An improved cuckoo search algorithm for multi-level gray-scale image thresholding

Min Sun¹ · Hui Wei¹

Received: 5 April 2019 / Revised: 24 March 2020 / Accepted: 13 April 2020 / Published online: 26 April 2020 © Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract

In decades, Yang's cuckoo search algorithm has been widely developed to select the optimal threshold of bi-level image thresholding, but the amount of computation of which increases exponentially with multi-level thresholding. To reduce the computation quantity, the iterative step size is adaptively decided by its fitness values of the current iteration without using the *Lévy* distribution in this study. The modification may cause the solution drops into the local optima during the later period. Therefore, the constant discovery probability p_a is automatically changed relating to the current and total iterations. And then, to verify segmentation accuracy and efficiency of the proposed method, an adaptive cuckoo search algorithm proposed by Naik and Yang's cuckoo search algorithm are included to test on several gray-scale images. The results show that the proposed algorithm is expert in selecting optimal thresholds for segmenting gray-scale image.

Keywords Cuckoo search algorithm \cdot Multi-level thresholding \cdot Adaptive \cdot Gray-scale image

1 Introduction

Image segmentation is to separate an image into some distinct regions with different characteristics and extract the objective of interests from their background. In these years, lots of techniques have been proposed and applied in image segmentation [6, 15, 17, 19, 33]. Among all the existing techniques, the thresholding is thought as a prevalent technique whereas its perspicuity and precision [18]. The key of thresholding is to quickly find an optimal threshold with certain criteria to achieve segmentation accurately.

However, for multi-level thresholding, owing to the exhaustive search, the traditional thresholding methods can't select the optimal thresholds efficiently and the amount of calculation increases. To solve such limitations, researchers formulated the existing criteria of conventional thresholding methods as objective functions, and incorporated meta-heuristic

☑ Hui Wei 2196892863@qq.com

¹ School of Mathematics and Big Data, Anhui University of Science and Technology, Huainan, Anhui, 232001, China

algorithms to enhance the computational speed, such as GA [8], PSO [7], cuckoo search algorithm (CS) [28], etc., Hammouche [8] used GA to find multi-level thresholds. Zhang [32] developed artificial bee colony to optimize the Tsallis entropy. Ghamisi [7] proposed a fractional-order DPSO for determining thresholds. Wei [28] presented Yang's CS algorithm for solving multi-level Otsu's problem. Sharma [20] designed a firefly algorithm based on the *Lévy* flight to maximize Kapur's entropy. Among these meta-heuristic algorithms, the Yang's CS algorithm has drawn the attention of researchers.

CS algorithm [31] is a technique for optimization problems proposed by Yang in 2009. Many researchers have proved the efficiency of Yang's CS algorithm in different applications, such as face recognition [22], engineering design [29] and neural network training [24]. Although CS algorithm is simple and has few parameters as well as high efficiency, it's easy to fall into local optima during the later period which causes premature problem and time-consuming. Therefore, to enhance the performance of CS algorithm, many scholars have proposed improved CS algorithm [10, 13, 21, 25, 26], such as an adaptive cuckoo search algorithm (ACS) was proposed by Naik [12], the adaptive strategy is used to adjust the step size and eventually leads to faster convergence. But the adaptive strategy isn't applied to the discovery probability p_a , this may influence the algorithm accuracy.

Therefore, based on ACS algorithm, an improved ACS algorithm (IACS) is introduced to for segmenting. For the proposed method, the initial step size randomly yields without being designed a prior. Furthermore, to avoid local extremum point and enhance the variety of cuckoos, the p_a value changes nonlinearly with iterations. To explain the efficiency of the IACS algorithm, two methods, Yang's [31] and Naik's [12] are involved to searching multi-level thresholds.

The next parts are structured as: Section 2 briefly leads to three types objective functions usually applied for the multi-level image thresholding, namely, Otsu's method, Kapur's entropy and Tsallis entropy. Section 3 provides the methodologies of Yang's CS and ACS algorithms and presents the improved method(IACS). And then in Section 4, some experiments are expressed to verify the effect of the proposed method and analyze the results. Finally, Section 5 offers some conclusions.

2 Multi-level thresholding

Recently, multi-level thresholding methods have been widely applied to separate multiple objectives from background for an image [2–5, 16, 21]. In this section, the key thought for multi-level thresholding is briefly introduced. Take a image *I* with *L* distinct gray levels into account, where L= 256, then the multi-level image thresholding is defined as:

$$C_{0} = \{m(x, y) \in I \mid 0 \le m(x, y) \le t_{1} - 1\}$$

$$C_{1} = \{m(x, y) \in I \mid t_{1} \le m(x, y) \le t_{2} - 1\}$$

$$\vdots$$

$$C_{n} = \{m(x, y) \in I \mid t_{n} \le m(x, y) \le L - 1\}$$
(1)

where m(x, y) denotes a gray level value of pixel, t_1, t_2, \ldots, t_n are the different thresholds.

2.1 Otsu's method

The Otsu's criterion is to maximize the between-class variance [14], assume that the probability of pixels at level *i* is p_i ($p_i \ge 0$), the cumulative probability of each class ω_i can be calculated as:

$$\omega_0 = \sum_{i=0}^{t_1-1} p_i , \ \omega_1 = \sum_{i=t_1}^{t_2-1} p_i , \cdots , \ \omega_n = \sum_{i=t_n}^{L-1} p_i$$
(2)

Then the optimal thresholds are obtained as follows:

$$(t_1^*, t_2^*, ..., t_n^*) = \operatorname{argmax} \left\{ \sigma_0^2 + \sigma_1^2 + \dots + \sigma_n^2 \right\}$$
 (3)

where

$$\sigma_{0}^{2} = \omega_{0}(\mu_{0} - \mu_{T})^{2}, \ \mu_{0} = \frac{\sum_{i=0}^{t_{1}-1} i p_{i}}{\omega_{0}}$$

$$\sigma_{1}^{2} = \omega_{1}(\mu_{1} - \mu_{T})^{2}, \ \mu_{1} = \frac{\sum_{i=t_{1}}^{t_{2}-1} i p_{i}}{\omega_{1}}$$

$$\vdots$$

$$\sigma_{n}^{2} = \omega_{n}(\mu_{n} - \mu_{T})^{2}, \ \mu_{n} = \frac{\sum_{i=t_{n}}^{L-1} i p_{i}}{\omega_{n}}$$
(4)

where $\mu_T = \sum_{i=0}^{L-1} i p_i$ is the mean value of input image, μ_i (i = 0, 1, ..., n) is the mean value of the pixels of the corresponding region.

2.2 Kapur's entropy method

Kapur's entropy was proposed to maximize the sum of the entropy for segmenting images [9]. The entropies H_i are defined as:

$$H_{0} = -\sum_{i=0}^{t_{1}-1} \left(\frac{p_{i}}{\omega_{0}}\right) \ln\left(\frac{p_{i}}{\omega_{0}}\right), \quad \omega_{0} = \sum_{i=0}^{t_{1}-1} p_{i}$$

$$H_{1} = -\sum_{i=t_{1}}^{t_{2}-1} \left(\frac{p_{i}}{\omega_{1}}\right) \ln\left(\frac{p_{i}}{\omega_{1}}\right), \quad \omega_{1} = \sum_{i=t_{1}}^{t_{2}-1} p_{i}$$

$$\vdots$$

$$H_{n} = -\sum_{i=t_{n}}^{L-1} \left(\frac{p_{i}}{\omega_{n}}\right) \ln\left(\frac{p_{i}}{\omega_{n}}\right), \quad \omega_{n} = \sum_{i=t_{n}}^{L-1} p_{i}$$
(5)

The optimal thresholds are gained as:

$$(t_1^*, t_2^*, \dots, t_n^*) = \operatorname{argmax} \left\{ \sum_{i=0}^n H_i \right\}$$
 (6)

2.3 Tsallis entropy method

Tsallis entropy is come from Shannon entropy [23], it's defined as:

$$S_q = \frac{1 - \sum_{i=1}^k p_i^q}{q - 1} \tag{7}$$

where q is Tsallis parameter. The relationship between the entropy of each subsystem is as follows:

$$S_q (O + B) = S_q (O) + S_q (B) + (1 - q) . S_q (O) . S_q (B)$$
(8)

For multi-level image thresholding problem [2], the optimal thresholds are obtained using (9):

$$\begin{pmatrix} t_1^*, t_2^*, ..., t_n^* \end{pmatrix} = \operatorname{argmax} \left\{ S_q^{C_0}(t) + S_q^{C_1}(t) + \dots + S_q^{C_n}(t) + (1-q) \cdot S_q^{C_0}(t) \cdot S_q^{C_1}(t) \cdots S_q^{C_n}(t) \right\}$$

$$(9)$$

where

$$S_{q}^{C_{0}}(t) = \frac{1 - \sum_{i=0}^{t_{1}-1} (p_{i}/p^{C_{0}})^{q}}{q-1}, \ p^{C_{0}} = \sum_{i=0}^{t_{1}-1} p_{i}$$

$$S_{q}^{C_{1}}(t) = \frac{1 - \sum_{i=t_{1}}^{t_{2}-1} (p_{i}/p^{C_{1}})^{q}}{q-1}, \ p^{C_{1}} = \sum_{i=t_{1}}^{t_{2}-1} p_{i}$$

$$\vdots$$

$$S_{q}^{C_{n}}(t) = \frac{1 - \sum_{i=t_{n}}^{L-1} (p_{i}/p^{C_{n}})^{q}}{q-1}, \ p^{C_{n}} = \sum_{i=t_{n}}^{L-1} p_{i}$$
(10)

subject to the following constraints:

$$\left| p^{C_0} + p^{C_1} \right| - 1 < S^{C_0} < 1 - \left| p^{C_0} + p^{C_1} \right|$$

$$\left| p^{C_1} + p^{C_2} \right| - 1 < S^{C_1} < 1 - \left| p^{C_1} + p^{C_2} \right|$$

$$\vdots$$

$$\left| p^{C_{(n-1)}} + p^{C_n} \right| - 1 < S^{C_{(n-1)}} < 1 - \left| p^{C_{(n-1)}} + p^{C_n} \right|$$

$$(11)$$

In (11), $p^{C_0}, p^{C_1}, ..., p^{C_n}$ corresponding to $S^{C_0}, S^{C_1}, ..., S^{C_{n-1}}$ are computed with $t_1^*, t_2^*, ..., t_n^*$, respectively.

3 Methodology

3.1 Yang's CS algorithm

Yang's CS algorithm is inspired by the obligate brood parasitism of some cuckoos, for simulating the whole process, Yang uses three assumptions [30]:

(1) one egg is hatched and put in a nest randomly by each cuckoo;

- (2) the excellent nests will be preserved for next iteration;
- (3) the possibility of host bird finding cuckoo's egg is represented by p_a . Then a solution $x_i^{(t+1)}$ is produced by *Lévy* flight:

$$x_{i}^{(t+1)} = x_{i}^{(t)} + \alpha \oplus L\acute{e}vy(\beta), \quad i = 1, 2, \dots, N$$
(12)

where α represents the step size and \oplus is entry-wise multiplications. The other part of CS algorithm is biased random walk [25]:

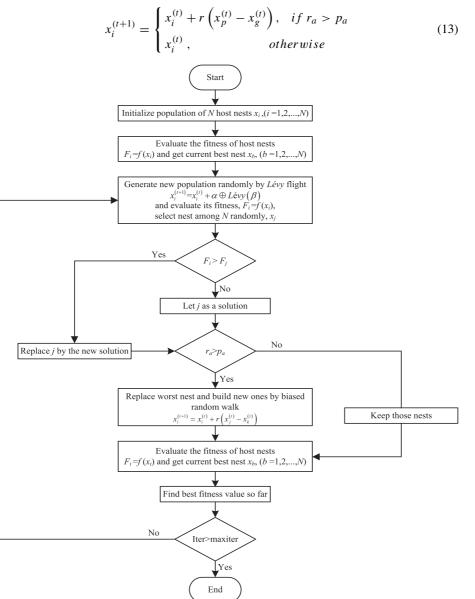


Fig. 1 Flowchart of Yang's CS algorithm

where p, g is the pth and gth random solutions in the population, respectively, $r \in [0, 1]$ and $r_a \in [0, 1]$. The flowchart of Yang's CS is given by Fig. 1.

3.2 Adaptive CS algorithm

The Yang's CS algorithm uses the $L\acute{e}vy$ step to search the optimal solution, which generally satisfies the $L\acute{e}vy$ distribution [11], but the $L\acute{e}vy$ step in the iteration process of Yang's CS algorithm is not controlled by any measures, the process of optimization may be timeconsuming. To promote the efficiency of the Yang's CS, Naik [12] modified the $L\acute{e}vy$ step adaptively based on the individual fitness value and the current iterative number

$$stepsize_{i}^{(t+1)} = \left(\frac{1}{t}\right)^{\left|\frac{f_{best}^{f} - f_{i}^{i}}{f_{best}^{f} - f_{worst}^{f}}\right|}$$
(14)

where t represents current iterations, f_i^t denotes the fitness of *i*th nest in t^{th} iteration, f_{best}^t , f_{worst}^t is the best, worst fitness in t^{th} iteration, respectively.

From the (14), the step size is long at the beginning, but as the iterations increase, it decreases. Hence, the step size will be very short when the algorithm achieves the global best solution. Equation (14) also reveals that the step size changes with fitness adaptively. Then (12) is rewritten as:

$$x_i^{(t+1)} = x_i^{(t)} + randn \times stepsize_i^{(t+1)}$$
(15)

The superiority of ACS algorithm is that, it does not set any initial parameter, Therefore, the modified method is less parameter and faster than Yang's CS algorithm.

3.3 Improved ACS algorithm

The discovery probability p_a introduced in the Yang's CS represents the possibility whether the nest will be discarded or be renewed [10]. It's used to control the coordination of global and local search. If p_a value is small, a large number of dimensions of a solution are changed in each generation, conversely, the poor individual will remain for the next generation, it may be unable to obtain the best solutions [25]. The parameter p_a is fixed to 0.25 in the ACS algorithm [12], but for different problems, they need different values. In this work, the value of p_a is changed with the number of iterations adaptively and showed as follows:

$$p_{a} = p_{a_{-}\max} - (p_{a_{-}\max} - p_{a_{-}\min}) \cdot \exp(\eta \cdot t)$$

$$\eta = \frac{1}{T} ln\left(\frac{p_{a_{-}\min}}{p_{a_{-}\max}}\right)$$
(16)

where T is total iterations, $p_{a_{\text{max}}}$ and $p_{a_{\text{min}}}$ are the predefined maximum, minimum discovery probability.

It can be observed from the (16), in the early iterations, the p_a value is relatively small, it will increase the diversity of solutions. In the final iterations, the value of p_a will generate faster convergence to the optimum solutions. In short, p_a is nonlinearly altered from a small value to a large value relatively in the whole process, it will improve the accuracy of the algorithm as a whole.

Further, (15) is reformulated as [13]:

$$x_i^{(t+1)} = x_i^{(t)} + randn \times stepsize_i^{(t+1)} \times \left(x_i^{(t)} - x_{gbest}\right)$$
(17)

(a) ACS	(b) IACS
begin	begin
Generate initial population of N host nests x_i ;	Generate initial population of N host nests x_i ;
Set the discovery probability p_a .	Define minimum discovery probability value pa_min
For all x_i do	Define maximum discovery probability value p _{a_max} .
Evaluate the fitness $F_i = f(x_i)$.	For all x _i do
end for	Evaluate the fitness $F_i = f(\mathbf{x}_i)$.
While(t <maxiteration)or (stop="" criterion)<="" td=""><td>end for</td></maxiteration)or>	end for
Find the bestfitness and worstfitness of the current	While(t < Maxiteration) or (stop criterion)
generation among the host nests.	Find the bestfitness and worstfitness of the current
Calculate the step size by using	generation among the host nests.
$stepsize_{i}^{(t+1)} = \left(\frac{1}{t}\right)^{\frac{ f_{ij} - f_{ij} }{ f_{ij} - f_{ijm} }}$	Calculate the step size by using
$stepsize_{i}^{(i+1)} = \left(\frac{1}{t}\right)^{(i+1)}$	$stepsize_{i}^{(t+1)} = \left(\frac{1}{t}\right)^{\frac{ f_{inu}-f_{i}' }{ f_{inu}-f_{unu}' }}$
and the new position of cuckoo nests using	$stepsize_i^{(i+1)} = \left(\frac{1}{t}\right)^{(i+1)}$
$x_i^{(t+1)} = x_i^{(t)} + randn \times stepsize_i^{(t+1)}$	and the new position of cuckoo nests by using
evaluate its fitness $F_i = f(x_i)$	$x_i^{(t+1)} = x_i^{(t)} + randn \times stepsize_i^{(t+1)} \times \left(x_i^{(t)} - x_{gbest}\right)$
Choose a nest among $N(x_j)$ randomly.	evaluate its fitness $F_i = f(\mathbf{x}_i)$
If $(F_i \ge F_j)$	Choose a nest among $N(x_i)$ randomly.
For maximization problem	If $(F_i \ge F_i)$,
Replace x_j with x_i	For maximization problem
Replace F_j with F_i	Replace x_i with x_i
end	Replace F_i with F_i .
A fraction (p_a) of worse nests	end
are abandoned and new ones are built;	A fraction (p_a) of worse nests
Evaluate the fitness of new nests;	are abandoned and new ones are built;
Keep the best solutions;	Evaluate the fitness of new nests;
Sort the solutions and find the current best.	Keep the best solutions;
end while	Sort the solutions and find the current best.
end	end while
	end

Fig. 2 Pseudo-code of a ACS and b IACS

where x_{gbest} is global best solution. In the early search phase, the optimization efficiency of CS and ACS algorithms is faster, but in later period, the two algorithms are easy to sink into local extremum, which leads to low segmentation accuracy. The IACS algorithm can adaptively adjust p_a value, hence it jumps out of the local extremum point in time, improves the nest's fitness continuously. And then, the optimal threshold is obtained to extract the required target accurately. The basic steps of IACS and ACS algorithms are shown in Fig. 2 and the flowchart of IACS is given by Fig. 3.

4 Experiments and discussions

Table 1 is parametric settings of optimization algorithms. The number of nests and maximum iterations of all the three algorithms are fixed to 50 and 150, respectively. They are identical for all experiments due to having a great influence on convergence rate and computational time of the algorithm. The discovery probability p_a decides whether to give up the nest, when $p_a = 1$, host bird throws out the cuckoo's egg or simply abandons its nest, when $p_a = 0$, host bird can't recognize the cuckoo's egg and may hatch it. Hence, the range of p_a is set between 0 and 1. For IACS algorithm, the maximum p_a is 0.95 and the minimum p_a is 0.15 [26].

4.1 Image dataset

To explore the effectiveness of the three optimization algorithms for segmentation, grayscale test images namely Lena, Baboon, and Cameraman are taken from Image Databases and given in Fig. 4.

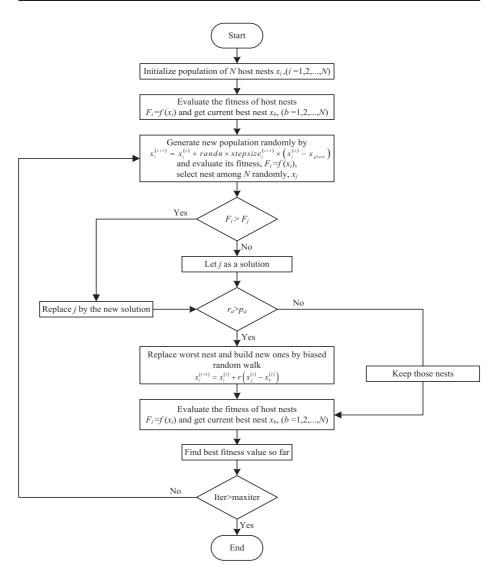


Fig. 3 Flowchart of IACS algorithm

Table 1	Parameters values us	ed in CS, ACS and	IACS algorithms
---------	----------------------	-------------------	-----------------

Parameters	CS	ACS	IACS
No. of nests(N)	50	50	50
Discovery probability(p_a)	0.25	0.25	$p_{a_{-}\max} = 0.95$
			$p_{a_{-}\min} = 0.15$
No. of total iterations (T)	150	150	150
Lower limit for egg	1	1	1
Upper limit for egg	256	256	256

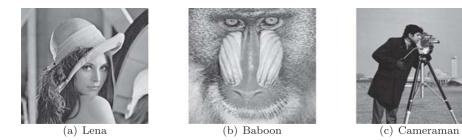


Fig. 4 Original test images

The size of Baboon and Cameraman are 512×512 , Lena has size 256×256 . As it can be seen from their respective histograms in Fig. 5, they are multimodal in nature, all the images own distinct histogram features with irregular distributions depicting objective and background. Hence, to identify the target region exactly, multi-level thresholding is a more efficient technique.

4.2 Performance metrics

The accuracy of the segmentation is assessed by Peak Signal to Noise Ratio(PSNR) [1]. The larger the PSNR, the better quality of thresholding, the mathematical expression is given below:

$$PSNR = 10\log_{10}\left(\frac{255^2}{MSE}\right) \tag{18}$$

where

$$MSE = \frac{1}{EF} \sum_{j=1}^{E} \sum_{k=1}^{F} \left[I(j,k) - I'(j,k) \right]^2$$
(19)

where $E \times F$ denotes the image size, *I* and *I'* are original, segmented images, respectively. Mean Square Error(MSE) is computed between the original image and its segmented image for different thresholds and for each algorithm. Lower MSE value indicates lower segmentation errors.

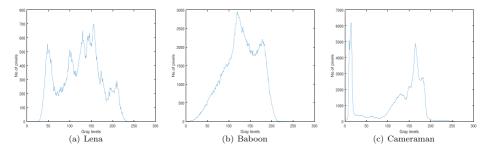


Fig. 5 Histograms of those images

Images	n	CS	ACS	IACS			
(a) PSNR value	e comp	arison			(b) PSNR v	alue comparis	son
Lena	5	19.2517	19.2517	19.2517	772.5149	772.5149	772.5149
	7	21.0423	21.0828	21.1350	511.5217	506.7987	500.7290
	9	22.8682	23.2432	23.5056	336.2906	308.8179	290.1680
	11	24.6340	24.9702	25.5256	224.0162	207.6243	182.3058
Baboon	5	21.7105	21.7105	21.7105	438.5573	438.5573	438.5573
	7	24.5214	24.7249	24.8280	229.6240	219.1696	213.9425
	9	26.9813	27.1650	27.2705	130.3424	125.0180	121.9749
	11	28.5088	28.8025	29.1335	91.9003	85.8146	79.4963
Cameraman	5	23.3822	23.3822	23.3822	195.2716	192.8844	192.1902
	7	25.2165	25.2779	25.2929 195.2716	192.8844	192.1902	
	9	27.2537	27.2656	27.3021	122.4333	122.0750	121.0388
	11	28.4528	28.4971	28.5555	92.8670	91.9143	90.6848
(c) CPU time c	ompari	ison (s)			(d) SSIM c	omparison	
Lena	5	5.9652	5.2498	4.7422	0.7059	0.7059	0.7059
	7	5.9965	5.3803	4.9724	0.7724	0.7734	0.7743
	9	6.2880	5.5402	5.1602	0.8153	0.8207	0.8251
	11	6.3601	5.7902	5.3669	0.8541	0.8576	0.8644
Baboon	5	5.7913	5.1817	4.6616	0.8323	0.8323	0.8323
	7	5.9226	5.3514	4.8850	0.8927	0.8945	0.8960
	9	6.1382	5.5554	5.1057	0.9287	0.9295	0.9313
	11	6.2692	5.6497	5.2786	0.9469	0.9495	0.9521
Cameraman	5	5.8312	5.2474	4.6621	0.7140	0.7140	0.7140
	7	6.0631	5.3534	4.8951	0.7465	0.7473	0.7478
	9	6.2251	5.5687	5.1033	0.7771	0.7782	0.7797
	11	6.3492	5.7280	5.2368	0.7897	0.7913	0.7925

Table 2Comparison of mean PSNR, MSE, CPU time and SSIM values between different algorithms using
Otsu's method

Structural similarity index(SSIM) [27] is to measure the structure of segmented and original image. Higher SSIM value shows that the segmented image contains more information, it's defined as:

$$SSIM(I, I') = \frac{(2\mu_I \mu_{I'} + D_1)(2\sigma_{II'} + D_2)}{(\mu_I^2 + \mu_{I'}^2 + D_1)(\sigma_I^2 + \sigma_{I'}^2 + D_2)}$$
(20)

where μ_I and $\mu_{I'}$ are the average values and $\sigma_{II'}$ is the covariance, σ_I^2 and $\sigma_{I'}^2$ are the variance, $D_1 = D_2 = 0.065$.

4.3 Experimental results evaluation

All the images were independently executed 20 times using each of presented multi-level segmentation methods. Tables 2, 3, 4, 5, 6 and 7 validate the contrast of different quality metric values received by Yang's CS, ACS and the proposed IACS algorithm, where n represents the thresholds number. Best image segmentation results and the rate of convergence

IIIIages	и	Mean optimal thresholds			Mean fitness values	alues	
		CS	ACS	IACS	CS	ACS	IACS
Lena	5	73,109,136,160,188	73,109,136,160,188	73,109,136,160,188	2.2161e+03	2.2161e+03	2.2161e+03
	٢	63, 89, 112, 132, 149, 168, 193	63, 88, 112, 132, 149, 168, 192	62, 88, 119, 132, 149, 168, 192	2.2475e+03	2.2475e+03	2.2475e+03
	6	55, 74, 94, 113, 132, 148,	53, 73, 93, 115, 132, 148,	53, 73, 94, 114, 132, 148,	2.2610e+03	2.2610e+03	2.2610e+03
		164,183,202	163,183,202	164,183,202			
	Π	50, 65, 83, 98, 112, 126, 138, 151,	49,65,81,96,111,125,137,151,	50, 64, 81, 96, 111, 124, 137, 151,	2.2692e+03	2.2692e+03	2.2693e+03
		166,184,202	166,184,202	166,184,202			
Baboon	5	71,101,125,147,171	71,101,125,147,171	71,101,125,147,171	1.4062e+03	1.4062e+03	1.4062e+03
	٢	60, 85, 106, 124, 140, 158, 177	60, 85, 106, 123, 140, 159, 177	60, 84, 105, 123, 140, 158, 177	1.4317e+03	1.4317e+03	1.4317e+03
	6	52, 73, 91, 108, 122, 136,	52, 73, 92, 108, 123, 137,	52, 73, 92, 108, 122, 136,	1.4439e+03	1.4439e+03	1.4440e+03
		151,166,182	151,167,182	151,166,182			
	11	46,65,81,96,110,122,134,	45,65,82,96,110,122,	47, 67, 83, 97, 110, 123, 134,	1.4506e+03	1.4506e+03	1.4510e+03
		146, 159, 171, 184	133, 146, 159, 172, 185	147,160,172,186			
Cameraman	5	36, 83, 122, 148, 172	36, 83, 122, 148, 172	36, 83, 122, 148, 172	3.7324e+03	3.7324e+03	3.7324e+03
	٢	33, 76, 111, 134, 154, 172, 200	33, 76, 111, 134, 154, 172, 200	33, 76, 111, 134, 154, 172, 201	3.7627e+03	3.7627e+03	3.7627e+03
	6	25, 52, 82, 108, 126, 142,	25, 52, 82, 108, 126, 142,	25, 52, 82, 108, 126, 142,	3.7776e+03	3.7776e+03	3.7776e+03
		158,173,201	157,173,200	158,173,201			
	11	23,47,74,98,115,129,143,	24, 47, 73, 97, 115, 129, 143,	23,47,72,97,115,129,143,	3.7848e+03	3.7848e+03	3.7850e+03
		156,167,178,204	156,167,178,205	156,167,178,205			

Images	п	CS	ACS	IACS	CS	ACS	IACS
(a) PSNR value	compar	ison			(b) PSNR va	alue compariso	n
Lena	5	21.0383	21.0383	21.0383	511.9813	511.9813	511.9813
	7	22.2627	22.5240	23.6316	386.3805	364.1523	283.3549
	9	24.2503	24.4584	24.9585	245.5116	233.6096	208.1279
	11	25.6715	26.3240	26.8165	177.3152	152.0990	135.5399
Baboon	5	21.2950	21.2950	21.2950	482.5294	482.5924	482.5924
	7	23.7380	23.8566	23.9485	274.9776	267.5955	261.9814
	9	25.5913	25.7084	25.9289	179.5357	174.7045	166.0659
	11	26.3955	26.5876	27.1958	149.3852	142.4394	124.5233
Cameraman	5	20.9418	20.9418	20.9418	523.4753	523.4753	523.4753
	7	23.5016	23.5356	23.5662	290.3220	288.0938	286.0681
	9	25.5867	25.4985	25.6646	185.8428	179.6982	176.4676
	11	26.3194	26.3745	26.7061	152.1317	150.0434	138.8779
(c) CPU time co	ompariso	on (s)			(d) SSIM co	omparison	
Lena	5	8.4326	7.5221	6.9415	0.7715	0.7715	0.7715
	7	8.9781	8.3447	7.6382	0.7883	0.7980	0.8220
	9	9.9341	9.2058	8.3867	0.8325	0.8359	0.8431
	11	10.8084	10.0695	9.1876	0.8549	0.8668	0.8735
Baboon	5	8.1783	7.4452	6.7894	0.7957	0.7957	0.7957
	7	8.8817	8.2604	7.4652	0.8639	0.8672	0.8687
	9	9.8245	9.0177	8.3255	0.9008	0.9033	0.9063
	11	10.8056	9.8812	9.1314	0.9157	0.9183	0.9266
Cameraman	5	8.3212	7.3096	6.7519	0.7095	0.7095	0.7095
	7	8.9885	8.1043	7.5578	0.7406	0.7411	0.7417
	9	9.6794	9.1231	8.3332	0.7582	0.7595	0.7604
	11	10.6016	9.9064	9.1643	0.7637	0.7690	0.7739

Table 4Comparison of mean PSNR, MSE, CPU time and SSIM values between different algorithms using
Kapur's method

curve between different algorithms are shown visually in Figs. 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 and 17.

4.3.1 Analysis of the consequences employing Otsu's method

In Table 2, all the algorithms perform equally for n=5, however, as the number of thresholds increases, it's clear that IACS algorithm has got higher values of PSNR which leads to a reduced MSE, SSIM values are also the highest, ACS algorithm has obtained acceptable results than CS. Hence the IACS algorithm exhibits more accuracy and robustness. Furthermore, Table 2c presents the information of average CPU time, compared to other algorithms, IACS has faster computational speed with minimum CPU time, ACS closely follows IACS. It can also be summarized that the proposed IACS algorithm can keep the lowest computational time along with the threshold levels increase.

For the visual analysis, the segmented results are shown in Figs. 6, 7 and 8. The three algorithms have produced better quality of the segmented images when n=11. However, the segmented results obtained by IACS algorithm are more pleasant visually, ACS is slightly

Images	и	Mean optimal thresholds			Mean fitness values	s values	
		CS	ACS	IACS	CS	ACS	IACS
Lena	5	26,64,97,138,179	26,64,97,138,179	26,64,97,138,179	21.2649	21.2649	21.2649
	7	26,63,96,129,162,193,243	26, 64, 94, 127, 161, 192, 243	26, 64, 95, 126, 160, 191, 243	26.3552	26.3777	26.3822
	6	25,59,84,110,132,157,179,	26, 59, 83, 107, 131, 155, 179,	26, 59, 83, 108, 133, 158, 183,	30.8525	30.8992	30.9065
		204,243	203,243	207,243			
	11	21,47,69,91,111,132,152,	24, 47, 67, 86, 106, 126, 149,	25,52,72,91,111,130,150,	34.8719	34.9058	34.9348
		172,192,212,243	171, 191, 213, 243	172,193,214,243			
Baboon	5	47,81,117,158,220	47,81,117,158,220	47,81,117,158,220	21.3673	21.3673	21.3673
	7	28, 52, 81, 111, 142, 172, 220	28, 53, 82, 111, 141, 172, 220	28, 53, 81, 111, 141, 172, 220	26.3270	26.3274	26.3274
	6	26, 49, 72, 95, 119, 143, 168,	27, 49, 73, 97, 120, 144, 168,	27,49,72,94,117,141,165,	30.8630	30.8740	30.8748
		193,222	192,221	190,220			
	11	26,46,66,87,107,129,150,	25,46,67,87,108,129,149,170,	26, 46, 68, 88, 109, 129, 148,	35.0336	35.0732	35.0878
		171,192,220,236	191,220,237	170,192,220,237			
Cameraman	5	24,62,101,146,195	24,62,101,146,195	24,62,101,146,195	21.2488	21.2488	21.2488
	7	23, 59, 95, 124, 156, 191, 216	24,59,95,125,156,191,217	23,59,95,124,156,191,217	26.5844	26.5855	26.5855
	6	19,44,70,95,119,145,169,	20, 45, 69, 95, 120, 144, 168,	20,45,70,96,120,145,168,	31.2372	31.2402	31.2453
		191,216	191,217	191,217			
	11	19,41,63,85,104,126,148,	19,40,63,84,105,126,148,	19, 42, 65, 88, 108, 129, 150,	35.4765	35.4839	35.4970
		169,191,211,232	169,191,211,232	170,191,211,232			

Images	n	CS	ACS	IACS	CS	ACS	IACS
(a) PSNR value	compar	ison			(b) MSE co	mparison	
Lena	5	21.0383	21.0383	21.0383	511.9813	511.9813	511.9813
	7	22.1921	22.2271	23.6187	392.7075	389.7416	284.7962
	9	24.0711	24.3698	24.9259	255.0979	238.0847	209.3731
	11	25.6010	26.0544	26.7735	182.3216	161.5543	137.0723
Baboon	5	21.2950	21.2950	21.2950	482.3216	482.3216	482.3216
	7	23.7236	23.8240	23.9151	275.8934	269.6454	263.9901
	9	25.4600	25.6887	25.8588	185.6943	175.5128	168.7902
	11	26.6043	26.8219	27.2100	142.3692	135.2800	123.9134
Cameraman	5	20.9418	20.9418	20.9418	523.4753	523.4753	523.4753
	7	23.5111	23.5311	23.5556	289.7218	288.5328	286.7626
	9	25.5442	25.6053	25.6804	181.4624	178.9001	175.8752
	11	26.2291	26.3649	26.7181	155.0875	150.4582	138.4693
(c) CPU time co	ompariso	on (s)			(d) SSIM co	omparison	
Lena	5	9.5379	8.5060	7.9931	0.7715	0.7715	0.7715
	7	10.5661	9.3823	8.7194	0.7872	0.7876	0.8220
	9	11.4806	10.2308	9.5662	0.8294	0.8328	0.8413
	11	12.5901	11.3930	10.4029	0.8536	0.8608	0.8727
Baboon	5	9.4943	8.6282	7.8874	0.7957	0.7957	0.7957
	7	10.5696	9.4960	8.7405	0.8632	0.8667	0.8680
	9	11.3745	10.4586	9.6199	0.8991	0.9032	0.9055
	11	12.3720	11.3412	10.4581	0.9191	0.9224	0.9270
Cameraman	5	9.2219	8.6487	7.8934	0.7095	0.7095	0.7095
	7	10.2626	9.4833	8.7314	0.7415	0.7418	0.7430
	9	11.0546	10.4926	9.7636	0.7569	0.7579	0.7595
	11	12.1457	11.4214	10.6497	0.7680	0.7699	0.7740

Table 6Comparison of mean PSNR, MSE, CPU time and SSIM values between different algorithms using
Tsallis method

better than CS. In Fig. 6, at *n*=11, the background in the Lena image is the clearest using IACS algorithm, to some extent, the hat and hair are identifiable clearly. But the segmentation quality of CS algorithm is not accurate, especially for hat. This phenomenon of segmenting is also observed in other two images.

Figure 9 presents the convergence curve of the three algorithms for n=11. In Fig. 9a, after about 60 iterations, the maximum fitness value is acquired only in the case of IACS algorithm. ACS and CS algorithms require at least 150 iterations. In Fig. 9b, at 20 iterations, the fitness value is 1.445e+03 by using IACS algorithm. However, the fitness value is 1.440e+03 for ACS and CS algorithms at 20 iterations. In Fig. 9c, when the fitness value is 3.782e+03, there are not more than 20 iterations for the IACS algorithm, while the ACS algorithm requires 40 iterations and the CS algorithm needs 60 iterations at least. Therefore, the proposed IACS algorithm is much faster to get the global optimum.

Images	и	Mean optimal thresholds			Mean fitness values	s values	
		CS	ACS	IACS	CS	ACS	IACS
Lena	S	26,64,97,138,179	26,64,97,138,179	26,64,97,138,179	23.2902	23.2902	23.2902
	7	26, 64, 97, 130, 162, 193, 241	26, 63, 95, 128, 161, 191, 243	26, 64, 94, 128, 162, 192, 243	28.6672	28.7193	28.7265
	6	25,60,85,109,133,156,179,	25,60,84,109,134,157,180,	26, 59, 82, 107, 131, 155, 177,	33.4121	33.4521	33.4876
		206,243	204,243	201,243			
	11	24, 49, 70, 91, 111, 131, 149,	24, 49, 70, 92, 112, 133, 153,	25,54,74,95,1151,134,154,	37.6106	37.6767	37.7262
		169, 191, 212, 243	173, 192, 213, 243	175, 195, 214, 243			
Baboon	5	47,81,117,158,220	47,81,117,158,220	47,81,117,158,220	23.4172	23.4172	23.4172
	7	28,54,84,113,142,173,220	28, 53, 82, 111, 141, 172, 220	28, 53, 82, 112, 142, 172, 220	28.6607	28.6607	28.6610
	6	26, 48, 73, 96, 120, 144, 169,	27, 50, 73, 97, 120, 143, 166,	27,49,72,95,119,142,166,	33.4186	33.4250	33.4435
		195,223	190,220	190,220			
	11	25,46,68,90,110,130,150,	25,46,67,87,108,129,150,	26,47,69,89,110,130,150,	37.7478	37.8081	37.8670
		171, 192, 220, 236	171,192,220,237	171, 192, 220, 238			
Cameraman	5	24,61,100,146,196	24,61,100,146,196	24,61,100,146,196	23.3191	23.3191	23.3191
	7	23,58,95,124,156,191,216	24, 59, 95, 125, 156, 191, 216	24, 59, 95, 125, 156, 191, 216	28.9853	28.9855	28.9859
	6	19, 45, 70, 96, 120, 145, 168,	19,44,69,95,119,145,168,	20, 45, 70, 95, 120, 146, 169,	33.8664	33.8692	33.8771
		191,216	191,217	191,217			
	11	19,40,62,84,104,125,147,	19, 41, 64, 85, 105, 126, 147,	19, 42, 65, 88, 108, 130, 151,	38.2819	38.2957	38.3260
		169,191,212,232	169,191,212,233	170,191,212,232			

Table 7Comparison of optimal thresholds and corresponding fitness values between CS. ACS and IACS using Tsallis entropy method

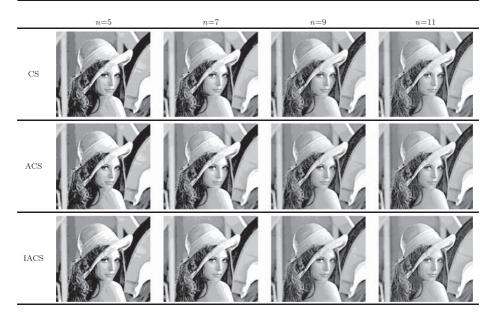


Fig. 6 Results of segmenting Lena using CS, ACS and IACS for 4 different threshold levels maximizing Otsu's method

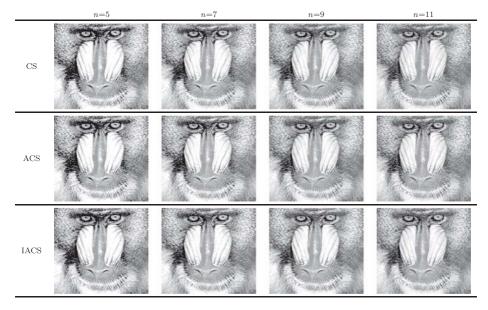


Fig. 7 Results of segmenting Baboon using CS, ACS and IACS for 4 different threshold levels maximizing Otsu's method

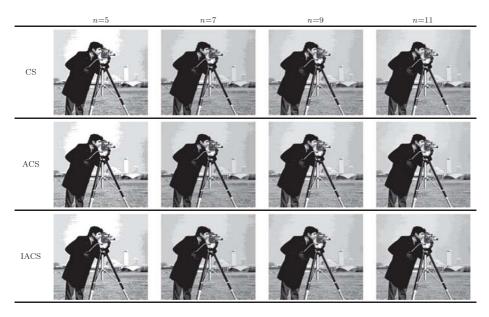


Fig. 8 Results of segmenting Cameraman using CS, ACS and IACS for 4 different threshold levels maximizing Otsu's method

4.3.2 Analysis of the consequences employing Kapur's method

In Table 4, the number of thresholds exceeds 5, for all the test images, IACS algorithm performs superior to the other algorithms quantitatively, it obtains the highest values of PSNR, SSIM and minimum values of MSE, ACS has gained acceptable results than CS. This indicates the IACS is more accurate and robust in image segmentation. Table 4c illustrates the information of average CPU time. IACS algorithm is always around 1 second faster than ACS and CS algorithms. Additionally, at higher threshold levels, IACS algorithm remains the lowest computational time that makes it efficient for segmenting.

In Figs. 10, 11 and 12, the results depict that the segmented outputs based on IACS algorithm are much clearer visually for all the test images, ACS follows the IACS and CS is the

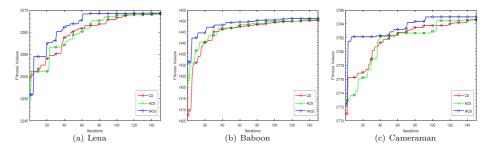


Fig. 9 Convergence curves of segmenting using Otsu's method with 11 threshold levels using CS, ACS and IACS algorithms

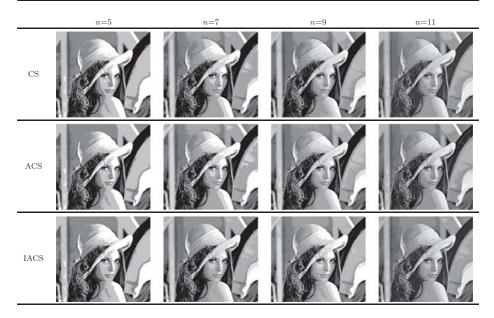


Fig. 10 Results of segmenting Lena using CS, ACS and IACS for 4 different threshold levels maximizing Kapur's method

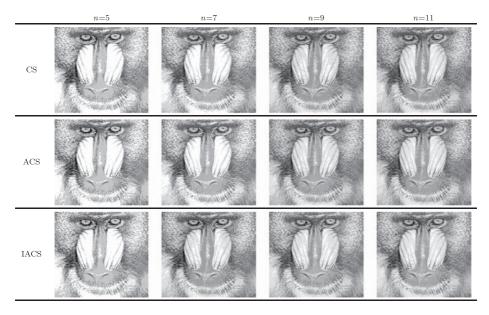


Fig. 11 Results of segmenting Baboon using CS, ACS and IACS for 4 different threshold levels maximizing Kapur's method

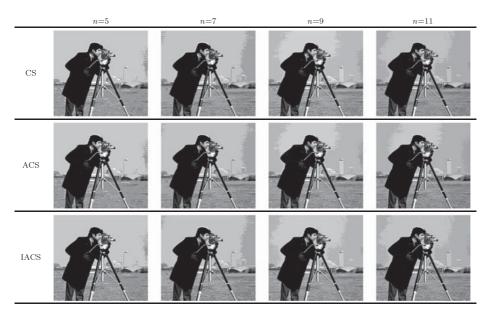


Fig. 12 Results of segmenting Cameraman using CS, ACS and IACS for 4 different threshold levels maximizing Kapur's method

last. In Fig. 12, for the Cameraman image when n=11, the sky and buildings are clear and become recognizable by using IACS algorithm, but the thresholded images gained by the CS and ACS algorithms lose some information to some degrees. Similarly, Figs. 10 and 11 also demonstrate that the results of IACS algorithm seem better qualitatively.

Fig. 13 displays the convergence curve of the three algorithms at *n*=11. In Fig. 13a, when the fitness value is 34.5, just 20 iterations for IACS algorithm, whereas CS requires about 120 iterations and ACS needs 150 iterations at least. In Fig. 13b, it's not competitive for IACS algorithm, the maximum fitness value is obtained at around 100 iterations. For CS and ACS algorithms, the maximum fitness value is gained after about 150 iterations. In Fig. 13c, the convergence curve of CS and ACS are not obviously different. For IACS algorithm, it only takes about 40 iterations to reach the fitness value, while the ACS and CS algorithms require

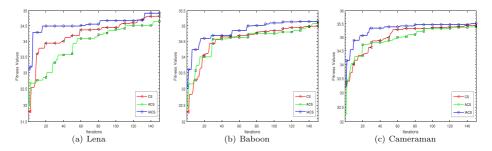


Fig. 13 Convergence curves of segmenting using Kapur's method with 11 threshold levels using CS, ACS and IACS algorithms

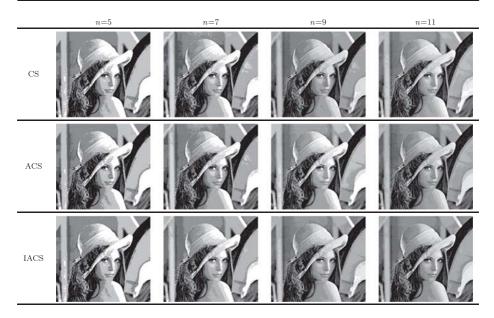


Fig. 14 Results of segmenting Lena using CS, ACS and IACS for 4 different threshold levels maximizing Tsallis method

150 iterations at least. Therefore, the IACS algorithm displays a faster convergence to the best solutions.

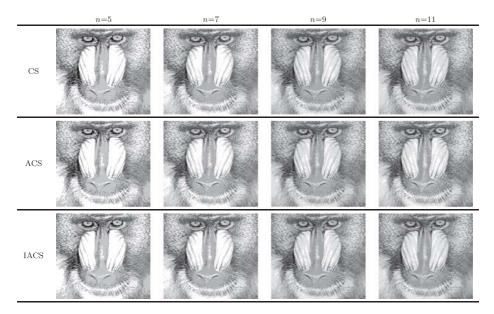


Fig. 15 Results of segmenting Baboon using CS, ACS and IACS for 4 different threshold levels maximizing Tsallis method

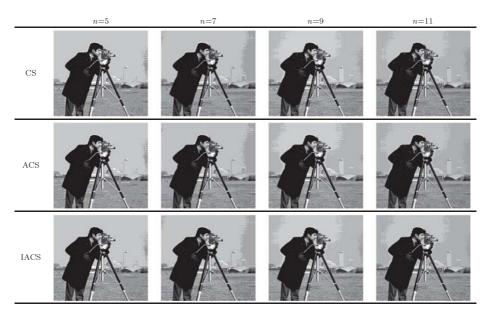


Fig. 16 Results of segmenting Cameraman using CS, ACS and IACS for 4 different threshold levels maximizing Tsallis method

4.3.3 Analysis of the consequences employing Tsallis method

In Table 6, with the number of thresholds increasing, it's clear that IACS algorithm has better values of PSNR, SSIM and minimum values of MSE, and ACS algorithm has slightly better results than CS algorithm. In summary, the IACS algorithm can segment images more accurately than other algorithms. In Table 6c, the IACS has taken the least time compared to CS and IACS algorithms, CS algorithm costs the most. At different threshold levels, IACS algorithm is always around 2 seconds faster than CS algorithm and about 1 second faster than ACS algorithm.

Figures. 14, 15 and 16 give the segmented results visually. From these figures, It can be concluded that higher-threshold images contain more details. When n=11, for the Baboon image, the results of IACS algorithm make the beard and nose object clearer, but in CS and ACS algorithms, the nose is not clearly distinct.

Further, Fig. 17 shows the convergence curve of the three algorithms at n=11. It is clearly shown from Fig. 17a the convergence rate of the three algorithms have produced similar results in the early period, but the fitness value of IACS is always higher than the others. Only IACS obtains the maximum fitness value after about 100 iterations. ACS and CS algorithms require at least 150 iterations. In Fig. 17b, at 20 iterations, the fitness value is about 37.5 for IACS algorithm, whereas at least 80 iterations for ACS and CS algorithms to gain the value. In Fig. 17c, convergence rate of the proposed IACS algorithm is much faster. Only IACS algorithms require at least 150 iterations. Consequently, the IACS outperforms CS and ACS algorithms. In summary, from different

assessment measures, the proposed IACS algorithm gives higher segmentation performance using less CPU time and is well suited for segmenting,

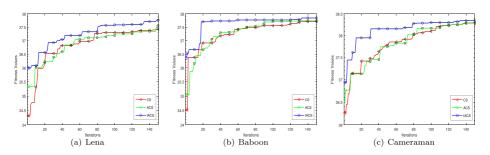


Fig. 17 Convergence curves of segmenting using Tsallis method with 11 threshold levels using CS, ACS and IACS algorithms

5 Conclusions

Due to multi-level thresholding based on Yang's CS algorithm has larger calculated amount, the IACS algorithm is introduced. Without employing the *Lévy* distribution, the iterative step size based on its fitness adaptively, it enables step size variable in the process of searching. Moreover, the dynamic adjustment strategy is also applied to the discovery probability p_a , which can enrich the population variety and avoid premature. The IACS algorithm is then applied to searching optimal thresholds. To validate its performance, it is compared to Yang's CS and ACS algorithms. The results reveal that the IACS algorithm can efficiently select the multi-level thresholds and has better segmented quality than other two algorithms. According to the rate of convergence curve, the IACS algorithm attains its optimal value in less iterations without falling into local optima. Next step is to check the effectiveness of IACS algorithm for all kinds of issues in image processing.

Acknowledgements This work was supported by the National Natural Science Foundation of China under Grant No.11601007 and No.11701007.

References

- Abhinaya B, Sri Madhava Raja N (2015) Solving Multi-level Image Thresholding Problem-An Analysis with Cuckoo Search Algorithm. Adv Intell Syst Comput 339:177–186
- Agrawal S, Panda R, Bhuyan S, Panigrahi BK (2013) Tsallis entropy based optimal multilevel thresholding using cuckoo search algorithm. Swarm Evol Comput 11:16–30
- 3. Alihodzic A, Tuba M (2014) Improved bat algorithm applied to multilevel image thresholding. Sci World J 2014:1–16
- Bhandari AK, Kumar A, Singh GK (2015) Modified artificial bee colony based computationally efficient multilevel thresholding for satellite image segmentation using Kapur's, Otsu and Tsallis functions. Expert Syst Appl 42(3):1573–1601
- Bhandari AK, Singh VK, Singh GK, Singh GK (2014) Cuckoo search algorithm and wind driven optimization based study of satellite image segmentation for multilevel thresholding using Kapur's entropy. Expert Syst Appl 41(7):3538–3560
- Feng YC, Shen XJ, Chen HP, Zhang XL (2017) Segmentation fusion based on neighboring information for MR brain images. Multi Tools Appli 76(22):23139–23161
- Ghamisi P, Couceiro MS, Benediktsson JA, Ferreira NMF (2012) An efficient method for segmentation of images based on fractional calculus and natural selection. Expert Syst Appl 39(16):12407–12417
- Hammouche K, Diaf M, Siarry P (2008) A multilevel automatic thresholding method based on a genetic algorithm for a fast image segmentation. Comput Vision Image Understan 109(2):163–175

- Kapur JN, Sahoo PK, Wong AKC (1985) A new method for gray-level picture thresholding using the entropy of the histogram. Comput Vision Graphics Image Process 29(3):273–285
- Li XT, Yin MH (2015) Modified cuckoo search algorithm with self adaptive parameter method. Inf Sci 298(20):80–97
- Mantegna RN (1994) Fast, accurate algorithm for numerical simulation of *lévy* stable stochastic processes. Phys Rev E 49(5):4677–4683
- Naik MK, Nath MR, Wunnava A, Sahany S, Panda R (2015) A new adaptive Cuckoo search algorithm. In: Proceeding of international conference on recent trends in information systems, pp 1–5
- Naik MK, Panda R (2016) A novel adaptive cuckoo search algorithm for intrinsic discriminant analysis based face recognition. Appl Soft Comput 38:661–675
- Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66
- 15. Pal NR, Pal SK (1993) A review on image segmentation techniques. Pattern Recogn 26(9):1277-1294
- Panda R, Agrawal S, Bhuyan S (2013) Edge magnitude based multilevel thresholding using Cuckoo search technique. Expert Syst Appl 40(18):7617–7628
- Portes de Albuquerque M, Esquef IA, Gesualdi Mello AR (2004) Image thresholding using Tsallis entropy. Pattern Recogn Lett 25(9):1059–1065
- Sahoo PK, Soltani S, Wong AKC (1988) A survey of thresholding techniques. Comput Vis Graph Image Process 41(2):233–260
- Sezgin M, Sankur B (2004) Survey over image thresholding techniques and quantitative performance evaluation. J Electron Imaging 13(1):146–168
- Sharma A, Chaturvedi R, Dwivedi U, Kumar S, Reddy S (2018) Firefly algorithm based Effective gray scale image segmentation using multilevel thresholding and Entropy function. Int J Pure Appl Math 118(5):437–443
- Suresh S, Lal S (2016) An efficient cuckoo search algorithm based multilevel thresholding for segmentation of satellite images using different objective functions. Expert Syst Appl 58:184–209
- 22. Tiwari V (2012) Face recognition based on cuckoo search algorithm. Ind J Comput Sci Eng 3(3):401-405
- 23. Tsallis C (1988) Possible generalization of Boltzmann-Gibbs statistics. J Stat Phys 52(1):479–487
- 24. Valian E, Mohanna S, Tavakoli S (2011) Improved cuckoo search algorithm for feed forward neural network training. Int J Artif Intell Appl 2(3):36–43
- 25. Wang LJ, Zhong YW (2015) Cuckoo search algorithm with chaotic maps. Math Probl Eng 2015:1-14
- Wang W, Xie C (2018) A cuckoo search algorithm based on self-adjustment strategy. J Phys Conference Series 1087(2):1–7
- Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612
- Wei HT, Yang Q (2017) A multilevel threshold segmentation technique using self-adaptive Cuckoo search algorithm. In: Advanced Information Technology, Electronic and Automation Control Conference, pp 2292–2295
- 29. Yang XS, Deb S (2010) Engineering optimisation by cuckoo search. Int J Math Model Numer Optim 1(4):330–343
- 30. Yang XS, Deb S (2013) Multiobjective cuckoo search for design optimization. Comput Oper Res 40(6):1616–1624
- 31. Yang XS, Suash D (2009) Cuckoo search via lévy flights, NaBIC, USA
- 32. Zhang YD, Wu LN (2011) Optimal Multi-Level thresholding based on maximum tsallis entropy via an artificial bee colony approach. Entropy 13(4):841–859
- 33. Zhou YQ, Yang X, Ling Y, Zhang JZ (2018) Meta-heuristic moth swarm algorithm for multilevel thresholding image segmentation. Multimed Tools Appl 77(18):23699–23727

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Min Sun Her current research interests are computational intelligence, image processing.