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Abstract
With the rapid development of deep learning techniques, deep convolutional neural net-
works (DCNNs) have become more important for object detection. Compared with tradi-
tional handcrafted feature-based methods, the deep learning-based object detection methods
can learn both low-level and high-level image features. The image features learned through
deep learning techniques are more representative than the handcrafted features. Therefore,
this review paper focuses on the object detection algorithms based on deep convolutional
neural networks, while the traditional object detection algorithms will be simply introduced
as well. Through the review and analysis of deep learning-based object detection techniques
in recent years, this work includes the following parts: backbone networks, loss functions
and training strategies, classical object detection architectures, complex problems, datasets
and evaluation metrics, applications and future development directions. We hope this review
paper will be helpful for researchers in the field of object detection.

Keywords Object detection · Deep learning · Deep convolutional neural networks ·
Computer vision

1 Introduction

The essence of object detection is to locate and classify objects, which uses rectangular
bounding boxes to locate the detected objects and classify the categories of the objects.
Object detection has some relations with object classification, semantic segmentation and
instance segmentation. The details are illustrated in Fig. 1. Object detection is an important
area of computer vision and has important applications in scientific research and practi-
cal industrial production, such as face detection [215], text detection [94, 282], pedestrian
detection [170, 274], logo detection [87, 108], video detection [102, 103], vehicle detection
[23, 54], and medical image detection [145], the details are shown in Fig. 2. The limitation
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Fig. 1 a Object classification needs to identify the category of objects in image. b Object detection not only
needs to identify the category of objects, but also needs to locate the objects with rectangular bounding boxes.
c Semantic segmentation only needs to predict the categories of each pixel, and does not need to distinguish
the object instances. d Instance segmentation needs to predict both the categories of each pixel and object
instances

of the computing resources, the datasets, and the basic theories have limited the develop-
ment and application of deep neural networks in recent decades [122]. Therefore, in the
field of computer vision, the traditional object detection algorithms were still popular. Tradi-
tional object detection algorithms include DPM [58], Selective Search [224], Oxford-MKL
[228], and NLPR-HOGLBP [263], etc. The basic architecture of traditional object detec-
tion algorithms mainly divided into region selector, feature extractor, and classifier, which
is demonstrated in Fig. 3.

Although the traditional object detection is relatively mature, it has its own inherent
shortcomings. First, sliding-window [57] based region selection strategy has high comput-
ing complexity and high window redundancy. Second, the morphological diversity of the

Fig. 2 The application of object detection can be divided into generic object detection and dedicated object
detection
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Fig. 3 The basic architecture of the traditional object detection algorithms. The region selector mainly uses
sliding-windows of different sizes and ratios to slide on the image from left to right and top to bottom by a
certain step size. The image blocks cropped by the sliding window are transformed to form an image with
uniform size. The feature extractor mainly uses HOG [40], Haar [140], SIFT [155], and other algorithms
to extract feature from image blocks. Finally, the classifier uses algorithms such as SVM [36] and Adaboot
[229] to identify object category

appearances, the diversity of illumination changes, and the diversity of the background
make it is difficult to design robust features manually. During 2010-2012, only small gains
were obtained by building ensemble systems and employing minor variants of the exist-
ing methods [66]. Deep convolutional neural networks can learn the features of images
from low-level to high-level, which are very robust [8, 105, 168]. Therefore, the researchers
gradually turned their attention to the DCNNs.

With the increase of computing power and the number of image datasets [194], there
are more opportunities for the development of the DCNNs-based object detection. In 2012,
A. Krizhevsky et al. proposed a DCNN called AlexNet [116]. It won the competition of
ILSVRC-2012 (top-5 error rates of 15.3%). This work triggered a wave of research and
application of the deep convolutional neural networks. In 2014, R. Girshick et al. proposed
a RCNN (Regions with CNN features) [66], which is a milestone in applying the DCNNs-
based method for object detection. In 2015, J. Redmon et al. proposed an object detection
system based on a single neural network called YOLO (You Only Look Once: Unified, Real-
Time Object Detection) [187], which was presented in CVPR2016. With the publication of
the series of papers, the DCNNs-based object detection methods break through the bottle-
neck of traditional object detection methods. Object detection has entered a period of using
deep learning techniques. Some traditional object detection methods and DCNNs-based
object detection methods are shown in Fig. 4.

From the development trend of the object detection in recent years. First, the accuracy of
detection is continuously improved to satisfy the application of various complex scenarios.
Second, the speed of detection is improved to satisfy real-time system applications while
ensuring the accuracy. Therefore, attention must be paid to the trade-off between accuracy
and speed [93, 136, 174] in the future research works. In order to get state-of-the-art results,
the trade-off between accuracy and speed is quite important.

More than 300 papers in the field of object detection are cited in this review paper,
most of which are based on deep learning. These include two published review papers,
Deep Learning for Generic Object Detection: A Survey [147] and Object Detection with
Deep Learning: A Review [285]. There are many improvements and rich parts to com-
pare with them. In this review, the article highlights the pipeline of the object detection
architectures. First, the backbone networks and loss functions are introduced, which clearly
reflect the components and effects of the architecture. The introduction of specific object
detection architectures make them easier for researchers to accept based on previous intro-
ductions. The structure of this review is more clearly and the content of each section is more
reasonable compared to the two published review papers.

Five contributions are listed as follows:

(1). The development of deep convolutional neural networks are summarized, and the
backbone networks used for object detection are compared in recent years.
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Fig. 4 Classical traditional object detection (such as Oxford-MKL [228], DPM [58], NLPR-HOGLBP [263],
and Selective Search [224]) and object detection based on DCNNs. It is seen from the figure that the revival
of deep learning transforms the handcrafted features of the object detection into learned features, which is
the fundamental difference between the two. Two-stage object detection and one-stage object detection are
elaborated in Section 4

(2). The network frameworks is analyzed and compared in detail, and the loss functions
of object detection is summarized.

(3). Some guidance and advancements are provided in the future development of object
detection.

(4). Difficulties and solutions to object detection are summarized.
(5). The applications of object detection are summarized and the technical details are fully

analyzed.

The remainder of this review paper is organized as follows. In the Section 2, the archi-
tecture of the backbone networks are introduced in detail, and their performance and
parameters are compared and analyzed. In the Section 3, the loss functions for object
detection are summarized, and the loss function constructions and training strategies are
implemented in the actual architecture. The Section 4 summarizes the milestone object
detection architectures. The Section 5 summarizes some important complex problems in
the field of object detection. The Section 6 summarizes and datasets and evaluation criteria.
The Section 7 summarizes the applications of object detection. The Section 8 summarizes
the future development directions of object detection.

2 Backbone network for object detection

A variety of DCNNs with powerful capabilities are proposed. The most of them have inno-
vative architectures, which are shown in Fig. 5. The DCNNs are the backbone network
for object detection (or classification, segmentation [37, 152]). In order to improve the
performance of feature representation, the network architecture becomes more and more
complicated (the network layer is deeper and the network parameters are increased). In the
environment with limited computing power and storage, such as mobile [248], autonomous
driving [24, 218], industrial production. Lightweight network structures are proposed,
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Fig. 5 Milestones of deep convolutional neural network architectures and network modules

which simplifies the network structure without reducing the feature representation capa-
bility. In Table 1, object detection backbone networks are listed. It can be found that the
accuracy of the complex backbone networks(CBNs) can be improved by increasing the
depth of the network. It can also be found that reducing the parameters in reasonable ways,
which do not affect the accuracy of the lightweight backbone networks(LBNs).

2.1 Complex backbone network

AlexNet The first convolutional neural network was proposed by Yann LeCun based on
previous research work in 1998, which is called LeNet-5. It has an average precision of
98% on the MNIST dataset [123]. LeNet-5 is a classical convolutional neural network used
to identify handwritten numeric characters. Its emergence determines the basic architec-
ture of the deep convolutional neural networks. The convolutional layer, pooling layer, and
fully-connected layer in LetNet-5 are the basic components of the deep convolutional neu-
ral networks. This is the first time that a convolutional neural network can be available.
However, it has not made great progress in the next decade. The expansion are limited by
computing power. At the same time, the traditional machine learning algorithms such as
SVM [36, 246] can achieve the same accuracy and even better. Therefore, the convolutional
neural networks did not attract much attention. In 2012, AlexNet won the championship of
ILSVRC-2012 competition. On the testing set of LSVRC-2010, they achieved top-1 and
top-5 error rates of 37.5% and 17.0%. On the testing set of ILSVRC-2012, they achieved
top-5 error rates of 15.3%, which is far higher than the second-place. AlexNet increases the
depth and breadth of the LeNet-5 network architecture. It consists of five convolutional lay-
ers (Conv), three max-pooling layers and three fully-connected layers (FC), with a total of
60 million parameters [116]. The architecture is shown in Fig. 5a.

The great success of AlexNet is due to the following technologies:
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(1). Data enhancement methods (such as horizontal flipping, random clipping, transla-
tional transformation, color illumination transformation) are used to extend the dataset
and reduce overfitting.

(2). Traditional activation functions (such as Sigmoid and Tanh) are replaced by a ReLu
activation function [163]. It solves the problem of gradient dispersion in deeper
network.

(3). A part of neurons are randomly removed by using a Dropout [209] regularization
method during training. It can reduce the complex inter-adaptive relationship of
neurons and the probability of overfitting.

(4). Multi-GPUs parallel computing technology is used, which communicates between
certain layers and speeds up network training.

Since the success of AlexNet, various DCNNs have emerged in the past few years,
such as VGGNet [207], ZFNet [266], GoogLeNet [213], and ResNet [82]. Throughout the
development of network structures, the ways to improve the performance of the network
models include increasing depth of the networks. At the same time, excellent design of sub-
tle topologies and bottlenecks to reduce the parameters of the network models and improve
generalization ability.

ZFNet Researchers want a visualization technology of the convolutional layers, which is
possible to intuitively analyze the changes in image feature maps at each layer. Matthew
D. Zeiler et al. proposed a method for visualizing feature maps using unpooling layers
and deconvolution [267, 268] layers in ZFNet [266]. The authors change the size of the
convolution kernel of the first layer in AlexNet from 11×11 to 7×7 and adjusted the stride
size from 4 to 2. These changes can preserve more low-level features. A small convolution
kernel can reduce the downsampling rate, which is conducive to the location of large objects
and the recognition of small objects [135].

GoogLeNet In the current popular two-stage object detectors, such as the RCNN series
[65, 66, 191], the object detection is divided into two stages. First, the low-level features are
used to locate the object, and the DCNN is used to classify the located objects. Therefore,
the improvement of feature representation performance is advantageous for location and
classification. The way to improve performance is to increase the number of layers in the
network and the number of neurons in each layer. However, the larger the network size is,
the more parameters there will be. The 1×1 convolution kernel proposed byMin Lin et al. in
Network-in-Network [141] is introduced in GoogLeNet [213]. The 1×1 convolution kernel
can not only reduce or increase the dimension, but also implement cross-channel informa-
tion integration. The dimensionality reduction of the 1×1 convolution kernel can reduce the
computational complexity while increasing the depth and width of the network. According
to this ideology, the author proposed an Inception module [213] (see Fig. 5c) with dimen-
sion reductions. It use 9 Inception modules in the network to change the serial structure
to parallel structure, and then replacing the fully connected layer with the average pooling
layer. The required calculation parameters are reduces from 7×7×1024 to 1×1×1024.

VGGNet VGGNet increased the depth of AlexNet to 16-19 layers [207], which improves
the feature representation of network. The mainstream network architectures are VGG16
and VGG19, and the architecture of VGG16 is shown in Fig. 5b. AlexNet and ZFNet use
kernel of size 11×11 (stride of 4) and kernel of size 7×7 (stride of 2) in the first convo-
lutional layer. The size of the convolution kernel is further reduced in VGGNet, and 3×3

Multimedia Tools and Applications (2020) 79:23729–2379123736



convolution kernel (stride of 1) is used in each layer. The small kernel and stride are more
conducive to extracting the location information of the object in the image. The small ker-
nel instead of the large kernel has the advantage of increasing the depth of the network and
keeping the receptive field unchanged. The feature representation capability of the network
model is enhanced after reducing the parameters.

ResNet The gradient dispersion and the gradient explosion problems may occur with
increasing the number of layers. These two problems are effectively solved on [207, 213],
which enables the network to converge using stochastic gradient descent (SGD) algorithm
at tens of layers. However, as the depth of the network continues to increase, there will be
situations where the accuracy reaches saturation and then declines rapidly during training.
This phenomenon is called degradation [82]. In order to solve this problem, Kaiming He
et al. proposed a residual learning module. This can increase the depth of the network to
hundreds of layers, so that the feature representation capability of the network is further
enhanced. With the top-5 error rates of 3.57%, it won the first place in the ILSVRC2015
classification and detection.

The residual learning module is essentially shortcut connections, adding the result F (X)
obtained from a layer or stacked layers to the input value X. The expected output value is
H(X)=F (X)+X. Since the residual learning module solves the problem of training degra-
dation, the depth of network is increased and the performance is continuously improved.
ResNet50 and ResNet101 are widely used as backbone networks for object detection.

DetNet From the architecture and function of these classical DCNNs. The DCNNs are
trained on classification task, which can be used as backbone networks for object detection
and other tasks. Through the research of generic DCNNs and object detection task. Zeming
Li et al. proposed a DetNet - A Backbone network for object detection [135], which makes
up for the shortcoming of generic backbone networks in object detection task. The generic
backbone networks use a large down-sampling rate, which ensures that the large receptive
field is beneficial to the classification of images, but is not conducive to accurately locating
large objects and recognizing small objects. The DetNet is compared with the traditional
backbone network, which uses a dilated convolution [261, 262] instead of down-sampling
the last few layers to ensure the larger receptive field and resolution.

Inspired by the architecture and ideology of classical DCNNs, researchers are constantly
improving or integrating with each other based on these networks. InceptionV2 [97] inherits
the ideology of InceptionV1 (GoogLeNet) [213], which uses 2 kernels of size 3×3 instead
of 1 kernel of size 5×5, and proposes that Batch Normalization (BN) speeds up the learn-
ing rate of the network. Since the small kernel can improve the performance of networks,
Christian Szegedy et al. proposed an InceptionV3 [214], which replaces n×n kernel by 1×n
kernel series concatenation n×1 kernel. Similarly, ResNet [82] demonstrates the advantages
of shortcut connections on deep networks. Therefore, an InceptionResNets [212] network
is formed by combining the Inception networks and the shortcut connections. The research
of DCNNs as the backbone networks is still in progress. Due to the limitation of the paper,
such as ResNeXt [252], DenseNet [92], and SE ResNet [89] are not described it in detail.

2.2 Lightweight backbone network

The architecture of the complex backbone networks are described in Section 2.1. The main
development direction is to deepen the depth of the network to improve the performance
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of the network. For example, there are 7-layers for AlexNet, 16-layers for VGGNet, 22-
layers for GoogLeNet, 50 to 152 layers for ResNet, and thousands of layers of ResNet
and DenseNet [82, 92, 116, 207, 213]. This increases the size of the network parameters.
Although some methods are used to reduce the parameters of the network, such as the ker-
nel decomposition method is proposed in the InceptionV1/V2/V3 [97, 213, 214]. In short,
the increase of model parameters brings about two problems, storage space and testing
time. Since the backbone network accounts for about 90% of the calculation and storage
of the object detection, these two problems hinder the application of the DCNNs-based
object detection in real scenes. Where storage and computing resources are limited, such as
face recognition [215, 240], autonomous driving [24, 218], mobile phone [216, 248], indus-
trial production [245], embedded systems [158, 181]. In order to promote the process of
industrialization of DCNNs, researchers proposed lightweight networks to reduce network
parameters and ensure network performance.

SqueezeNet The traditional works use three operations to compress networks, which are
singular value decomposition (SVD), network pruning, and deep compression [43, 65,
254]. However, SqueezeNet is not a kind of method to compress the network. It is a few
parameters network architecture. The new network architecture is proposed in SqueezeNet,
which is called the Fire Module [96]. The Fire Module consists of a squeeze layer and an
expand layer, where the squeeze layer consists of only 1×1 convolutional filters, and the
expand layer consists of 1×1 and 3×3 convolutional filters (kernels). The output of the
expend layer is concatenated by the calculated feature map of the 1×1 convolution filters
and the 3×3 convolution filters. Finally, the parameters size is reduced to less than 0.5MB
using the deep compression technology [73]. The parameters size is reduced to 1/510 of the
AlexNet parameters.

Xception Xception is an improvement over the InceptionV3 that replaces the convolution
in the InceptionV3 with a depthwise separable convolution [34]. A depthwise separable
convolution is proposed in the Xception, which is widely used by MobileNet [88, 196],
ShuffleNet [157, 250], and other network architectures. Although the depthwise separable
convolution reduces in computational complexity in the Xception, the implementation is not
efficient enough in DCNNs. The structure is also constantly improving, which is explained
in MobileNet.

MobileNet The SqueezeNet uses a bottleneck called Fire Module to build a lightweight
backbone network [96]. In MobileNet, a convolution method different from the tradi-
tional convolution method is the depthwise separable convolution [88]. The depthwise
separable convolution turns the standard convolution into a depthwise convolution and
a 1×1 pointwise convolution. The depthwise convolution is that the feature channel is
only operated with one convolution kernel. The number of convolution kernels is equal
to the number of feature channels. The pointwise convolution is 1×1 convolution kernel.
For example, the input feature map size is DK × DK × M , and the output feature map
size is DF × DF × N . In the traditional convolution method, the calculation amount is
DK × DK × M × N × DF × DF . But in the depthwise separable convolution method, the
calculation amount is DK × DK × M × DF × DF + M × N × DF × DF , so the both ratio
is 1

N
+ 1

D2
K

. By this way, the amount of calculation is reduced.

MobileNetV2 Shortcut connections improve network performance in ResNet [82]. There-
fore, the MobileNetV2 convolution block is formed by combining the depthwise separable
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convolution of MobileNet with a shortcut connection [196]. In order to obtain more fea-
tures, a 1×1 convolution kernel expansion channel number is added before the depthwise
convolution. It use the Linear bottlenecks instead of the ReLU activation function to pre-
vent the feature from being destroyed. So the core of MobileNetV2 is Inverted Residuals
and Linear Bottlenecks.

ShuffleNet The depthwise separable convolution is proposed in Xception [34]. It trans-
forms the traditional convolution method into a combination of depthwise convolution and
pointwise convolution. This way reduces the amount of parameters and calculation, but the
calculation of pointwise convolution is still large. In ShuffleNet [250], the authors proposed
to use pointwise group convolution instead of pointwise convolution. Convolution is oper-
ated in each group, which reduces the calculation significantly. The channel shuffle is used
to implement information exchange between groups. The residual block with depthwise sep-
arable convolution, pointwise group convolution, and channel shuffle forms the ShuffleNet
unit. The shuffleNet can be built based on the ShuffleNet unit.

ShuffleNetV2 With the study of lightweight networks, researchers used speed instead of
FLOPs to measure power. Then used four design guidelines for lightweight networks that
weighed speed and accuracy. Based on these four guidelines, the researchers designed the
ShuffleNetV2 network structure [157]. Channel split is introduced on the basis of Shuf-
fleNetV1, and the feature input channel of each unit is divided into two parts, each of them
consists of three convolutions. Unlike ShuffleNetV1, two 1×1 convolutions are used instead
of two group convolutions. After the convolution operation, the two branches are concate-
nated. Finally, the Channel Shuffle operation is used to exchange information between the
two branches.

PeleeNet The core idea of MobileNetV1/V2 and ShuffleNetV1/V2 is depthwise separable
convolution [34], which reduces the amount of computation and storage space, but lacks
efficient implementation. Based on DenseNet [92], the researchers proposed a PeleeNet
[237] as the backbone network for object detection. In the PeleeNet, two-way dense layers
are used to obtain receptive fields of different scales, and feature learning of small-scale
objects and large-scale objects is simultaneously performed. The stem block before the first
dense layer can improve the representation of the feature without increasing the amount of
calculation. In order to be suitable for mobile applications, the dynamic number of channels
in bottleneck layer, and transition layer without compression and composite function are
also the highlights.

3 Loss function for object detection

In deep learning or machine learning, the loss function is also called the cost function. The
main purpose of the loss function is to measure the deviation between the predicted value
of the network and the true value of the sample. The smaller the value of the loss function,
the better the training of the network model, which proves the convergence and robustness
of the network model. The object detection is divided into object classification and object
location. Therefore, the loss function includes classification loss (Cls Loss) and location
loss (Loc Loss). The loss function of some classic object detection architectures are sum-
marized in Table 2. The classification loss belongs to the classification, and the location loss
belongs to the bounding-box regression. In recent works, many innovative methods have

Multimedia Tools and Applications (2020) 79:23729–23791 23739



Ta
bl
e
2

T
he

co
m
po
si
tio

ns
an
d
ch
ar
ac
te
ri
st
ic
s
of

th
e
lo
ss

fu
nc
tio

ns
of

th
e
cl
as
si
ca
lo

bj
ec
td

et
ec
tio

n
ar
ch
ite
ct
ur
es

C
la
ss
ic
ob
je
ct
de
te
ct
io
n
ar
ch
ite
ct
ur
es

C
la
ss
if
ic
at
io
n

B
ou
nd
in
g-
bo
x
re
gr
es
si
on

T
ra
in
in
g
st
ra
te
gy

C
la
ss
if
ie
r

L
os
s

R
eg
re
ss
or

L
os
s

R
C
N
N
,S

PP
N
et

SV
M

H
in
ge

L
os
s

B
ou
nd
in
g-
bo
x

L
2
L
os
s

St
ag
e-
w
is
e
tr
ai
ni
ng

Fa
st
R
C
N
N

So
ft
m
ax

C
ro
ss

en
tr
op
y
L
os
s

B
ou
nd
in
g-
bo
x

sm
oo
th

L
1

M
ul
ti-
ta
sk

tr
ai
ni
ng

Fa
st
er

R
C
N
N

So
ft
m
ax

C
ro
ss

en
tr
op
y
L
os
s

B
ou
nd
in
g-
bo
x

sm
oo
th

L
1

M
ul
ti-
ta
sk

tr
ai
ni
ng

R
PN

So
ft
m
ax

B
in
ar
y
cr
os
s
en
tr
op
y

B
ou
nd
in
g-
bo
x

sm
oo
th

L
1

M
ul
ti-
ta
sk

tr
ai
ni
ng

L
os
s

SS
D

So
ft
m
ax

C
ro
ss

en
tr
op
y
L
os
s

B
ou
nd
in
g-
bo
x

sm
oo
th

L
1

M
ul
ti-
ta
sk

tr
ai
ni
ng

Y
O
L
O

So
ft
m
ax

L
2
L
os
s

B
ou
nd
in
g-
bo
x

L
2
L
os
s

M
ul
ti-
ta
sk

tr
ai
ni
ng

Multimedia Tools and Applications (2020) 79:23729–2379123740



been proposed in the loss function design and the loss-based training strategies for network
architecture. Representative designs include a stage-wise training in the RCNN/SPPNet [66,
81] and a multi-task training in the Fast/Faster RCNN [65, 191]. The stage-wise training
separates classification and location, while the multi-task training concentrates classifica-
tion and location into a whole loss function. Moreover, the loss function can also achieve
specific functions. For example, XinlongWang et al. proposed a Repulsion Loss to solve the
dense occlusion problem [242]. Tsung-Yi Lin et al. proposed a Focal Loss to solve the class
imbalance problem [142]. These results demonstrate that the design of the loss function has
a positive effect on the robustness of the network model. Next, the classification losses and
regression losses of object detection are briefly introduced. Then, the training strategies of
the milestones of object detection and the specific loss function are described.

3.1 Classification loss

Hinge loss [6, 61] is a proxy function of the 0-1 loss function. It can be used as a loss
for the max-margin problem in machine learning or deep learning, and can be extended to
multi-class support vector machine (SVM) loss. The standard form of Hinge loss is listed
as follows, which is suitable for binary classification.

L(y) = max(0, 1 − t · y)

y = w · x + b
(1)

where (w, b) are hyperplane parameters, x is the data vector that needs to be classified,
y ∈ [−1, 1] is the raw output of the classifier, not the predicted class label. And t ∈ {−1, 1}
represents the intended value.

The binary classification case does not apply to all actual situations, so the hinge loss
needs to be extended to multiple classifications. It is defined as follows:

L(y) =
∑

j �=i

max
(
0, yj − yi + 1

)
(2)

The meaning of the above formula is to let the scores yj of other classes minus the real
class score yi , and then sum them up. The smaller the value after summation is, the lower
the score of the error class will be.

Cross entropy loss [41] is also called log loss, which is used in the softmax classifier. The
function of softmax is to convert the (k + 1) × 1 dimensional feature into the (k + 1) × 1
dimensional probability distribution. The index value of the maximum probability is the
category label of the predicted sample. Therefore, according to the characteristics of the
softmax function, the cross entropy loss can be defined as follows:

L(p, u) = −
k∑

i=0

ui logpi (3)

where p = (p0, · · · , pk) is the probability distribution of K+1 categories calculated by the
softmax, and u is the true category label. The function structure shows that the cross entropy
loss is the distance between the predicted value and the target true value. The function
structure has convex optimization, which has good convergence when the gradient descent.
It is more suitable for multi-category classification than hinge loss.
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If the multi-category task becomes a binary-category task, the cross entropy loss can be
reduced to the binary cross entropy loss, which can be considered as a special form of
multi-category. Its form is defined as follows:

L(p, u) = −u logp − (1 − u) log(1 − p) (4)

Here, the category label u ∈ {0, 1}, p indicates the probability of the prediction belonging
to category label u = 1.

The above three losses are mainly used for classifiers. Such as the use of the hinge loss in
RCNN/SPPNet [66, 81], the use of cross entropy loss in Fast RCNN/Faster RCNN/SSD [65,
150, 191], and the use of binary cross entropy loss in YOLOV3 [189]. However, in YOLO
[187], the classifier uses squared loss, which should be used for bounding-box regression.
This shows that the design of the loss function is based on the network architecture and is
not static.

3.2 Location loss

The squared loss is one of the basic loss functions of the bounding-box regression, also
known as the L2 loss [99]. It represents the sum of the squares of the differences between
the target value and the predicted value. Its basic form is defined as follows:

L(y, f (x)) = (y − f (x))2 (5)

Here, y represents the target value corresponding to the input data x, and f (x) represents
the predicted value of the input data x obtained by mapping f . When input data X =
{x1, x2, · · · , xn}, target value Y = {y1, y2, · · · , yn} the loss function becomes:

L(Y, f (X)) =
n∑

i=1

(yi − f (xi))
2 (6)

which is called the Residual Sum of Squares (RSS). The mean value of RSS is usually
used as the regression loss, which is called the Mean Square Error (MSE).

L(Y, f (X)) = 1

n

n∑

i=1

(yi − f (xi))
2 (7)

Another loss function for bounding-box regression is the absolute loss, called the L1
[99]. The difference between the L1 loss and the L2 lossis that L1 represents the sum of the
absolute values of the difference between the target value and the predicted value. The basic
form is expressed as follows:

L(y, f (x)) = |y − f (x)| (8)

If there are n samples, the loss function becomes the following form, which can be called
the Sum of Absolute Differences (SAD).

L(Y, f (X)) =
n∑

i=1

|yi − f (xi)| (9)

The mean value of SAD is usually used as the regression loss, which is called the Mean
Absolute Error (MAE) [22, 247].

L(Y, f (X)) = 1

n

n∑

i=1

|yi − f (xi)| (10)
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L1 loss and L2 loss [65] have their own advantages and disadvantages when used for
bounding-box regression. The L1 loss is more robust to outliers, but it has points where the
derivative cannot be deduced, making the gradient descent inefficient. The gradient descent
of L2 loss is more accurate and simple to calculate, but more sensitive to outliers. Therefore,
the advantages of L1 loss and L2 loss are combined in the design of the bounding-box
regression loss function, the Section 3.3 shows the design method.

3.3 Loss-based training strategies

Stage-wise trainingmethod RCNN/SPPNet are pioneering approaches to object detection
based on DCNNs, which is the stage-wise training method. First, the SVM algorithm is used
for classification, and then the bounding-box regression [66, 81] is used to accurately locate
the objects. Therefore, the stage-wise loss function is used in the training. After calculating
the SVM loss function, the bounding-box regression loss function is calculated.

The loss function of the SVM classification algorithm is the Hinge loss with the L2
regularization term [162]. The function form is defined as follows:

Lcls = c
∑

i

max
(
0, 1 − p∗

i · pi

) + 1

2
w2 (11)

Here, p∗
i represents the true category of the object, pi represents the probability of the

predicted object category, and i is the index of the mini-batch.
The bounding-box regression in RCNN/SPPNet uses the L2 loss as the basic skeleton

of the loss function. The main principle is to punish the distance deviation between the
predicted bounding-box and the ground truth to optimize the robustness of the prediction.
The function is defined as follows:

t∗x = (
x∗ − x

)
/w , t∗y = (

y∗ − y
)
/h

t∗w = log
(
w∗/w

)
, t∗h = log

(
h∗/h

) (12)

Lloc =
∑

i

(
t i∗ − wT∗ φ

(
t i

))2
(13)

Here, the true coordinate is t∗ = (x∗, y∗, w∗, h∗), the predicted coordinate is t =
(x, y, w, h), where (x, y) represents the coordinate of the box center, (w, h) represents the
width and height of the box. wT∗ is the learned parameter, and φ

(
t i

)
is the feature vector.

Multi-task training method [20]. Stage-wise training method cannot achieve end-to-end
training. By summarizing the shortcomings of RCNN, Fast RCNN uses softmax classifier
instead of SVM classifier [65]. From the network structure analysis, each ROI outputs two
feature vectors through two fully-connected layers, which input to the softmax classifier
and bounding-box regressor in parallel. Finally, the classification and regression are inte-
grated into a unified loss function, which is called the multi-task loss function. It combines
classification loss and location loss, which improves the accuracy of the network model
and implements end-to-end training of the network model. The multi-task loss function is
defined as follows:

L
(
p, u, tu, v

) = Lcls(p, u) + λ[u ≥ 1]Lloc
(
tu, v

)
(14)

Lcls(p, u) = − logpu (15)

where, p = (p0, · · · , pk) is the probability distribution of K + 1 categories calculated by a

softmax, and u is the true category. In Lloc, tu =
(
tux , tuy , tuw, tuh

)
is the prediction offset to
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true class u, which is converted by tk =
(
tkx , tky , tkw, tkh

)
using the parameterization method.

v = (
vx, vy, vw, vh

)
is the coordinates of the ground-truth of the true category u, where

(x, y) represents the coordinate of the box center, (w, h) represents the width and height of
the box. The Iverson bracket indicator function [u ≥ 1] can be used to eliminate the effects
of background RoIs, when u ≥ 1, the function is 1, otherwise it is 0. Lloc bounding-box
loss function is shown as follows:

Lloc
(
tu, v

) =
∑

i∈{x,y,w,h}
smoothL1

(
tui − vi

)
(16)

In which

smoothL1(x) =
{
0.5x2 if |x| < 1
|x| − 0.5 otherwise

(17)

The smoothL1(x) combines the advantages ofL1 loss andL2 loss. InL1 loss andL2 loss,
x represents the difference between the target value and the predicted value. When x > 1,
L2 loss will increase the error, especially when there are outliers, the error will further
increase, so very high penalty for large errors. Therefore, when x > 1, the L1 loss with
linear error increase can eliminate the sensitivity of the loss function to the outliers. When
x ≤ 1, the L1 loss has no derivative points, which affect the convergence of the network
model during the gradient descent, so the L2 loss is selected. In short, smoothL1(x) can
eliminate the sensitivity to outliers, and the performance is more robust, which can avoid
the situation of gradient explosion when RCNN or SPPNet is trained with L2 loss.

The training region proposal network (RPN) [191] is required in the Faster RCNN. The
loss function of the RPN is designed according to the multi-task loss function in the Fast
RCNN. Different from the true category, only the binary category label is assigned to the
anchor box in the RPN, indicating whether it is an object. With reference to equation (14),
the loss function of the RPN is defined as follows:

L ({pi} , {ti}) = 1

Ncls

∑

i

Lcls

(
pi, p

∗
i

) + λ
1

Nreg

∑

i

p∗
i Lreg

(
ti , t

∗
i

)
(18)

Here, pi is the predicted probability of anchor i as the object. If the anchor is positive
(object) then p∗

i is 1, if the anchor is negative (no object) then p∗
i is 0. The classification

loss function Lcls reference to equation (4). Because of the specificity of RPN, make some
minor changes to the bounding-box regression, which is defined as:

Lreg

(
ti , t

∗
i

) = R
(
ti − t∗i

)
(19)

R reference equation (15) in the definition of smoothL1 . The improved parameterization
method is used in the bounding-box regression of the anchor, which inherits the equation
(12), but with minor differences. The definition method is defined as follows:

tx = (x − xa) /wa, ty = (y − ya) /ha

tw = log (w/wa) , th = log (h/ha)

t∗x = (
x∗ − xa

)
/wa, t∗y = (

y∗ − ya
)
/ha

t∗w = log
(
w∗/wa

)
, t∗h = log

(
h∗/ha

)
(20)

Here, x, y, w, h represent the center coordinates of the anchor box, width and height
respectively.

Unlike the two-stage detectors such as Fast/Faster RCNN, YOLO [187] is a single-
stage detector. Therefore, the design of the loss function is different from the former. In
the YOLO detector, a fully-image can output the bounding-boxes and class probabilities of

Multimedia Tools and Applications (2020) 79:23729–2379123744



the objects through a single DCNN. It divides image into a S × S grid, and every grid is
responsible for detecting the object of whose center falls into the grid cell. Each grid cell
predicts B bounding-boxes and the confidence score of each bounding-box, and the con-
fidence scores indicate the probability and accuracy of the bounding-boxes containing an
object. The confidence score is defined as follows:

Confidence score = Pr(Object) ∗ IOUtruth
pred (21)

The Pr(Object) is 1 if it exists an object in the grid cell, and is 0 if there did not exist an
object in the grid cell. Pr ( Class i | Object ) is the C conditional class probabilities to be
predicted for each grid cell, which is for each grid cell, not B bounding-boxes. Finally,
the test results yield the confidence scores of each bounding-box for class-specific objects,
which as follows:

Pr ( Class i | Object ) ∗ Pr( Object ) ∗ IOUtruth
pred = Pr ( Class i ) ∗ IOUtruth

pred (22)

This gives us both confidence scores and accuracy for the class-specific of each bounding-
box, as well as whether the bounding-boxes contain objects. In the training stage, although
each grid cell can predict B bounding-boxes, only the bounding-box with the highest IoU of
the object ground truth is used as the prediction. So, we define the multi-task loss function
as follows:

(23)

where represents the grid cell i found the object, and represents the j th bounding-
box in the grid cell i responsible for prediction. (xi, yi) is the center of the bounding-box
that offsets from the grid cell boundary, (wi, hi) is the width and height of the bounding-box
that normalized to the width and height of the input image. The purpose of the parameters
λcoord and λnoobj are to reduce the impact of the grid cell that not object on the stability of
the model.

4 The architectures of object detection

Object detection can be divided into object location and object classification. Since the
DCNNs shows strong feature representation power [116, 122], the mainstream object detec-
tion architectures are based on DCNNs, which can be divided into two categories. One is the
two-stage object detection architectures, which separate the object location task from the
object classification task. It generates the region proposal first, and then classifies the region.
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Fig. 6 The milestones of object detection evolution, in which AlexNet [116] serves as a watershed between
traditional methods [58, 155, 208, 224, 229, 241] and DCNNs-based methods. The development of object
detection based on DCNNs is mainly divided into one-stage detection architectures [142, 150, 187, 277, 283]
and two-stage detection architectures [15, 16, 65, 66, 80, 144, 191]

The main advantage is the high detection accuracy and the main disadvantage is the slow
detection speed. For example, RCNN [66], SPPNet [81], Fast RCNN [65], Faster RCNN
[191], Mask RCNN [80] and RFCN [38] are all two-stage object detection architecture.
Others are the one-stage object detection architectures that directly locates and classifies
through DCNNs without separating into two parts. The one-stage object detection can gen-
erate the class probabilities and location coordinates of an object in a stage directly. It does
not require the region proposal process, which is simpler than two-stage object detection.
The main advantage is the high detection speed, but the detection accuracy is generally
lower than two-stage object detection architecture. For example, OverFeat [197], YOLO
series [187–189], SSD [150], DSSD [59], FSSD [137] and DSOD [199] belong to one-
stage object detection. The performance parameters of some classic two-stage detectors and
one-stage detectors are shown in Table 3. The milestones of object detection evolution are
shown in Fig. 6. The highlights, properties, and shortcomings of the milestone object detec-
tion architectures are summarized in Table 4. The two-stage object detection architecture,
the one-stage object detection architecture and the open source object detection platform
are introduced below.

4.1 Two-stage object detection architecture

RCNN Inspired by AlexNet’s great success in image feature extraction, R.Girshick et al.
used DCNN as the feature extraction backbone network [116] instead of HOG [40, 58,
180], SIFT [155] and other traditional feature extraction algorithms, combined with the
regional proposals algorithms (such as Selective Search [224], Objectness [1], category-
independent object proposals [49], CPMC [19] and MCG [4]) to generate region proposals
to form the RCNN (Regions with CNN features) [66] architecture, as shown in Fig. 7. From
the pipeline of the RCNN architecture, the steps are as listed follows. Firstly, the selective
search algorithm generates about 2000 category-independent region proposals. Secondly,
the region proposals are inputted into the DCNN to extract 4096-dimensional feature as
representation. Lastly, the features are classified using the SVM algorithm. Bounding-box
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Table 4 Summarization of highlights, properties, and shortcomings of the milestone object detection
architectures

Method Highlights and properties Shortcomings

RCNN [66] Use DCNNs to extract image fea-
tures; Use selection search algo-
rithm to select 2k region proposals;
Use SVM to classify regions; Use
bounding box regressor to refine
regions.

Training is too slow; Takes up a lot
of space; No end-to-end training.

SPPNet [81] Use DCNNs to extract the features
of the entire image; Use selec-
tion search algorithm to extract 2k
region proposals on the image, but
map them to the feature maps; Use
spatial pyramid pooling to input
multi-scale image to DCNNs.

The use of selective search to
extract region proposals is still
slow; No end-to-end training.

Fast RCNN [65] Use DCNNs to extract the features
of the entire image; Use selec-
tion search algorithm to extract 2k
region proposals on the image, but
map them to the feature maps; Use
the ROI Pooling layer to down-
sample the features of region pro-
posals to obtain fixed-size feature
maps; Use Multi-task loss function.

The use of selective search to
extract region proposals is still
slow; No end-to-end training.

Faster RCNN [191] Use Region Proposal Network
(RPN) to replace the selection
search algorithm; The RPN shares
feature maps with the backbone
network; Can end-to-end training.

Poor performance for multi-scale
objects and small objects; Detec-
tion speed cannot meet real-time
requirements.

Mask RCNN [80] Use ROIAlign pooling layer
instead of ROI pooling layer, which
improves detection accuracy; Com-
bine training object detection and
segmentation to improve detection
accuracy; Conducive to small target
detection.

Detection speed cannot meet real-
time requirements.

FPN [144] A multi-level feature fusion Fea-
ture Pyramid Network is proposed
which is conducive to multi-scale
object detection and small object
detection.

Detection speed cannot meet real-
time requirements.

YOLO [187] Propose a novel single-stage detec-
tion network; Detection speed is
fast and can meet real-time require-
ments.

Detection accuracy is not high,
especially for dense objects and
small objects.

YOLOV2 [188] Multi-dataset joint training; new
backbone network (DarkNet19);
use k-means clustering algorithm to
generate anchor box.

Complex training.
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Table 4 (continued)

Method Highlights and properties Shortcomings

YOLOV3 [189] Use multi-level feature fusion to
improve the accuracy of multi-scale
detection; New backbone network
(DarkNet53).

As IoU increases, performance
decreases.

SSD [150] Multi-layer detection mechanism;
Multi-scale anchors mechanism at
different layers.

Not conducive to small object
detection.

DSSD [59] Multi-layer feature fusion mecha-
nism; Up-sampling using deconvo-
lution instead of simple linear inter-
polation; Improve the accuracy of
small object detection.

Detection speed decreases relative
to SSD.

regression and the greedy non-maximum suppression (NMS) [166] will be done to perform
fine-tuning of bounding-box. In summary, RCNN has improved performance by 30% over
traditional object detection algorithms [58, 192].

Although RCNN has pushed object detection into the era of neural networks, it still has
three disadvantages that prevent application from entering the instance scenario. The three
disadvantages are listed as follows:

(1). Each picture needs to be pre-fetched with about 2000 region proposals, which
consumes a lot of storage spaces and I/O resources.

(2). In the case of using AlexNet [116] as the backbone network, the cropped/warped
region block is deformed into 227×227 RGB image. This causes truncation or
stretching of the object image to result in loss of object information.

(3). The separate extraction of each region proposals feature does not utilize the ability of
DCNNs feature sharing, resulting in a large waste of computing resources.

SPPNet The process of cropping/warping the image in the RCNN is removed, and the
spatial pyramid pooling (SPP) layer (similar to SPM [121]) is added after the last convo-
lutional (Conv) layer. Therefore, the problem of missing object information caused by the
cropped/warped image can be solved. Thus an image of arbitrary size can be input into the
DCNNs to calculate 21-dimensional fixed-length feature vector for fully-connected (FC)
layer [81]. The sharing of the entire image feature maps makes SPPNet test speed 10 to
100× faster than RCNN. The framework of SPPNet and RCNN is extremely same, so no
end-to-end training is implemented. The convolutional (Conv) layer cannot be continued to
train during fine-tuning in SPPNet, which limits the accuracy of network [65].

Fast RCNN By analyzing the disadvantages of SPPNet and RCNN in speed, space consump-
tion, and training process. R.Girshick et al. proposed the RoI (Region of Interest) pooling
layer, which is a single-level spatial pyramid pooling (SPP) [81]. In the Fast RCNN, the
feature map of the image is calculated by the DCNNs. The selection search (SS) [224] algo-
rithm is used to find the region proposals in the image and maps them onto feature maps.
Then, the RoI pooling layer maps different feature regions to fixed-size feature vectors and
inputs them to the fully-connected (FC) layer. Finally, the softmax predicts object categories
and the bounding-box regression accurately locates the object location, and its architecture
is depicted in Fig. 7. The Fast RCNN uses multi-task loss jointly train classification and
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Fig. 7 The details of the classical two-stage object detectors include RCNN, Fast RCNN, and Faster RCNN.
The left side is the training process and the right side is the testing process, and reflects the relationship
between training and testing

bounding-box regression, so that two tasks share convolution features. Thus the stage-wise
training of SVM+bounding-box regression (stage-wise training [66, 81, 294]) can be trans-
formed into multi-task training [20, 177]. Because of these innovations, the advantages of
Fast RCNN contrast with RCNN/SPPNet are as listed follows:

(1). Fast RCNN has higher accuracy than RCNN/SPPnet.
(2). Due to multi-task loss, the detector training is end-to-end.
(3). Fast RCNN training can update all network layers. It is superior to SPPNet that only

updates the fully-connected (FC) layer.
(4). Hard disk storage is not required for feature caching.
(5). Training and testing are faster than RCNN/SPPNet.

Faster RCNN Although the Fast RCNN has a great improvement in accuracy and speed, the
way to generate around 2000 region proposals/RoIs is the selective search algorithm [224,
225]. The selective search algorithm needs to search all the region proposals in the image
andmaps them into the feature maps, which is very time-consuming. In the test, Fast R-CNN
took 2.3s to make predictions, 2s of which were used to generate 2000 RoIs. Therefore,
the traditional region proposal algorithms [4, 114, 224, 225, 296] become the bottleneck
of the object detection architecture. In order to solve this shortcoming, Shaoqing Ren et al.
proposed a regional proposal network (RPN) in the Faster RCNN [191] (see Fig. 7) instead
of the selective search algorithm to generate region proposals. The RPN integrates region
proposals extraction into the DCNNs, which shares the convolution features of the full-
image with the detection network. Since the region proposals share the convolution feature
maps and the region proposal network (RPN) is implemented on the GPU, this process is
nearly cost-free.
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The RPN [191] is a fully convolutional network that is connected to the last convolu-
tional layer of the backbone network. A feature map of any size is entered into the RPN,
which outputs many rectangular object proposals with objectness scores. The RPN makes K
predictions of different scales and aspect ratios for each sliding position in the feature map.
Two fully-connected layers output 4 × K coordinates through a box-regression layer (reg),
and 2 × K scores through a box-classification layer (cls). If the feature map size is n × n,
then output n × n × k ROIs. RPN reduces the proposal number and improves the quality
of regional proposals, so the location accuracy and speed of the object detection network
(Common Datasets with only 300 proposals per image, 5fps on a GPU) get a big boost. In
addition to RPN, researchers have proposed many region proposals based on DCNNs and
have achieved good results in recent years, such as DeepBox [117], DeepMultiBox [50],
SharpMask [178] and DeepProposal [63].

RFCN The algorithmic ideas and performances of the RCNN series determine the mile-
stone in object detection. The architecture essentially consists of two subnets (Faster RCNN
consists of three subnets, adding RPN [191]). The previous subnet is the backbone net-
work for feature extraction, the next subnet completes the object detection: classification
and location. The RoI pooling layer is inserted between two subnets, which converts the
multi-scale feature map to the fixed-size feature map. But this step will destroy the trans-
lation invariance of the network, which is not conducive to the classification of the object.
In order to balance the translational invariance and translational transformation. Jifeng Dai
et al. proposed position-sensitive score maps in the RFCN [38], and the RFCN region detec-
tion is based on the fully convolutional calculation of the full-image. The RFCN shares
fully-convolution and uses position-sensitive score maps/position-sensitive RoI pooling to
blend the translational variance into the convolutional layers, which is beneficial for object
location. All learnable layers have two characteristics: all of them are convolutional and
shareable throughout the full-image; and they can encode spatial information for object
detection. The author uses ResNet101 [82] as the backbone network, achieving 83.6% mAP
on the PSCAL VOC 2007 testing set/82.0% mAP on the PASCAL VOC 2012 testing set,
and faster than Faster R-CNN with ResNet101.

Mask RCNN Mask RCNN is an extension of Faster RCNN, which adds a Mask network
branch for RoIs prediction segmentation parallel to object classification and bounding-box
regression [80]. It can complete object detection and instance segmentation simultaneously.
The Mask network is a streamlined version of the fully convolutional network used to gen-
erate split mask for each RoI. Due to the integer quantization of the RoI pooling [65, 191],
the feature map region and the original image region is not aligned. Therefore, it produces a
bias for accurately predicting pixel-level mask. Kaiming He et al. proposed a RoIAlign [80]
layer instead of the RoI pooling layer, which uses bilinear interpolation to achieve pixel-
level alignment. The RoIAlign also can improve the accuracy of the object detection branch.
The experimental results show that the performance of Mask R-CNN using ResNet-101-
FPN [82, 144] as the backbone network is much better than Faster RCNN with G-RMI.
Mask RCNN got the championship of the COCO 2016 object detection challenge. Its AP
is increased by 3 points compared to Faster RCNN with Inception-ResNet-v2-TDM [203,
212].

FPN Tsung-Yi Lin et al. proposed a Feature Pyramid Networks (FPN) in 2017 [144]. The
FPN can be considered as a method of feature fusion and detection. Before FPN, the detec-
tors mainly use top-level feature detection or independent detection in different feature
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layers. These methods cannot take into account both classification information and loca-
tion information, because the low-level semantic information are relatively small, but the
object location information are rich, and the high-level semantic information are rich, but
the object location information are relatively rough. Therefore, the FPN fuses different fea-
ture layers by way of top-down and lateral connection, and performs detection on the fused
multi-layer feature layers. This method greatly enhances the detection performance. Faster
RCNN with FPN achieves state-of-art results on the MS COCO dataset [144].

4.2 One-stage object detection architecture

OverFeat In 2013, Yann LeCun et al. proposed the famous OverFeat architecture [197],
which utilized the feature sharing of DCNNs to integrate object classification and object
location into one network architecture. The main idea of OverFeat is to extract the patch
using the multi-scale fast sliding window [77] on the last pooling layer of DCNN. In order to
predict the classification score for each patch and merge the patches according to the scores.
In this way, the complex shape and multi-size problem of the object image are solved.
OverFeat uses the classification and regression of DCNN to achieve the object classification
and object localization. It is compared with RCNN [66], OverFeat has obvious advantages
in speed, but lacks in accuracy.

YOLO Although Faster RCNN uses RPN to reduce the number of region proposals from
around 2,000 (RCNN/Fast RCNN) to around 300, there are still overlaps between region
proposals [191]. The inevitable overlap can lead to repetitive computation, making it diffi-
cult for the object detection architecture to break through the bottleneck of speed. In 2015,
J.Redmon et al. proposed YOLO (Your Only Look Once), which is an end-to-end single
neural network [187]. It can implement class probabilities and bounding-boxes regression
directly from a full-image. YOLO divides the full-image into S × S grids. Each grid cell
is responsible for the detection of the object center falling into the grid cell. Each grid cell
predicts C class probabilities, B bounding-boxes and confidence scores, and the full-image
is encoded to output S × S × (5B + C) tensor. Figure 8 shows the architecture of YOLO.

The YOLO detection system consists of 24 convolutional layers and 2 fully-connected
layers with a network entry of 448 × 448 image. In this paper, the network is trained using
the PASCALVOC dataset, so set S=7, B=2, C=20, and the final prediction code is a 7×7×7
tensor. Up to 45 fps on the testing set, the speed has reached the requirements of real-time
image processing, but YOLO has the following shortcomings to be improved:

(1). YOLO does not work well for dense small objects because a grid cell can only predict
two bounding-boxes and can only belong to the same class.

(2). The generalization ability is weak for the case where a new aspect ratio occurs in the
same type of object in the testing image.

(3). The shortcoming of loss function affects the detection effect.

YOLO9000/V2 Although YOLO achieves real-time object detection, it has a number of
localization errors and low recall. In order to achieve higher accuracy, YOLOV2 [188] has
the following improvements over YOLOV1:

(1). The introducing of batch normalization [97] speeds up network convergence and
enhances network generalization capability.

(2). Train high resolution classifiers to accommodate higher resolution images [161].
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Fig. 8 The details of the classical one-stage object detectors include YOLO and SSD. The upper part is the
training process and the lower part is the testing process, and reflects the relationship between training and
testing

(3). In order to solve the weak generalization ability for various aspect ratios objects of
YOLO. The idea of anchor in the Faster RCNN [191] is introduced in YOLOV2, and
each grid cell can predict 3 scales and 3 aspect ratios.

(4). YOLOV2 uses the K-means [231] clustering algorithm to automatically find the prior
bounding-boxes, which can make detection performance better.

(5). YOLOV2 limits the offset of ground truth relative to the grid cell coordinate between
0 and 1, which solves the instability of network model.

In order to achieve faster speed, authors proposed a Darknet-19 [186] backbone network
based on the VGGNet [207]. The authors use the joint training mechanism of classification
datasets (ImageNet [42]) and object detection datasets (COCO [143]) to train the network.
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Therefore, the network learned more categories of object, the trained network is called
YOLO9000.

YOLOV3 YOLOV3 [189] inherits the ideas of YOLOV1 and YOLOV2/9000, and has
improved their shortcomings to achieve balance between speed and accuracy. To achieve
this goal, the authors combine the residual block [82], feature pyramid network (FPN) [144],
and binary cross entropy loss to upgrade YOLO to YOLOV3. These changes make the
detection network suitable for more complex objects (more categories, multi-size objects).

SSD The RCNN series and YOLO have their own advantages in speed and accuracy. The
RCNN series has high detection accuracy, but the speed is slow. Although the YOLO has
fast detection speed, the generalization ability of the object with large dimensional change
and the detection effect for small objects is weak. By drawing on the advantages of Faster
RCNN and YOLO, Wei Liu et al. proposed Single Shot MultiBox Detector (SSD) [150].
SSD uses VGG16 as the backbone network for feature extraction, which replaces FC6/FC7
with Conv6/Conv7, and then add four convolutional layers (Conv8, Conv9, Conv10 and
Conv11). The design idea of SSD network is hierarchical extraction of features, we can see
from Fig. 8. The one-stage network is divided into 6 stages. Each stage extracts feature maps
of different semantic levels and performs object classification and bounding-box regression.
The multi-scale feature maps combined with the anchor mechanism in the Faster RCNN can
adapt the SSD to the detection task of multi-scale objects. The accuracy of SSD512 with
VGG16 is significantly better than Faster R-CNN, which is 3 times faster. The SSD300 runs
at 59 fps faster than YOLO, with significant quality detection [150].

DSSD and FSSD In order to improve the ability of SSD to express low-level feature maps,
DSSD [59] uses ResNet101 as the backbone network. The addition of deconvolution mod-
ules and skip-connection [82] enhance the representation of the low-level feature maps and
achieve a certain degree of feature fusion. Similarly, FSSD combines low-level features into
high-level features based on SSD, which significantly improves the accuracy.

4.3 Open source object detection platform

With the progress of research work on object detection technology in recent years, a large
number of excellent object detection architectures based on DCNNs are proposed. These
object detection architectures on a scalable, unified platform allows researchers to quickly
and easily conduct experimental research. In order to meet the researchers’ demand for high-
quality and high-performance object detection platform. Facebook AI Research (FAIR)
Institute opens up an object detection platform called Detectron [53]. Google opens up
an object detection API System [217]. CUHK&SenseTime Joint Lab opens up an object
detection library named Mmdetection [27]. These open source platforms integrate many
landmark object detection architectures, backbone networks, a large number of benchmark
results, and pre-trained models in the Model Zoo library. Summarization of the respective
characteristics of the three open source platforms in Table 5.

5 Complex problem of object detection

Object detection encounters many obstacles in real-world scene applications. There are
crowded occlusion, small objects detection, class imbalance, multi-scale object detection,
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and redundant detection. Researchers propose lots of methods to respond to the challenges
of these issues. The solutions make the object detection technology based on DCNNs to
take an important step in practical applications.

5.1 Dense occlusion

Dense occlusion problem often occurs in pedestrian detection [45], autonomous driving
[24, 31], and other practical application scenarios. It is divided into two situations, which
are occlusion between objects of the same categories and the occlusion between objects
of the different categories. Occlusion can lead to object information loss, such as missed
detection and false detection. In traditional object detection algorithms, researchers can use
the additional object information. Such as gray information, boundary information, and
local features to overcome dense occlusion problem. This review paper focuses on methods
based on DCNNs to deal with dense occlusion problem.

Influenced by the idea of Generative Adversarial Nets (GANs) [67], Xiaolong Wang
et al. proposed A-Fast-RCNN by combining the GANs with the Fast RCNN. Based on
GANs, the authors design an Adversarial Spatial Dropout Network (ASDN) [243], which
can generate occlusion samples to train detection network. Through this step, it could make
the detection network more robust to occlusions. ASDN is only a generator in the network,
which plays a role in training process and does not participate in the testing process. A-Fast-
RCNN improves robustness of detection network to occlusion objects by adding network
modules. In recent researches, Face++ first solves crowed pedestrians detection from the
perspective of loss function, which is named Repulsion Loss (RepLoss) [242]. This method
is also suitable for generic object detection that is inspired by magnetic attraction and exclu-
sion. The loss function consists of three parts: the attraction item LAttr , the exclusion item
LRepGT , and the exclusion item LRepBox , which are defined as follows:

L = LAttr + α ∗ LRepGT + β ∗ LRepBox (24)

where weighting factors α and β balance LRepGT and LRepBox . Among the equation, the
attracting item LAttr denotes the loss between the predicted bounding-box and ground truth.
P = (lP , tP , wP , hP ) are the coordinates of the proposal, G = (lG, tG,wG, hG) are the
coordinates of the ground truth, and l, t , w, and h represent the coordinates of the left-
top points of the boxes and the widths and heights, respectively. Set P+ = {P } represents
all positive proposals, and set G = {G} represents all ground truths in one image. The
representation of LAttr is presented as follows:

GP
Attr = argmax

G∈G
IoU(G,P ) (25)

LAttr =
∑

P∈P+SmoothL1
(
BP ,GP

Attr

)

|P+| (26)

where P ∈ P+, BP is the predicted box regressed from proposal P .
The exclusion item LRepGT represents the loss of the predicted bounding-box and the

ground truth of the adjacently same class. The representation is defined as follows:

GP
Rep = argmax

G∈G\{GP
Attr }

IoU(G,P ) (27)

IoG(B,G) � area(B ∩ G)

area(G)
, IoG(B, G) ∈ [0, 1] (28)
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Smoothln =
{ − ln(1 − x) x ≤ σ

x−σ
1−σ

− ln(1 − σ) x > σ
(29)

LRepGT =
∑

P∈P+Smoothln

(
IoG(BP , GP

Rep)
)

|P+| (30)

where IoG(BP , GP
Rep) is the overlap between BP and GP

Rep, which is defined in the equa-
tion (28). Smoothln ∈ (0, 1) is a continuously differentiable function, and σ ∈ [0, 1) is
used to adjust the sensitivity of the repulsion loss to the outliers.

The exclusion item LRepGT represents the loss of the predicted bounding-box and the
ground truth of the adjacently different class. The representation is defined as follows:

(31)

where P+ is divided into |G| disjoint subsets based on each proposal object P+ = P1 ∩
P2 ∩ . . . ∩ P|G|. Randomly sample from two different subsets for two proposals, Pi ∈
Pi and Pj ∈ Pj where i, j = 1, 2, . . . , |G| and i �= j . BPi and BPj indicate predicted
bounding-boxes. ε is a small constant to prevent division by 0, is an identity function.

A-Fast-RCNN and RepLoss prove the feasibility of solving the dense occlusion problem
from the network architecture and the loss function. Then, Shifeng Zhan et al. proposed
OR-CNN [276], which was published in ECCV2018. Based on Faster RCNN [191], OR-
CNN adds compactness loss term based on regression loss. It is named Aggregation Loss,
which can reduce the missed detection of overlapping objects. At the same time, the use
of Part Occlusion-aware RoI Pooling Unit instead of RoI Pooling can reduce the impact of
occlusion position on global features. The experimental results show that the results of these
three algorithms in the Citypersons dataset [275] are satisfactory results.

5.2 Multi-scale objects detection

Multi-scale object detection is one of the most complicated difficulties in the field of object
detection. The convolutional neural network is a typical hierarchical structure. Each layer
abstracts the feature map of the image, and semantic information represented by the feature
maps are different. This inherent property determines the detection of multi-scale objects
based on DCNNs. For example, the RCNN [66] and the YOLO [187] only perform object
classification and bounding-box regression on the last layer of feature maps. This leads to
much loss of object feature representation information, which is obviously not conducive to
the detection of multi-scale objects. For example, YOLO is not robust to small object detec-
tion, which is caused by the loss of small object features extracted in the last convolutional
layer.

The combination of information fusion and hierarchical structures of DCNNs,
researchers proposed the idea of multi-layer feature fusion and multi-layer detection to solve
the problem of multi-scale object detection. By summarizing the relevant works, researchers
have many achievements around this difficult problem, and many classical network archi-
tectures are proposed. These include FPN [144], SNIP [204], FSSD [137], SPPNet [81],
Hypercolumns [76], HyperNet [112], ION [7], RON [111], SSD [150], DSSD [59], DSOD
[199], MSCNN [14], RBFNet [148], RefineDet [277], STDN [288], DES [281], PFPNet
[107], and so on.

According to the idea of multi-layer feature fusion, Hypercolumns fuses each layer
of feature maps to obtain hypercolumn that is all nodes of the network corresponding
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to the pixels and they connected in series as feature vectors. The hypercolumn contain
more detailed location and classification information. Similarly, the skip layer feature
is applied in ION [7] and HyperNet [112]. In HyperNet, the multi-level feature maps
are extracted through the skip connections [82]. The multi-scale hyper-feature obtained
by fusion includes high-level and low-level semantics, which improves the robustness of
multi-scale object detection.

What about the idea of multi-layer detection? Due to the different representations of
the semantic features of each layer, different feature maps can be used to detect different
scales objects. The SSD [150] detects the feature maps generated by the last 6 convolutional
layers, and finally uses NMS for post processing. Songtao Liu et al. introduced a Receptive
Field Block (RFB) [148] in the SSD architecture. It uses multi-branch structure composed
of convolutional layers of different sizes and dilated convolution [261, 262] to increase the
receptive field. Finally, the convolution outputs of different sizes and dilation ratios are
concatenated. The results prove that RFB can improve the robustness of detection. MSCNN
[14] is an optimization based on Faster RCNN in detecting multi-scale objects, especially
the small object detection. The multi-scale object proposal network is mainly composed of
the multi-level network structure, which is the core of the MSCNN.

Multi-layer feature fusion and multi-layer detection can also be combined to improve the
robustness of multi-scale object detection. In FPN [144], the bottom-up is down-sampling
and the top-down is up-sampling. Then, it uses the lateral connection method to merge
the down-sampling and the up-sampling feature map. Finally, it uses each merged layer to
make prediction. In DSSD and FSSD, skip connections and feature fusion are also used to
transform the architecture of SSD.

5.3 Class Imbalance

One of the reasons why the accuracy of the one-stage object detection is lower than the
two-stage object detection is class imbalance. The region proposal of the two-stage object
detection can effectively prevent class imbalance [142]. The class include hard positive
example, hard negative example, easy positive example, and easy negative example. The
number of hard examples is less than easy examples. Representative methods for solving
this problem include OHEM [202], Focal Loss [142], CC-Net [169], and RON [111]. The
main idea of OHEM is to screen out hard examples as training samples. The Focal Loss
changes the weight of the examples through the loss function, which makes the network
pay more attention to the training of hard examples. The CC-Net uses a cascaded network
structure to process a large number of easy examples in previous stage and a small number of
hard samples in latter stage. The RON uses the objectness prior map [111] to distinguish the
foreground and background of the object, which keeps the positive and negative examples
at certain percentage. Finally, the network training can be completed in combination with
the Loss strategy.

Among them, the Focal Loss points out a new idea to solve the problem of class imbal-
ance, which is from the perspective of loss function rather than network structure. Through
the analysis of the one-stage detector, there is a problem of hard and easy (positive and
negative) class imbalance, which results in low detector accuracy. Kaiming He et al. solved
this problem from the perspective of loss function and proposed the Focal Loss, which is
modified based on the cross entropy (CE) loss function.
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5.4 Post-processing of redundant bounding-boxes

The post-processing of the redundant bounding-boxes is to de-duplicate the repeated
bounding-boxes, and select the most accurate bounding-boxes as the results. The de-
duplication operation of the bounding-boxes can be used for the intermediate process of
object detection and the process of the final results. For example, Faster RCNN uses non-
maximum suppression (NMS) to reduce the number of region proposals to 300 in the final
step of the Region Proposal Network (RPN) [191]. This process reduces the amount of com-
putation and does not compromise the final detection accuracy. YOLO and SSD use NMS
to generate ultimate object results. NMS is the original algorithm for eliminating duplica-
tion. Inspired by the NMS algorithm, UMIACS proposed a Soft-NMS algorithm [10]. Based
on the NMS and Soft-NMS algorithms, CMU and Face++ proposed a Softer-NMS algo-
rithm [84]. Face++ published a IoU-Net [100] in 2018, which makes up for the shortcoming
of NMS that uses only the classification confidence of bounding-box as the deduplication
threshold. It introduces a localization confidence of bounding-box into the non-maximum
suppression process, which can further improve the location accuracy of bounding-box.

5.4.1 NMS

The core idea of non-maximum suppression (NMS) [10, 166] is to use local maxima to
suppress non-maximum values, and only retain the maxima. In the object detection, each
bounding-box gets a classification and confidence after being classified. However, there
will be overlaps in the bounding-boxes. In this case, NMS is needed to select the high-
est bounding-boxes in those neighborhoods and suppress the bounding-boxes with low
confidence. The algorithm description is in Fig. 9a.

Although NMS [10] has a good promoting effect on the de-duplication of bounding-
boxes, there are missed detection on the detection of overlapping (dense occlusion) objects,
and the threshold of the algorithm is hard to set. The re-scoring function of the NMS
algorithm is defined as follows and the parameters in the equation (32) are defined in Fig. 9a.

si =
{

si , iou (M, bi) < Nt

0, iou (M, bi) ≥ Nt
(32)

5.4.2 Soft-NMS

In order to deal with some of the shortcomings of NMS, UMIACS proposed the Soft-NMS
algorithm [10] (described in Fig. 9b), which is published in ICCV2017. In the de-duplication
process of the redundant bounding-boxes, the Soft-NMS does not delete (suppress) the
bounding-boxes when the IoU is higher than a certain threshold. But decay the classifica-
tion confidence of bounding-boxes to enter the next iteration. For decaying the classification
confidence, the authors proposed a linear penalty function and a Gaussian penalty func-
tion. They are defined as follows and the parameters in the equation (33, 34) are defined in
Fig. 9b.

si =
{

si , iou (M, bi) < Nt

si (1 − iou (M, bi)) , iou (M, bi) ≥ Nt
(33)

si = sie
− iou(M,bi )

2

σ ,∀bi /∈ D (34)
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Fig. 9 The pseudo code of the post-processing of the redundant bounding-boxes, where a is NMS, b is
soft-NMS, c is softer-NMS, and d is IoU-guided NMS

5.4.3 IoU-Net

NMS and Soft-NMS sort bounding-boxes by the classification confidence, but the localiza-
tion confidence of the bounding-boxes is not utilized. The lack of localization confidence
may result in more accurate bounding-boxes being suppressed during NMS process. There-
fore, Face++ proposed an IoU-Net [100], which introduces localization confidence into the
NMS process. The IoU of the predicted bounding-box and the ground truth bounding-box is
used as the localization confidence and sorting criterion instead of the classification confi-
dence in the NMS process. Then the clustering-like rule is used to update the classification
confidence, which is called IoU-guided NMS, and it is depicted in Fig. 9d.

5.4.4 Softer-NMS

Softer-NMS [84] introduces KL loss, Gaussian distribution, and Delta distribution into the
bounding-box regression. To obtain the IoU and variances of the four coordinates of the
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predicted bounding-box, which is called Bounding-Box Regression with KL Loss. The stan-
dard deviation of the bounding-box can be obtained by the variance of the coordinates,
which can be used as the localization confidence. During the suppression process, Softer-
NMS performs a weighted average of the localization confidence of the bounding-boxes
above a certain threshold based on soft-NMS. This method can solve the problem that the
classification confidence and the localization confidence are not positively correlated. The
algorithm is described in Fig. 9c.

5.5 Detection speed

The speed of object detection is an important indicator of performance and is critical for
applications. The purpose of the lightweight backbone networks mentioned in Section 2.2
is to speed up the speed of object detection. The compression technology of the network
model can also improve the speed of object detection. The detailed technologies include
network model pruning, network model quantification and network model distillation.

Network model pruning is a model compression method that cuts unimportant convolu-
tional layers or connections to reduce the parameters of the model. Therefore, the core of
pruning is to find unimportant convolutional filters or connections. Hao Li et al. proposed a
method based on the weight value [125]. First, the absolute value of the weight of each fil-
ter is summed in the convolution, and then filter with the lowest value is deleted, which can
reduce the parameters of the model. However, Jian-Hao Luo et al. believe that it is difficult
to determine the importance of filter by the weight value. Therefore, a pruning method based
on entropy is proposed, which uses entropy to determine the importance of filter [156].
Gwanak-Gu proposed to take random pruning method and then count the performance of
each model to determine the local optimal pruning method [3]. Tien-Ju Yang et al. used the
energy consumption of each layer to determine which layer to prune [258]. The layer with
high energy consumption is selected for pruning, and the weight value is used to assist the
judgment.

Network model quantification to reduce the code length of the weight. For example, 32
bit floating-point number can be represented by 1 bit floating-point number, which reduces
the parameters. At present, model binarization is main research direction of quantification.
For example, Binarized Neural Networks [249] not only quantify the weight value to 1
bit on the basis of BinnaryConnect, but also change the activation value to 1 bit. That is
to reduce the memory consumption, and also simplify many multiply-accumulate opera-
tions into a bitwise operation XNOR-Count. Similarly, XNOR-Net [185] binarizes both the
weight value and the activation function, which achieves 32× storage compression with a
58× speed increase.

Networkmodel distillation is a kind of migration learning that uses a pre-trained complex
model (called teacher model) to train a simple model (called student model) to achieve the
effect of compressing. For the detection speed, Guobin Chen et al. used highly sophisticated
detector models as teacher models to guide the learning process of efficient student models
[25]. Yu Hao et al. proposed a new end-to-end object detection architecture that combines
incremental learning with model distillation, which improves detection speed and improves
detection accuracy [74].
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5.6 Small object detection

Small object detection is one of the difficulties in object detection. The improvement of
small object detection will promote the development of related applications, such as auto-
matic driving, remote sensing image detection, industrial defect detection and medical
image detection. At present, some classic detection methods (such as Faster RCNN, YOLO,
SSD) are not ideal for detecting small objects. By analyzing the characteristics of small
objects, there are mainly the following reasons:

(1). The small objects occupy small pixel size in the original image, which results in less
feature information for detection. (Generally defined object resolution is less than
32 × 32 is small object)

(2). After the original image is extracted by the down-sampling of the backbone network,
the information of the small objects location may be lost.

(3). Small objects are less in the original image, resulting in imbalances between small
objects and medium or large objects.

In recent years, researchers propose some technical solutions for small object detec-
tion. Mate Kisantal et al. proposed a small object data augmentation method on the MS
COCO dataset by over-sampling the image containing small objects and the copy-pasting
strategies of small objects [160]. Tsung-Yi Lin et al. proposed a feature pyramid net-
work, which improves the performance of multi-scale detection through multi-layer feature
fusion and multi-layer detection, and also enhanced small object detection [144]. Jianan Li
et al. proposed Perceptual Generative Adversarial Networks (GANs) to improve small
object detection [128]. Perceptual GANs mine structural associations between objects of
different scales to improve the feature representation of small objects. Chenyi Chen et al.
redesigned the anchor sizes and introduced a context model based on Faster RCNN to
improve small object detection. Jun Wang et al. proposed H-CNN to detect small ship
objects in synthetic aperture radar (SAR) images [234]. Yantao Wei et al. proposed a mul-
tiscale patch-based contrast measure method for infrared small target detection, which
effectively suppresses the interference of background clutter [244]. Liangkui et al. proposed
a 7-layer DCNN to achieve automatic extraction of small object features and end-to-end
suppression of clutter [139]. The problem of small object location loss can be solved
by the combination of high-level features and low-level features, such as DSSD [59],
Feature-Fused SSD [17], MDSSD [253] are based on this structure.

6 Datasets and evaluation criteria

The evaluation criteria on the dataset is the standard for evaluating the performance of the
network. Table 6 summarizes the performance results of some object detection methods
on the MS COCO dataset over the past five years. The datasets and evaluation criteria are
summarized below.

6.1 Datasets

The training of DCNNs is inseparable from various image datasets. The datasets play
an indelible role in the development of DCNNs. Whether it is image recognition, object
detection or instance segmentation, each subject has its unique methods and specificity dif-
ference. Excellent datasets are important players in the current impressive progress in object

Multimedia Tools and Applications (2020) 79:23729–23791 23763



Ta
bl
e
6

D
et
ec
tio

n
re
su
lts

of
th
e
de
te
ct
or
s
pu
bl
is
he
d
in

th
e
to
p
co
nf
er
en
ce
s
or

jo
ur
na
ls
on

th
e
M
S
C
O
C
O
te
st
-d
ev
(%

)
in

re
ce
nt

ye
ar
s.

S
:s
m
al
lo

bj
ec
ts
,M

:m
ed
iu
m

ob
je
ct
s,

L
:

la
rg
e
ob
je
ct
s

M
et
ho
d

B
ac
kb
on
e
ne
tw
or
k

T
ra
in

se
t

A
P

A
P
50

A
P
75

A
P

S
A

P
M

A
P

L
Pu

bl
is
he
d
in

O
H
E
M

[2
02
]

V
G
G
N
et
16

tr
ai
nv
al

22
.6

42
.5

22
.2

5
23
.7

37
.9

C
V
PR

16

IO
N
[7
]

V
G
G
N
et
16

tr
ai
n

23
.6

43
.2

23
.6

6.
4

24
.1

38
.3

C
V
PR

16

N
oC

[1
90
]

R
es
N
et
10
1

tr
ai
n

27
.2

48
.4

27
.6

-
-

-
T
PA

M
I1
6

M
PN

[2
65
]

V
G
G
N
et
16

tr
ai
n

33
.2

51
.9

36
.3

13
.6

37
.2

47
.8

B
M
V
C
16

Fa
st
er

R
C
N
N
w
FP

N
[1
44
]

R
es
N
et
10
1-
FP

N
tr
ai
nv
al
35
k

36
.2

59
.1

39
18
.2

39
48
.2

C
V
PR

17

T
D
M

[2
03
]

In
ce
pt
io
n-
R
es
N
et
v2

tr
ai
nv
al

37
.3

57
.8

39
.8

17
.1

40
.3

52
.1

C
V
PR

17

R
O
N
32
0
[1
11
]

V
G
G
N
et
16

tr
ai
nv
al

44
.7

22
.7

23
.6

-
-

-
C
V
PR

17

D
eN

et
10
1(
w
id
e)

[2
23
]

R
es
N
et
10
1

tr
ai
nv
al

33
.8

53
.4

36
.1

12
.3

36
.1

50
.8

IC
C
V
17

C
ou
pl
eN

et
[2
95
]

R
es
N
et
10
1

tr
ai
nv
al

34
.4

54
.8

37
.2

13
.4

38
.1

52
IC
C
V
17

R
et
in
aN

et
[1
42
]

R
es
N
eX

t1
01
-F
PN

tr
ai
nv
al
35
k

40
.8

61
.1

44
.1

24
.1

44
.2

51
.2

IC
C
V
17

M
as
k
R
C
N
N
[8
0]

R
es
N
eX

t1
01

tr
ai
nv
al
35
k

39
.8

62
.3

43
.4

22
.1

43
.2

51
.2

IC
C
V
17

D
SO

D
30
0
[1
99
]

D
S/
64
-1
92
-4
8-
1

tr
ai
nv
al

29
.3

47
.3

30
.6

9.
4

31
.5

47
IC
C
V
17

SM
N
[2
9]

V
G
G
N
et
16

tr
ai
nv
al
35
k

31
.6

52
.2

33
.2

14
.4

35
.7

45
.8

IC
C
V
17

SI
N
[1
51
]

V
G
G
N
et
16

tr
ai
n

23
.2

44
.5

22
7.
3

24
.5

36
.3

C
V
PR

18

ST
D
N
51
3
[2
87
]

D
en
se
N
et
16
9

tr
ai
nv
al

31
.8

51
33
.6

14
.4

36
.1

43
.4

C
V
PR

18

R
ef
in
eD

et
51
2+

[2
77
]

R
es
N
et
10
1

tr
ai
nv
al
35
k

41
.8

62
.9

45
.7

25
.6

45
.1

54
.1

C
V
PR

18

D
-R

FC
N
+
SN

IP
[3
2]

D
PN

98
tr
ai
nv
al

45
.7

67
.3

51
.1

29
.3

48
.8

57
.1

C
V
PR

18

C
as
ca
de

R
-C

N
N
[1
6]

R
es
N
et
10
1

tr
ai
nv
al

42
.8

62
.1

46
.3

23
.7

45
.5

55
.2

C
V
PR

18

M
L
K
P
[2
33
]

R
es
N
et
10
1

tr
ai
nv
al
35

28
.6

52
.4

31
.6

10
.8

33
.4

45
.1

C
V
PR

18

R
FB

N
et
51
2-
E
[1
48
]

V
G
G
N
et
16

tr
ai
nv
al
35
k

34
.4

55
.7

36
.4

17
.6

37
47
.6

E
C
C
V
18

C
or
ne
rN

et
51
1
[1
20
]

H
ou
rg
la
ss
10
4

tr
ai
nv
al
35
k

42
.2

57
.8

45
.2

20
.7

44
.8

56
.6

E
C
C
V
18

PF
PN

et
-R
51
2+

[1
07
]

V
G
G
N
et
16

tr
ai
nv
al
35
k

39
.4

61
.5

42
.6

25
.3

42
.3

48
.8

E
C
C
V
18

SN
IP
E
R
[2
04
]

R
es
N
et
10
1

tr
ai
nv
al
35
k

46
.1

67
51
.6

29
.6

48
.9

58
.1

N
IP
S1

8

Multimedia Tools and Applications (2020) 79:23729–2379123764



Ta
bl
e
6

(c
on
tin

ue
d)

M
et
ho
d

B
ac
kb
on
e
ne
tw
or
k

T
ra
in

se
t

A
P

A
P
50

A
P
75

A
P

S
A

P
M

A
P

L
Pu

bl
is
he
d
in

M
2D

et
80
0
[2
83
]

V
G
G
N
et
16

tr
ai
nv
al
35
k

44
.2

64
.6

49
.3

29
.2

47
.9

55
.1

A
A
A
I1
9

R
-D

A
D
-v
2
[5
]

R
es
N
et
10
1

tr
ai
nv
al
35
k

43
.1

63
.5

47
.4

24
.1

45
.9

54
.7

A
A
A
I1
9

L
ib
ra

R
-C
N
N
[1
72
]

R
es
N
eX

t1
01
-F
PN

tr
ai
n

43
64

47
25
.3

45
.6

54
.6

C
V
PR

19

E
xt
re
m
eN

et
[2
89
]

H
ou
rg
la
ss
10
4

tr
ai
n

43
.7

60
.5

47
24
.1

46
.9

57
.6

C
V
PR

19

Sc
ra
tc
hD

et
30
0+

[2
90
]

R
oo
t-
R
es
N
et
34

tr
ai
nv
al
35
k

39
.1

59
.2

42
.6

23
.1

43
.5

51
C
V
PR

19

N
A
S-
FP

N
12
80

[6
2]

A
m
oe
ba
N
et
-D

ro
pB

lo
ck

tr
ai
nv
al
35
k

48
.3

-
-

-
-

-
C
V
PR

19

FS
A
F
[2
60
]

R
es
N
eX

t-
64
x4
d-
10
1-
FP

N
tr
ai
nv
al
35
k

42
.9

63
.8

46
.3

26
.6

46
.2

52
.7

C
V
PR

19

C
as
-R

et
in
aN

et
[2
70
]

R
es
N
et
10
1

tr
ai
nv
al
35
k

41
.1

60
.7

45
23
.7

44
.4

52
.9

B
M
V
C
19

T
ri
de
nt
N
et
[1
33
]

R
es
N
et
10
1-
D
ef
or
m
ab
le

tr
ai
nv
al
35
k

48
.4

69
.7

53
.5

31
.8

51
.3

60
.3

IC
C
V
19

C
en
te
rN

et
51
1
[4
7]

H
ou
rg
la
ss
10
4

tr
ai
nv
al
35
k

47
64
.5

50
.7

28
.9

49
.9

58
.9

IC
C
V
19

D
A
FS

51
2
[1
32
]

R
es
N
et
10
1

tr
ai
nv
al
35
k

38
.6

58
.9

42
.2

17
.2

42
.2

54
.8

IC
C
V
19

FR
C
N
N
-F
D
-W

T
[1
75
]

R
es
N
et
10
1

tr
ai
nv
al
35
k

42
.1

63
.4

45
.7

21
.8

45
.1

57
.1

IC
C
V
19

R
PD

et
[2
59
]

R
es
N
et
10
1-
D
C
N

tr
ai
nv
al
35
k

46
.5

67
.4

50
.9

30
.3

49
.7

57
.1

IC
C
V
19

FC
O
S
[2
21
]

R
es
N
eX

t1
01
-6
4×

4d
-F
PN

tr
ai
nv
al
35
k

44
.7

64
.1

48
.4

27
.6

47
.5

55
.6

IC
C
V
19

Fr
ee
A
nc
ho
r
[2
80
]

R
es
N
eX

t1
01

tr
ai
n

44
.8

64
.3

48
.4

27
47
.9

56
N
eu
rI
PS

19

N
A
T
S
[1
76
]

R
es
N
eX

t1
01
-3
2×

4d
tr
ai
n

41
.6

64
.3

45
.2

24
.9

45
.5

54
.8

N
eu
rI
PS

19

Multimedia Tools and Applications (2020) 79:23729–23791 23765



detection. In the past 20 years, many excellent datasets have emerged. Due to the excel-
lent performance of these datasets, some of them have become important indicators in the
industry to measure the performance of algorithms. Relevant personnel revise and expand
the datasets to enrich them. This can provide better support for our DCNNs and promote
the continuous development of the field. For example, the release of the ImageNet dataset
[42, 195] forms a unified standard for the training and testing of supervised learning-based
convolutional neural networks. The training on the dataset makes it easy to form a unified
evaluation standard and eliminate the differences in the local datasets. The increase in the
number and quality of images in the datasets can certainly promote the development of deep
learning.

The image datasets are abundant, ranging from about MB to TB and can be applied
in object detection, image classification, and instance segmentation. They include MINST
[123], CIFAR-10 [115], CIFAR-100 [115], ImageNet [42], Open Images [113], MS COCO
[143], PASCAL VOC [51, 52], SUN [251], Tiny Images [222], and Places [286]. Figure 10
shows example images of four commonly used datasets.

The entry-level MNIST dataset is widely used for training and testing in the field of
machine learning due to its single objects and small images. The classical LeNet is designed
for the MNIST dataset [123]. Similar to the MNIST dataset, CIFAR-10 and CIFAR-100 are
with moderate size, which is about 170MB. CIFAR is a great choice for image classification
algorithms. These two datasets are a subset of Tiny Images in a very large size. CIFAR-10 is
more diversified than MNIST handwritten dataset, but it only has ten categories, which has
caused certain limitations. Therefore, researchers sort out CIFAR-100 based on it. CIFAR-
100 is similar to CIFAR-10, which has 100 classes and 600 images per class. They abstract
20 superclasses from these 100 classes. So each image has two labels, a class label and
a superclass label. It is worth mentioning that CIFAR-10 dataset is completely mutually
exclusive between classes.

Fig. 10 Image examples of ImageNet, PASCAL VOC, Open Images and MS COCO
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The larger Caltech datasets were released by the California Institute of Technology. Cal-
tech datasets mainly include two categories, Caltech-101 (131MB) [56] and Caltech-256
(1.2GB) [70]. Caltech-101 has 102 classes, with 9145 images, which includes 101 normal
image categories and a miscellaneous class (background class). Usually when in use, the
last of the miscellaneous classes is removed. Caltech-256 is similar to Caltech -101, which
contains 30607 images.

The PASCAL VOC dataset(2GB) [52], which pioneers the algorithm competition, pro-
vides a set of standardized datasets for image recognition, segmentation, and classification.
The training set is presented as labelled images. Objects in the dataset include 4 categories,
which are people, animals, vehicles, and indoor objects. The training set consists of a set
of images. Each image corresponds to its annotation file (bounding box and the class label)
one to one. Multiple objects of different categories may exist in one image. PASCAL VOC
dataset has good image quality and complete labels, which is very suitable for evaluating
algorithm performance. The proportion of training set and testing set is about 1:1. The cate-
gory distribution in the image is also same. The SUN dataset(7GB) [251], focuses on object
detection and scene recognition, which consists of 908 scene categories and 4,479 object
categories. 313,884 objects are labeled with background.

The MS COCO dataset(40GB) [143] appears to be very large compared to the datasets
above, which is sponsored by Microsoft. For image annotation information not only have
a category and location information, and semantic text description of the image. Like Ima-
geNet in the field of image classification and detection, MS-COCO dataset has become a
yardstick in the evaluation of algorithm performance in the field of visual semantic under-
standing. Google’s open source contains trained models are based on MS COCO dataset.
The dataset is aimed at scene understanding and contains 91 classes, 328,000 images, and
2,500,000 labels. The MS COCO category is less comparable with ImageNet and SUN. But
it has more images of each type, which makes it easier for the model to acquire stronger
ability to analyze a certain type of object in a certain scene during training. The MS COCO
dataset contains more images and classes than the PASCAL VOC mentioned earlier.

For another example, ImageNet dataset [42] is at TB level and widely applied in the
visual field. Many researches in computer vision field are carried out based on ImageNet,
such as image classification, object detection. It is maintained by a dedicated team. It
has detailed dataset documentation, and is very easy to use. Some annotation problems of
ImageNet will also be centrally fixed once a year and reissued, and the latest version is
recommended. ImageNet is even praised as the benchmark of algorithm performance eval-
uation in the computer vision. It contains more than 14 million images and covers more
than 20,000 categories. The well-known ILSVRC image classification and object detection
challenge [195] is based on the ImageNet dataset.

Google released a dataset in 2016, which is named Open Images [113]. It has about 9
million images and about 6,000 category labels. Open Images became a new data support for
the computer vision community to develop new models. At the same time, the large amount
of image data in Open Images can guarantee the complete training of deep network model.
Earlier, Google announced Open Images V4. It contains 15.4 million bounding-boxes for
600 categories on 1.9 million Images and is the largest existing dataset with object location
annotations. Simultaneously the ECCV 2018 image challenge was held. The annotation
work is heavily participated by professional staff, so as to guarantee the high accuracy and
consistency of dataset annotation. In addition, the categories of images in Open Images
are also quite diverse, and most scene images are complex scenarios that contain multiple
objects. The overall size of the dataset is 1.5GB, because Open Images only provides the
URLs of the images.
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6.2 Evaluation criteria

How to evaluate the performance of the algorithms on the unified datasets is an important
issue. At present, there are three main performance evaluation criteria: Precision, Recall,
and Frame Rate. There are also other metrics, including IoU, PR curve, ROC curve, and
AUC curve. They are closely related to each other.

IoU (Intersection-over-Union) is an important concept in object detection. It is the ratio
of the intersection of the predicted bounding-boxes and the ground-truth bounding-boxes
of the object and the union of the two. The IoU can also be seen as the similarity of the
above two sets, expressed by the Jaccard index. Therefore, IoU can be used to measure the
accuracy of object detection. If the IoU of object is closer to 1, the accuracy of detection is
higher.

Based on the IoU, performance evaluation is measured by Precision and Recall. To
obtain the Precision and the Recall of network model, the statistical True Positives (T P )
and False Positives (FP ), True Negatives (T N ) and False Negatives (FN ) in the validation
dataset/testing dataset are needed. Here, IoU is used to determine whether the test results
are correct. Assuming that the goal of the model is to detect cats from the dataset, it is nec-
essary to determine whether the “cat” detected by the model is true (T P ) or false (FP ).
Set IoU = 0.5 to determine whether the result is correct or not. When IoU > 0.5, the
result is considered to be correct. Otherwise, it is wrong. In PASCAL VOC, the IoU = 0.5,
while MS COCO competition changes the IoU to a composite value between 0.5 and 1.0.
According to IoU = 0.5, the number of correct detections and the number of error detec-
tions can be obtained. Therefore, the precision and recall of each category of one image can
be calculated. The formula is defined as follows:

PCij
= T PCij

T PCij
+ FPCij

(35)

RecallCij
= T PCij

T PCij
+ FNCij

(36)

where PCij
represents the Precision of category Ci in the j th image, while RecallCij

represents the Recall of category Ci in the j th image.
The Average Precision (AP) of the category Ci can be calculated:

APCi
= 1

m

m∑

j=1

PCij
(37)

There are multiple categories {C1, C2, · · · , Cn} for the dataset. Therefore, the mean
Average Precision (mAP) of the entire category can be calculated, as follows:

mAP = 1

n

n∑

i=1

APCi
(38)

In the actual scene, it may has multiple categories of object detection. Therefore, mAP is
used to describe the detection performance of the model for all object categories.

To more accurately evaluate the performance of the detector, Precision and Recall are
used to construct the Precision-Recall curve. With the Recall value increasing, Precision
can maintain a high level, which indicates that the detector performance is better. In the
case of poor performance, the detector needs to sacrifice a lot of Precision to keep Recall
at a high level. The use of Precision and Recall in the PR curve indicate that the curve is
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more concerned with the positive case in the datasets. Since positive case predictions are
the primary focus of the test, PR curves are widely used in many papers.

There is a Receiver Operating Characteristic (ROC) curve corresponding to the PR curve.
The difference is that the ROC curve uses FPR (False positive rate) and TPR (True positive
rate). The closer the ROC curve is to the upper left corner, the better the performance of
the detector is. The coordinate (0, 1) represents the probability that the positive case is
all arranged before the counterexample, which is the ideal state. If it is necessary to more
intuitively indicate the quality of the detector, the area under the ROC curve (AUC) can be
introduced. The value of AUC is the size of the area under the ROC curve. Typically, the
AUC value is between 0.5 and 1.0, and a larger AUC value represents better performance.

When the proportion of positive and negative samples in the testing set is uneven, the
ROC curve can describe the performance of detector more stably, but the PR curve is greatly
affected under the same conditions. Therefore, ROC curve is a more balanced evaluation
method than PR curve. Therefore, the choice of PR curve or ROC curve in application
should be made according to actual needs. Here are some suggestions:

(1). If it is necessary to evaluate the overall performance of the detector, the ROC curve
should be used.

(2). In the case of uneven categories, and if you want to remove the impact of category
distribution on performance evaluation, the ROC curve should be used.

(3). If you need to test the impact of different categories on performance of the detector,
the PR curve should be used.

(4). Most applications should focus on the detection of positive examples in the same
category. Therefore, the PR curves should be used.

(5). When the category is imbalanced, the ROC curve tends to give a more optimistic
result due to a higher tolerance for counterexamples.

7 Applications

As one of the three basic tasks of computer vision, object detection has a wide range of
applications in real-world scenarios. In real-world application scenarios, object detection
differs in technology implementation depending on the specific tasks. Important applica-
tions of object detection are reviewed in this section, including face detection [240], salient
object detection [11], pedestrian detection [45], remote sensing image detection [193] and
medical image detection [145].

7.1 Face detection

Face detection is the most important application area for object detection, which is the
basis of face recognition, face alignment, gender recognition, and sentiment analysis. In
real-world, face detection is a challenging detection task due to changes in face features,
illumination, gestures, and occlusion.

The purpose of face detection is to determine whether there are faces and find location
of the faces in pictures. The traditional face detection is mainly based on the sliding win-
dow and the handcrafted feature extractor, and the face template feature is used to perform
sliding matching with the detected image feature to determine the position of the face. The
representative method is the VJ detection algorithm designed by Viola and Jones in 2001
[230]. It uses Haar features and cascaded AdaBoost classifiers to construct the detector,
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which greatly increases detection speed and accuracy. In addition, ACF [256] and DPM [57]
also increase the performance of face detection. However, traditional face detection algo-
rithms still have many problems. With the advent of the deep learning era, face detection
based on deep learning shows strong performance.

The deep learning-based object detection algorithms achieve great success in general
object detection, and many face detection algorithms evolve from these general object detec-
tion algorithms. Haoxiang Li et al. proposed a Cascade CNN [126], which contains multiple
cascaded DCNN classifiers to solve the problem of sensitivity to illumination and angle in
real-world scenarios to some extent. Zhang et al. proposed a multi-task face detection algo-
rithm that uses a cascaded architecture like the Cascasde RCNN, called MTCNN [273].
It integrates face detection and face key detection into a framework in three parts. Sim-
ilar to Cascade CNN, Faceness-Net [257] is a coarse-to-fine detection process that uses
multiple DCNN-based network classifiers to detect faces. For improving the performance
of the classifier, Hao Wang et al. proposed a Face RCNN based on the Faster RCNN and
added center loss based on softmax [101]. In response to small objects and multi-scale prob-
lems in face detection, Peiyun Hu et al. proposed a hybrid-resolution model that processes
image pyramids in a scale-invariant manner and uses a scaled hybrid detector [90]. M. Najib
et al. proposed a SSH [165] to implement multi-scale face detection by detecting on differ-
ent scale feature maps. Small objects and multi-scale face detection can also be handled by
anchor strategies, such as FaceBoxes [278], S3FD [279] and ScaleFace [75].

7.2 Salient object detection

The role of salient object detection is to highlight the main object regions in the image,
also known as the salient regions. As an important application of computer vision and
object detection, salient object detection is widely used in image understanding, video
understanding, computer graphics and robot navigation.

In the era of non-deep learning. Itti et al. proposed the earliest saliency model based on
center-surround mechanisms to detect spatially discontinuous objects in the scene [98]. Liu
et al. proposed a method of replacing saliency detection with binary segmentation, which
promoted the development of saliency object detection [149]. Yu et al. proposed to deter-
mine the background score of each region based on the observations of the background and
the salient regions [264].

Since DCNNs have strong feature representation capabilities, the introduction of DCNNs
into salient object detection is a trend. R. Zhao et al. proposed an MCDL architecture [284]
to extract local and global contexts based on multi-layer perceptron (MLP), and then classify
the foreground and background. Multi-layer perceptron-based methods include superCNN
[83], MAP [271], LEGS [235], and MDF [124]. Although the multi-layer perceptron-based
methods improve in performance, it is insensitive to spatial information and is very time
consuming. Currently, the most advanced salient object detection methods are based on
the full convolutional networks. L. Wang et al. proposed a recurrent fully convolutional
networks (RFCN) to further improve the detection performance [236]. P. Hu proposed a
deep network set to generate a compact and uniform saliency map to distinguish pixels from
the object boundary [91]. Based on the Deeplab algorithm, J. Zhang et al. proposed a DUS
to learn the potential saliency and noise patterns through several pixel-supervised methods
of heuristic saliency methods [272]. Specific detailed summary can also refer to the review
[239].
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7.3 Pedestrian detection

Pedestrian detection is widely used in intelligent surveillance, autonomous driving and
robotic navigation. The problems faced by pedestrian detection are more complicated than
general object detection. Because pedestrian objects have the characteristics of rigid and
flexible objects at the same time, it is more susceptible to the influence of posture, dense
occlusion, illumination and viewing angle, so the difficulty of pedestrian detection is also
higher than that of face detection.

Traditional pedestrian detection is based on handcrafted feature extractors similar to
traditional face detection. For example, HOG + SVM pedestrian detection algorithm pro-
posed by Navneet Dalal et al. in CVPR2005 [39], which uses the orientation and intensity
information of edge to describe the shape and appearance of the pedestrian.

DCNNs are more suitable for pedestrian detection because the feature representation
ability of multi-layer nonlinear mapping of DCNNs is stronger than that of traditional hand-
crafted feature extractors. Faster RCNN is not well for pedestrian detection, Zhang et al.
analyzed that the resolution of the feature map is too low, and there is no hard negative
examples mining. Therefore, Zhang et al. used the RPN to process small objects and hard
negative examples based on Faster RCNN, and then used random forests to classify proposal
regions [274]. Also based on Faster RCNN, Jiayuan Mao et al. proposed a HyperLearner to
enhance the recognition of pedestrians and backgrounds by modifying the scales of anchors
[159]. For the multi-scale problem of pedestrians, Jianan Li et al. design two sub-networks
for parallel detection based on the large-scale and small-scale differences, and then use the
scale-aware to merge the two sub-networks [127]. In order to solve the occlusion prob-
lem, Yonglong Tian et al. proposed a DeepParts [220], which divides the human body into
multiple parts for detection and then combines them. For occlusion problems, special loss
functions can also be used, such as Repulsion Loss [242] proposed by Xinlong Wang et al.
and Aggression Loss [276] proposed by Zhang et al..

7.4 Remote sensing image detection

Remote sensing image detection is mainly used in military reconnaissance, land and
resources survey, urban planning and traffic navigation. The objects are varied, including
aircraft, ships, vehicles, roads, airports, ports and various buildings. Remote sensing image
detection mainly has the following difficulties:

(1). The large view of remote sensing images lead to high image resolution, which put
high demand on the speed of object detection.

(2). The large view results in smaller objects size relative to image, so small object
detection is also difficult for remote sensing images.

(3). The objects in natural images are mostly horizontal. While the remote sensing images
are is taken overhead, the rotation invariance of the object is an important issue.

(4). The background of remote sensing image is quite complex.

At present, remote sensing image detection based on deep learning is devoted to solv-
ing these problems. Adam Van Etten proposed YOLT [226] based on high-speed YOLOv2,
which improves the speed of high-resolution remote sensing image detection through two
detections. At the same time, in order to solve the small object detection problem, the reso-
lution of feature map is increased. Yang Long et al. proposed an unsupervised score-based
bounding box regression (USB-BBR) combined with non-maximum suppression to opti-
mize the bounding box and enhance the ability to locate small objects [153]. Jiangmiao Pang
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et al. proposed an R2-CNN to enhance the detection of small object remote sensing images
by introducing attention mechanisms [173]. Li Ke et al. deal with rotational invariance by
adding multi-angle anchors to the RPN [130]. Gong Cheng et al. proposed a rotation invari-
ant layer to deal with the rotation invariance [33]. Chen Wang et al. proposed an end-to-end
multi-scale visual attention network (MS-VANs) [232]. The core idea is to learn a visual
attention network for the feature map of each scale, in order to highlight the objects and
suppress the backgrounds.

7.5 Medical image detection

Medical image detection can assist doctors in accurately analyzing the lesion area, greatly
improving the accuracy of medical diagnosis, and reducing the manual workload of doctors.
Currently, the most abundant open dataset for medical images is https://grand-challenge.
org/challenges/

Aryan Mobiny et al. applied the capsule network [119] to the detection of lung cancer,
which improves the detection speed. Li et al. introduced the attention mechanism based on
the DCNNs and applied it to glaucoma detection [131]. Kawahara et al. proposed multi-
stream CNN to classify skin lesions, each of which works on images of different resolutions
[106]. Kong et al. proposed a combination of LSTM-RNN and CNN to detect end-diastolic
and end-systolic frames in the MRI (Magnetic Resonance Imaging) image of the heart
[110]. Hwang et al. proposed a weakly supervised deep learning method to detect lesions in
nodules and mammograms in chest X-rays [95].

8 Conclusions

This review paper makes a comprehensive and detailed review of the deep learning based
object detection methods. It includes three aspects, which are backbone networks, detection
architectures and loss functions. At the same time, it also presents a detailed analysis of
the complex problems. Starting from the problems, we sum up the outstanding solutions
emerging in recent years. We introduce the evaluation metrics and datasets, and summarize
the important applications of the object detection. It is worth mentioning that we summarize
the current open source platforms for the object detection, which aims to help researchers
for choosing appropriate platform. Finally, we give some potential developing directions of
the object detection.

From the developing tendency of the backbone network, we can see that the direction
is to increase the number of the network layers and the number of the neurons in each
layer. Researchers’ pursuit of performance makes the network larger and larger, leading to
explosive growth of network computing. At the same time, gradient dispersion and gradi-
ent explosion may occur, which is obviously unacceptable. In order to solve this problem,
researchers usually adopt two methods: one is to use appropriate rules in the middle layer
to remove some neurons, reduce the number of parameters, and to some extent avoid the
occurrence of over-fitting [195, 209]; second, the convolution kernel decomposition method
is used to replace the larger convolution kernel with the smaller convolution kernel. This can
adjust the network depth and enhance the characterization of the network while keeping the
receptive field constant and reducing the number of parameters [34, 212–214]. It is worth
mentioning that ResNet [82] effectively solves the degradation problem by means of resid-
ual learning. Based on the differences between object detection and image classification,
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Zeming Li et al. proposed the DetNet for object detection tasks, which makes the deep net-
work more specialized. Moreover, it solves some deficiencies of non-dedicated network in
the field of object detection and significantly improves the performance. InceptionV2 [97]
and InceptionV3 [214] also provide us with new ideas from the perspective of batch pro-
cessing and network splicing. In the actual application scenario, due to resource constraints,
lightweight networks arise at the right moment. An important issue is how to reduce the
computational load without losing performance. Overall, backbone networks of the object
detection architecture account for 90% of computation and storage. Therefore, the design of
efficient and lightweight backbone networks will be a key research direction in the future.

In this review paper, we summarize the one-stage and two-stage detectors at the level of
network architecture. The two-stage architectures first generate the object region proposals,
and then perform regression and classification on the region proposals, such as Faster RCNN
[191]. It is better than the one-stage detectors in accuracy, such as YOLO [187]. But the
speed of the two-stage architecture is significantly lower than the one-stage detectors. In
practice, accuracy and speed need to be balanced. Generally, when the accuracy reaches a
certain level, the costs brought by continuing improving the accuracy are unacceptable. In
some fields, the real-time requirements make the speed of the object detection framework
more important than the accuracy.

The Loss function plays an important role in deep learning and machine learning. In
recent works, many innovative methods have been proposed based on the loss function,
which includes the stage-wise loss function [66, 81] and the multi-task loss function [65,
191]. Multi-task loss function can achieve end-to-end training. The accuracy is higher than
pipeline multi-stage loss function. It is worth mentioning that the Focal Loss [142] and
Repulsion Loss [242] are respectively used to solve the complex problems of class imbal-
ance and dense occlusion. Therefore, although some classic loss functions can usually be
used, constructing more appropriate loss function will make the learning framework more
robust.

At present, the development of object detection and even the whole artificial intelligence
field is mainly data-driven. The continuous efforts of scholars, open source datasets have
become very rich. Some standard datasets have become the benchmark for the performance
of competition evaluation models. However, in the era of expanding application scenarios
and big data explosion, there are relatively few datasets with good labels. Manual labeling
of image training datasets can cost huge labor and time. Therefore, how to label data more
effectively and use fewer samples for effective learning are the key issues in the field. The
current limited learning is far from meeting the needs. How to enable the model to quickly
and accurately detect objects is an important research direction in this field. However, the
performance of unsupervised learning [18, 48, 78, 154, 183] is still unsatisfactory at present.
How to use small and medium sized data for supervised learning to achieve high-precision
results will be a hot topic. In addition, it is feasible to reduce the supervision cost by using
the weak labels of image data. Based on the pre-training of large detection datasets [79,
206, 255], multi-category supervised learning is carried out on this basis. Based on this,
researchers have made many constructive achievements in recent years: (1) Data enhance-
ment and learning of small sample was first proposed by Feifei Li et al., which is called one
shot learning [55]. To solve this problem, researchers focus on Siamese network [9] again.
Siamese network [12] is a simple and powerful networks. In the field of face detection and
recognition, Gregory Koch et al. combined one shot learning with Siamese neural network
and converted the one-shot problem into the verification problem in image recognition by
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learning the feature similarity between image pairs [109]. In addition, Hao Chen et al. pro-
posed a new low-shot transfer detector (LSTD) [26]. They set up a kind of effective object
domain detector by using rich source domain knowledge and few training samples. The
design and implementation of LSTD can unify the advantages of SSD [150] and RCNN [66]
into one deep framework. (2) The semantic information of known categories is used to detect
unknown categories, which is known as zero shot learning [184]. This problem is obvi-
ously more challenging than one shot learning, which enables the machine to have certain
reasoning ability. However, there are several problems in the domain of zero shot learning.
The first is Domain shift problem. Since the feature dimension of the sample is often larger
than the semantic dimension, the establishment of mapping often lose useful information.
In order to preserve more information, the sample is usually mapped to the semantic space
and reconstructed. The second is Hubness problem. Zero shot learning uses KNN, so hub-
ness problem maybe appear. If ridge regression method is used, hubness problem can be
aggravated. To alleviate the hubness problem, a mapping relation from semantic space to
feature space can be established additionally [200]. The above method can get 76.5% accu-
racy on AWA dataset [184]. Also, generative model can be used to solve this problem, such
as self-encoder, GAN [67]. It transforms the problem into supervised classification problem
and avoid KNN operation. If there is semantic gap, the flow pattern formed by samples in
feature space is inconsistent with that formed by categories in semantic space. Therefore,
by adjusting their flow pattern to keep them consistent, then learning the mapping between
them [134]. (3) Incremental Learning [21] is used to continue learning new data based
on pre-trained models. Meanwhile, it ensures that the learned object detection ability is not
lost. Therefore, the major problem in incremental learning is Catastrophic knowledge [201],
balancing the relationship between new knowledge and old knowledge.

In the future, more efficient detection frameworks can improve the real-time and
accuracy of embedded detection applications, which will make the application of object
detection more wide. At present, due to the limited use of contextual information, it is nec-
essary to consider how to organically combine such information with more refined object
instance segmentation for future development. The research on the object detection of
3D image and depth image (RGB-D) are still scarce, which requires more attentions. We
are optimistic about the development of this field. Finally, we present several promising
directions based on the existing object detection technologies.

Object detection of high resolution images and videos Current object detection method
are mainly proposed for small and medium size images. Mingfei Gao et al. introduced a
general framework [60] to reduce calculation cost of object detection. At the same time,
the accuracy of the detection of different scales object in high resolution image were sig-
nificantly improved. In this architecture, the R-net uses coarse detection results to predict
the potential accuracy gain of an analysis region at higher resolution. Then Q-net contin-
ues to select regions for amplification. Experiments on the Caltech Pedestrians dataset [45,
46] show that their approach reduces pixel calculation by more than 50% while maintaining
high detection accuracy. The detection results are also verified on the YFCC100M [167]
high-resolution testing dataset.

AR and VR scene detection At present, AR and VR technologies are widely used in the
game industry, the film industry, and the military industry. Object detection and scene detec-
tion are also a very interesting direction [68, 164, 211]. For example, human visual and
imaging devices can be overlapped in augmented reality scenarios. The object detection

Multimedia Tools and Applications (2020) 79:23729–2379123774



combines the augmented reality scenarios can enable human-in-loop detection and control
modes.

Depth image (RGB-D) detection At present, RGB-B image adds the depth information
and is widely used in autonomous driving and robot vision. In the field of autonomous
driving, object detection of RGB-D image [30, 31, 72, 118, 210] is very important. Accu-
rate assessment of the location and orientation of different objects can directly affect scene
understanding, motion state adjustment, and path planning. Recently, Martin Simon et al.
proposed a Complex-YOLO [205], a network that detects 3D object point clouds in real-
time. The network extends YOLOv2 [188] through a specific complex regression strategy
to estimate multi-category 3D bounding-boxes in Cartesian space.

Video stream object detection It is mainly applied to mobile devices or security monitor-
ing devices. The video stream object detection [85, 102–104] must consider not only the
information of each frame, but also the relationship between each frame. Due to the limita-
tions of computing resources, a reasonable network architecture must be designed to meet
the accuracy, speed and storage space requirements of real-time video stream object detec-
tion. In the actual application scenario, it is also necessary to consider the redundant feature
information between adjacent frames, frame blur or jitter and crowed occlusion. Therefore,
the current object detection algorithms are difficult to obtain better results for video stream.
To solve these problems, Evan Shelhamer et al. proposed a method to multiplex the fea-
tures of the previous frame. Then, these features are sent to the lesser-computed parts to
calculate the final features [198]. Xizhou Zhu et al. achieved good results by using opti-
cal flow to improve the speed and accuracy of video recognition [292, 293]. Based on this
improvement, Xizhou Zhu et al. proposed a lightweight network structure, which is suit-
able for mobile video object detection. A lightweight object detector is applied to the sparse
key frames, and the entire network can be trained end to end. The system achieves 60.2%
mAP on mobile phone at 25.6 fps [291]. For the case where the object appearance deterio-
rates in some video frames, a typical solution is to enhance the characteristics of each frame
by aggregating adjacent frames. However, due to the motion of the object and the view-
point, the object features usually cannot be spatially corrected across frames. To meet this
challenge, Wang et al. proposed an end-to-end full motion-aware network (MANet) model
[238]. It uniformly calibrates the features of objects at the pixel level and the instance level
in a unified framework, which obtains a good result on the ImageNet VID dataset.

Contextual information In a real-world scenario, the human visual system recognizes the
object not only according to the properties of the object itself, but also according to the
contextual information. The contextual information includes the background information,
the environmental information, and the relationship between the objects. These informa-
tion can improve the robustness of the detector for multi-scale objects, occlusion objects,
and fuzzy objects. In recent years, some researches also make some substantial progress
in this area [28, 29, 44, 171, 182, 294]. It is worth noting that the introduction of Long
Short Term Memory Networks [86] and Recurrent Neural Networks [69, 122] into the
processing of contextual information can help object detection. Representative network
architectures include ION [7], ACCNN [129], Recurrent CNN [138], and GBDNet [269].
This aspect of research will have great significance for object detection, and definitely
become a mainstream direction in the future.

We summarize the object detection algorithms based on DCNNs after the popularity
of the deep learning. The traditional object detection algorithms are also mentioned in
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this review. By summarizing the existing algorithms, technologies and architectures, it is a
review of current development and a prospect of object detection. We believe that object
detection will make great progress with the continuous development of basic theory and
related hardware equipment in the future.
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