. Furthermore, the proposed STRCKCF-HC achieves a 8× speedup than SRDCF
that achieves a speed of 5 fps, demonstrating the efficiency of the employed ADMM
optimization strategy.

4.3.2 Analysis of attribute-based performance

In [51], the attributes of the videos in OTB100 are categorized into illumination varia-
tion (IV), out-of-plane rotation (OPR), scale variation (SV), occlusion (OCC), deformation
(DEF), motion blur (MB), fast motion (FM), in-plane rotation (IPR), out-of-view (OV),
background clutter (BC) and low resolution (LR). To further demonstrate the strength and
weakness of the proposed STRCKCF and STRCKCF-HC, we conduct a comprehensive
evaluation with the 10 trackers on the videos with these attributes.

Figure 3 illustrates the success-rate plots with various attributes, and Fig. 4 shows the
qualitative examples in several video sequences. The STRCKCF achieves the best perfor-
mance on the most attributes in terms of both success and precision plots. However, in the
case of FM, OCC, and MB, our method ranks in the 2nd place. Among them, ECO out-
performs STRCKCF by a gain of 0.5 ∼ 1.3%. Especially for FM (refer to MotorRolling
shown in Fig. 4) and OCC, the gains of ECO to STRCKCF are 0.3% and 1.0%, respectively,
demonstrating the effectiveness of the temporal regularizer and CKL for these attributes.
On the other hand, the STRCKCF ranks the 3rd in the case of motion blur (MB) with an
AUC score of 69.6%, and the STRCF achieves the second best performance in the case of

Table 1 Comparing speeds (in fps) on OTB100

Trackers KCF Staple CSR-DCF SRDCF C-COT STRCKCF

Speeds 12 5 1 5

The , and best results are highlighted in , and
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Fig. 3 Success plots with different attributes

MB, which is shown in Fig. 4) (refer to Skating1 and Soccer. The proposed STRCKCF-HC
achieves a gain of 5.8% and 7.2% compared to SRDCF and 2.5% and 2.2% compared to
ECO-HC, respectively. The promising results again show that the temporal regularizer and
CKL scheme equipped by the proposed STRCKCF (STRCKCF-HC) is effective to handle
a variety of challenging factors in visual tracking.

4.4 Results on the VOT2016 dataset

To further evaluate the proposed STRCKCF, we compare it with a variety of state-of-the-art
trackers on VOT2016 [21], which contains the results of 70 trackers on 60 videos submitted
to the VOT2016 challenge.

Table 2 lists the results of the top-ranked trackers in terms of expected average overlap
(EAO), accuracy (A) and robustness (R). Among them, EAO estimates the average overlap
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#37 #209 #543 #1149

#8 #78 #133 #163

Fig. 4 Sample results of the proposed STRCKCF for targets suffering from rotations. From top to bottom,
the targets in Biker, MotorRolling, Skating1, Girl2 and Soccer suffer from IPR, ORP, IPR, OCC and FM
respectively

that a tracker is expected to obtain on a large number of short-term sequences with the same
visual properties as the given dataset, A is the average overlap between the predicted and
ground truth bounding boxes during successful tracking periods, and R measures how many
times the tracker loses the target during tracking. Among them, the proposed STRCKCF
ranks 2rd with an EAO score of 0.328 almost on a par with the first-ranked CCOT with an
EAO score of 0.331, closely following the third-ranked TCNN with an EAO scor of 0.325.
Moreover, the STRCKCF significantly outperforms the SRDCF with an EAO score of 0.247

Table 2 Results of EAO, A and R raw values on VOT2016

Tracker CCOT [11] STRCKCF TCNN [35] SSAT [38] MLDF [48] Staple [1]

EAO 0.321 0.311 0.295

A 0.539 0.554 0.490 0.544

R 0.253 0.268 0.291 0.378

Tracker DDC [21] EBT [65] SRBT [22] STAPLEp [21] SRDCF [10]

EAO 0.293 0.291 0.290 0.286 0.247

A 0.541 0.465 0.496 0.520

R 0.345 0.350 0.368 1.500

The , and best results are highlighted in , and
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#6

Ours Ground-truth

#17 #27

#7#3 #12

Fig. 5 Failure examples of the proposed tracking algorithm, where the red and green bounding boxes indicate
our results and ground-truths, respectively

with a gain of 8.4%. Note that the strict state-of-the-art bound indicated by the VOT2016
report [21] is with an EAO score of 0.251, and for the trackers higher than this bound can
be regarded as state-of-the-art. Our STRCKCF significantly outperforms the state-of-the-
art bound by 7.7%, demonstrating its state-of-the-art performance. Furthermore, STRCKCF
achieves the second-best accuracy with a score of 0.572 and a fourth-ranked competitive
R score of 0.253 on par with the third counterpart EBT with an R score of 0.252. The AR
analysis indicates that the STRCKCF has a high accuracy and rare failures, again demon-
strating the powerful expressiveness of the proposed CKL mechanism and the effectiveness
of the adopted spatial-temporal regularization.

4.5 Failure cases

In Fig. 5, we show some failure examples of the proposed approach. In the first row, the
target soccer suffers from the drastic motion, also the object regions contain few colors,
limiting the discriminative power of the color-based complementary model. The failure of
fast motion case is due to the lack of enough temporal cues (e.g. the optical flow), which
will be taken into account in our future works. Furthermore, in the second sequence (the
bottom row), our method fails to track the leaf due to it suffering from low resolution. It is
because that the color-based and hog-based representations are not enough to capture the
whole foreground object and background scenario. Although the spatio-temporally regu-
larized complementary CF is learned, in the low-resolution frames, the deep convolutional
network based features are needed to enhance the discriminative ability, which is one of our
future directions.

5 Conclusions

In this paper, we have proposed a novel STRCKCF based tracking approach. First, by intro-
ducing spatial-temporal regularization to the filter learning, we formulate its model with
only one training image, which can not only facilitate exploiting the circulant structure in
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learning, but also reasonably approximate the SRDCF with multiple training images. Fur-
thermore, by incorporating two types of kernels whose matrices are circulant, the proposed
STRCKCF is able to fully take advantage of the complementary traits of the color and
HOG features to learn a robust target representation efficiently. Besides, our STRCKCF can
be efficiently optimized via the ADMM. Extensive evaluations on OTB100 and VOT2016
visual tracking benchmarks have demonstrated that the proposed method achieves favorable
performance against state-of-the-art trackers with a speed of 40 fps on a single CPU. Com-
pared with SRDCF, the proposed STRCKCF achieves a 8× speedup and has a gain of 5.5%
AUC score on OTB100 and 8.4% EAO score on VOT2016.
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