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Abstract
In decades, Yang’s cuckoo search algorithm has been widely developed to select the optimal
threshold of bi-level image threshoding, but the amount of computation of which increases
exponentially with multi-level thresholding. To reduce the computation quantity, the iter-
ative step size is adaptively decided by its fitness values of the current iteration without
using the Lévy distribution in this study. The modification may cause the solution drops
into the local optima during the later period. Therefore, the constant discovery probability
pa is automatically changed relating to the current and total iterations. And then, to verify
segmentation accuracy and efficiency of the proposed method, an adaptive cuckoo search
algorithm proposed by Naik and Yang’s cuckoo search algorithm are included to test on sev-
eral gray-scale images. The results show that the proposed algorithm is expert in selecting
optimal thresholds for segmenting gray-scale image.

Keywords Cuckoo search algorithm · Multi-level thresholding · Adaptive ·
Gray-scale image

1 Introduction

Image segmentation is to separate an image into some distinct regions with different char-
acteristics and extract the objective of interests from their background. In these years, lots
of techniques have been proposed and applied in image segmentation [6, 15, 17, 19, 33].
Among all the existing techniques, the thresholding is thought as a prevalent technique
whereas its perspicuity and precision [18]. The key of thresholding is to quickly find an
optimal threshold with certain criteria to achieve segmentation accurately.
However, for multi-level thresholding, owing to the exhaustive search, the traditional thresh-
olding methods can’t select the optimal thresholds efficiently and the amount of calculation
increases. To solve such limitations, researchers formulated the existing criteria of con-
ventional thresholding methods as objective functions, and incorporated meta-heuristic
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algorithms to enhance the computational speed, such as GA [8], PSO [7], cuckoo search
algorithm (CS) [28], etc., Hammouche [8] used GA to find multi-level thresholds. Zhang
[32] developed artificial bee colony to optimize the Tsallis entropy. Ghamisi [7] proposed a
fractional-order DPSO for determining thresholds. Wei [28] presented Yang’s CS algorithm
for solving multi-level Otsu’s problem. Sharma [20] designed a firefly algorithm based on
the Lévy flight to maximize Kapur’s entropy. Among these meta-heuristic algorithms, the
Yang’s CS algorithm has drawn the attention of researchers.
CS algorithm [31] is a technique for optimization problems proposed by Yang in 2009.
Many researchers have proved the efficiency of Yang’s CS algorithm in different applica-
tions, such as face recognition [22], engineering design [29] and neural network training
[24]. Although CS algorithm is simple and has few parameters as well as high efficiency,
it’s easy to fall into local optima during the later period which causes premature problem
and time-consuming. Therefore, to enhance the performance of CS algorithm, many schol-
ars have proposed improved CS algorithm [10, 13, 21, 25, 26], such as an adaptive cuckoo
search algorithm (ACS) was proposed by Naik [12], the adaptive strategy is used to adjust
the step size and eventually leads to faster convergence. But the adaptive strategy isn’t
applied to the discovery probability pa , this may influence the algorithm accuracy.
Therefore, based on ACS algorithm, an improved ACS algorithm (IACS) is introduced to
for segmenting. For the proposed method, the initial step size randomly yields without being
designed a prior. Furthermore, to avoid local extremum point and enhance the variety of
cuckoos, the pa value changes nonlinearly with iterations. To explain the efficiency of the
IACS algorithm, two methods, Yang’s [31] and Naik’s [12] are involved to searching multi-
level thresholds.
The next parts are structured as: Section 2 briefly leads to three types objective functions
usually applied for the multi-level image thresholding, namely, Otsu’s method, Kapur’s
entropy and Tsallis entropy. Section 3 provides the methodologies of Yang’s CS and ACS
algorithms and presents the improved method(IACS). And then in Section 4, some exper-
iments are expressed to verify the effect of the proposed method and analyze the results.
Finally, Section 5 offers some conclusions.

2 Multi-level thresholding

Recently, multi-level thresholding methods have been widely applied to separate multiple
objectives from background for an image [2–5, 16, 21]. In this section, the key thought for
multi-level thresholding is briefly introduced. Take a image I with L distinct gray levels into
account, where L= 256, then the multi-level image thresholding is defined as:

C0 = {m(x, y) ∈ I | 0 ≤ m(x, y) ≤ t1 − 1}
C1 = {m(x, y) ∈ I | t1 ≤ m (x, y) ≤ t2 − 1}

...

Cn = {m(x, y) ∈ I | tn ≤ m (x, y) ≤ L − 1}
(1)

where m(x, y) denotes a gray level value of pixel, t1, t2, . . . , tn are the different thresholds.
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2.1 Otsu’s method

The Otsu’s criterion is to maximize the between-class variance [14], assume that the proba-
bility of pixels at level i is pi (pi ≥ 0 ), the cumulative probability of each class ωi can be
calculated as:

ω0 =
t1−1∑
i=0

pi , ω1 =
t2−1∑
i=t1

pi , · · · , ωn =
L−1∑
i=tn

pi (2)

Then the optimal thresholds are obtained as follows:(
t∗1 , t∗2 , ..., t∗n

) = argmax
{
σ 2
0 + σ 2

1 + · · · + σ 2
n

}
(3)

where

σ 2
0 = ω0(μ0 − μT )2, μ0=

∑t1−1
i=0 ipi

ω0

σ 2
1 = ω1(μ1 − μT )2, μ1=

∑t2−1
i=t1

ipi

ω1

...

σ 2
n = ωn(μn − μT )2, μn=

∑L−1
i=tn

ipi

ωn

(4)

where μT = ∑L−1
i=0 ipi is the mean value of input image, μi (i = 0, 1, . . . , n) is the mean

value of the pixels of the corresponding region.

2.2 Kapur’s entropymethod

Kapur’s entropy was proposed to maximize the sum of the entropy for segmenting images
[9]. The entropies Hi are defined as:

H0 = −
t1−1∑
i=0

(
pi

ω0

)
ln(

pi

ω0
), ω0 =

t1−1∑
i=0

pi

H1 = −
t2−1∑
i=t1

(
pi

ω1

)
ln

(
pi

ω1

)
, ω1 =

t2−1∑
i=t1

pi

...

Hn = −
L−1∑
i=tn

(
pi

ωn

)
ln

(
pi

ωn

)
, ωn =

L−1∑
i=tn

pi

(5)

The optimal thresholds are gained as:

(
t∗1 , t∗2 , . . . , t∗n

) = argmax

{
n∑

i=0

Hi

}
(6)
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2.3 Tsallis entropymethod

Tsallis entropy is come from Shannon entropy [23], it’s defined as:

Sq = 1 − ∑k
i=1 p

q
i

q − 1
(7)

where q is Tsallis parameter. The relationship between the entropy of each subsystem is as
follows:

Sq (O + B) = Sq (O) + Sq (B) + (1 − q) .Sq (O) .Sq (B) (8)

For multi-level image thresholding problem [2], the optimal thresholds are obtained using
(9): (

t∗1 , t∗2 , ..., t∗n
) = argmax

{
SC0

q (t) + SC1
q (t) + · · · + SCn

q (t)

+ (1 − q) .SC0
q (t) .SC1

q (t) · · · SCn
q (t)

}
(9)

where

SC0
q (t) = 1 − ∑t1−1

i=0

(
pi/p

C0
)q

q − 1
, pC0 =

t1−1∑
i=0

pi

SC1
q (t) = 1 − ∑t2−1

i=t1

(
pi/p

C1
)q

q − 1
, pC1 =

t2−1∑
i=t1

pi

...

SCn
q (t) = 1 − ∑L−1

i=tn

(
pi/p

Cn
)q

q − 1
, pCn =

L−1∑
i=tn

pi (10)

subject to the following constraints:∣∣∣pC0 + pC1

∣∣∣ − 1 < SC0 < 1 −
∣∣∣pC0 + pC1

∣∣∣∣∣∣pC1 + pC2

∣∣∣ − 1 < SC1 < 1 −
∣∣∣pC1 + pC2

∣∣∣
...∣∣∣pC(n−1) + pCn

∣∣∣ − 1 < SC(n−1) < 1 −
∣∣∣pC(n−1) + pCn

∣∣∣
(11)

In (11), pC0 , pC1 , ..., pCn corresponding to SC0 , SC1 , . . . , SCn−1 are computed with
t∗1 , t∗2 , ..., t∗n , respectively.

3 Methodology

3.1 Yang’s CS algorithm

Yang’s CS algorithm is inspired by the obligate brood parasitism of some cuckoos, for
simulating the whole process, Yang uses three assumptions [30]:

(1) one egg is hatched and put in a nest randomly by each cuckoo;
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(2) the excellent nests will be preserved for next iteration;
(3) the possibility of host bird finding cuckoo’s egg is represented by pa .

Then a solution x
(t+1)
i is produced by Lévy flight:

x
(t+1)
i =x

(t)
i + α ⊕ Lévy (β) , i = 1, 2, . . . , N (12)

where α represents the step size and ⊕ is entry-wise multiplications.
The other part of CS algorithm is biased random walk [25]:

x
(t+1)
i =

⎧⎨
⎩

x
(t)
i + r

(
x(t)
p − x(t)

g

)
, if ra > pa

x
(t)
i , otherwise

(13)

Fig. 1 Flowchart of Yang’s CS algorithm
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where p , g is the pth and gth random solutions in the population, respectively, r ∈ [0, 1]
and ra ∈ [0, 1]. The flowchart of Yang’s CS is given by Fig. 1.

3.2 Adaptive CS algorithm

The Yang’s CS algorithm uses the Lévy step to search the optimal solution, which gener-
ally satisfies the Lévy distribution [11], but the Lévy step in the iteration process of Yang’s
CS algorithm is not controlled by any measures, the process of optimization may be time-
consuming. To promote the efficiency of the Yang’s CS, Naik [12] modified the Lévy step
adaptively based on the individual fitness value and the current iterative number

stepsize
(t+1)
i =

(
1

t

)∣∣∣∣ f t
best

−f t
i

f t
best

−f t
worst

∣∣∣∣
(14)

where t represents current iterations, f t
i denotes the fitness of ith nest in t th iteration, f t

best

, f t
worst is the best, worst fitness in t th iteration, respectively.

From the (14), the step size is long at the beginning, but as the iterations increase, it
decreases. Hence, the step size will be very short when the algorithm achieves the global
best solution. Equation (14) also reveals that the step size changes with fitness adaptively.
Then (12) is rewritten as:

x
(t+1)
i = x

(t)
i + randn × stepsize

(t+1)
i (15)

The superiority of ACS algorithm is that, it does not set any initial parameter, Therefore, the
modified method is less parameter and faster than Yang’s CS algorithm.

3.3 Improved ACS algorithm

The discovery probability pa introduced in the Yang’s CS represents the possibility whether
the nest will be discarded or be renewed [10]. It’s used to control the coordination of global
and local search. If pa value is small, a large number of dimensions of a solution are changed
in each generation, conversely, the poor individual will remain for the next generation, it
may be unable to obtain the best solutions [25]. The parameter pa is fixed to 0.25 in the
ACS algorithm [12], but for different problems, they need different values. In this work, the
value of pa is changed with the number of iterations adaptively and showed as follows:

pa = pa max − (pa max − pa min) · exp (η · t)

η = 1

T
ln

(
pa min

pa max

)
(16)

where T is total iterations, pa max and pa min are the predefined maximum, minimum dis-
covery probability.
It can be observed from the (16), in the early iterations, the pa value is relatively small, it
will increase the diversity of solutions. In the final iterations, the value of pa will generate
faster convergence to the optimum solutions. In short, pa is nonlinearly altered from a small
value to a large value relatively in the whole process, it will improve the accuracy of the
algorithm as a whole.

Further, (15) is reformulated as [13]:

x
(t+1)
i = x

(t)
i + randn × stepsize

(t+1)
i ×

(
x

(t)
i − xgbest

)
(17)
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Fig. 2 Pseudo-code of a ACS and b IACS

where xgbest is global best solution. In the early search phase, the optimization efficiency
of CS and ACS algorithms is faster, but in later period, the two algorithms are easy to sink
into local extremum, which leads to low segmentation accuracy. The IACS algorithm can
adaptively adjust pa value, hence it jumps out of the local extremum point in time, improves
the nest’s fitness continuously. And then, the optimal threshold is obtained to extract the
required target accurately. The basic steps of IACS and ACS algorithms are shown in Fig. 2
and the flowchart of IACS is given by Fig. 3.

4 Experiments and discussions

Table 1 is parametric settings of optimization algorithms. The number of nests and maxi-
mum iterations of all the three algorithms are fixed to 50 and 150, respectively. They are
identical for all experiments due to having a great influence on convergence rate and compu-
tational time of the algorithm. The discovery probability pa decides whether to give up the
nest,when pa = 1, host bird throws out the cuckoo’s egg or simply abandons its nest, when
pa = 0, host bird can’t recognize the cuckoo’s egg and may hatch it. Hence, the range of
pa is set between 0 and 1. For IACS algorithm, the maximum pa is 0.95 and the minimum
pa is 0.15 [26].

4.1 Image dataset

To explore the effectiveness of the three optimization algorithms for segmentation, gray-
scale test images namely Lena, Baboon, and Cameraman are taken from Image Databases
and given in Fig. 4.
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Fig. 3 Flowchart of IACS algorithm

Table 1 Parameters values used in CS, ACS and IACS algorithms

Parameters CS ACS IACS

No. of nests(N) 50 50 50

Discovery probability(pa) 0.25 0.25 pa max = 0.95

pa min = 0.15

No. of total iterations(T) 150 150 150

Lower limit for egg 1 1 1

Upper limit for egg 256 256 256
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Fig. 4 Original test images

The size of Baboon and Cameraman are 512 × 512, Lena has size 256 × 256. As it can
be seen from their respective histograms in Fig. 5, they are multimodal in nature, all the
images own distinct histogram features with irregular distributions depicting objective and
background. Hence, to identify the target region exactly, multi-level thresholding is a more
efficient technique.

4.2 Performancemetrics

The accuracy of the segmentation is assessed by Peak Signal to Noise Ratio(PSNR) [1].
The larger the PSNR, the better quality of thresholding, the mathematical expression is
given below:

PSNR = 10log10

(
2552

MSE

)
(18)

where

MSE = 1

EF

E∑
j=1

F∑
k=1

[I (j, k) − I ′ (j, k)]2 (19)

where E × F denotes the image size, I and I ′ are original, segmented images, respec-
tively. Mean Square Error(MSE) is computed between the original image and its segmented
image for different thresholds and for each algorithm. Lower MSE value indicates lower
segmentation errors.

Fig. 5 Histograms of those images
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Table 2 Comparison of mean PSNR, MSE, CPU time and SSIM values between different algorithms using
Otsu’s method

Images n CS ACS IACS

(a) PSNR value comparison (b) PSNR value comparison

Lena 5 19.2517 19.2517 19.2517 772.5149 772.5149 772.5149

7 21.0423 21.0828 21.1350 511.5217 506.7987 500.7290

9 22.8682 23.2432 23.5056 336.2906 308.8179 290.1680

11 24.6340 24.9702 25.5256 224.0162 207.6243 182.3058

Baboon 5 21.7105 21.7105 21.7105 438.5573 438.5573 438.5573

7 24.5214 24.7249 24.8280 229.6240 219.1696 213.9425

9 26.9813 27.1650 27.2705 130.3424 125.0180 121.9749

11 28.5088 28.8025 29.1335 91.9003 85.8146 79.4963

Cameraman 5 23.3822 23.3822 23.3822 195.2716 192.8844 192.1902

7 25.2165 25.2779 25.2929 195.2716 192.8844 192.1902

9 27.2537 27.2656 27.3021 122.4333 122.0750 121.0388

11 28.4528 28.4971 28.5555 92.8670 91.9143 90.6848

(c) CPU time comparison (s) (d) SSIM comparison

Lena 5 5.9652 5.2498 4.7422 0.7059 0.7059 0.7059

7 5.9965 5.3803 4.9724 0.7724 0.7734 0.7743

9 6.2880 5.5402 5.1602 0.8153 0.8207 0.8251

11 6.3601 5.7902 5.3669 0.8541 0.8576 0.8644

Baboon 5 5.7913 5.1817 4.6616 0.8323 0.8323 0.8323

7 5.9226 5.3514 4.8850 0.8927 0.8945 0.8960

9 6.1382 5.5554 5.1057 0.9287 0.9295 0.9313

11 6.2692 5.6497 5.2786 0.9469 0.9495 0.9521

Cameraman 5 5.8312 5.2474 4.6621 0.7140 0.7140 0.7140

7 6.0631 5.3534 4.8951 0.7465 0.7473 0.7478

9 6.2251 5.5687 5.1033 0.7771 0.7782 0.7797

11 6.3492 5.7280 5.2368 0.7897 0.7913 0.7925

Structural similarity index(SSIM) [27] is to measure the structure of segmented and orig-
inal image. Higher SSIM value shows that the segmented image contains more information,
it’s defined as:

SSIM
(
I, I ′) = (2μIμI ′ + D1) (2σII ′ + D2)(

μ2
I + μ2

I ′ + D1
) (

σ 2
I + σ 2

I ′ + D2
) (20)

where μI and μI ′ are the average values and σII ′ is the covariance, σ 2
I and σ 2

I ′ are the
variance, D1 = D2 =0.065.
4.3 Experimental results evaluation

All the images were independently executed 20 times using each of presented multi-level
segmentation methods. Tables 2, 3, 4, 5, 6 and 7 validate the contrast of different quality
metric values received by Yang’s CS, ACS and the proposed IACS algorithm, where n rep-
resents the thresholds number. Best image segmentation results and the rate of convergence
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Table 4 Comparison of mean PSNR, MSE, CPU time and SSIM values between different algorithms using
Kapur’s method

Images n CS ACS IACS CS ACS IACS

(a) PSNR value comparison (b) PSNR value comparison

Lena 5 21.0383 21.0383 21.0383 511.9813 511.9813 511.9813

7 22.2627 22.5240 23.6316 386.3805 364.1523 283.3549

9 24.2503 24.4584 24.9585 245.5116 233.6096 208.1279

11 25.6715 26.3240 26.8165 177.3152 152.0990 135.5399

Baboon 5 21.2950 21.2950 21.2950 482.5294 482.5924 482.5924

7 23.7380 23.8566 23.9485 274.9776 267.5955 261.9814

9 25.5913 25.7084 25.9289 179.5357 174.7045 166.0659

11 26.3955 26.5876 27.1958 149.3852 142.4394 124.5233

Cameraman 5 20.9418 20.9418 20.9418 523.4753 523.4753 523.4753

7 23.5016 23.5356 23.5662 290.3220 288.0938 286.0681

9 25.5867 25.4985 25.6646 185.8428 179.6982 176.4676

11 26.3194 26.3745 26.7061 152.1317 150.0434 138.8779

(c) CPU time comparison (s) (d) SSIM comparison

Lena 5 8.4326 7.5221 6.9415 0.7715 0.7715 0.7715

7 8.9781 8.3447 7.6382 0.7883 0.7980 0.8220

9 9.9341 9.2058 8.3867 0.8325 0.8359 0.8431

11 10.8084 10.0695 9.1876 0.8549 0.8668 0.8735

Baboon 5 8.1783 7.4452 6.7894 0.7957 0.7957 0.7957

7 8.8817 8.2604 7.4652 0.8639 0.8672 0.8687

9 9.8245 9.0177 8.3255 0.9008 0.9033 0.9063

11 10.8056 9.8812 9.1314 0.9157 0.9183 0.9266

Cameraman 5 8.3212 7.3096 6.7519 0.7095 0.7095 0.7095

7 8.9885 8.1043 7.5578 0.7406 0.7411 0.7417

9 9.6794 9.1231 8.3332 0.7582 0.7595 0.7604

11 10.6016 9.9064 9.1643 0.7637 0.7690 0.7739

curve between different algorithms are shown visually in Figs. 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16 and 17.
4.3.1 Analysis of the consequences employing Otsu’s method

In Table 2, all the algorithms perform equally for n=5, however, as the number of thresh-
olds increases, it’s clear that IACS algorithm has got higher values of PSNR which leads
to a reduced MSE, SSIM values are also the highest, ACS algorithm has obtained accept-
able results than CS. Hence the IACS algorithm exhibits more accuracy and robustness.
Furthermore, Table 2c presents the information of average CPU time, compared to other
algorithms, IACS has faster computational speed with minimum CPU time, ACS closely
follows IACS. It can also be summarized that the proposed IACS algorithm can keep the
lowest computational time along with the threshold levels increase.

For the visual analysis, the segmented results are shown in Figs. 6, 7 and 8. The three
algorithms have produced better quality of the segmented images when n=11. However, the
segmented results obtained by IACS algorithm are more pleasant visually, ACS is slightly
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Table 6 Comparison of mean PSNR, MSE, CPU time and SSIM values between different algorithms using
Tsallis method

Images n CS ACS IACS CS ACS IACS

(a) PSNR value comparison (b) MSE comparison

Lena 5 21.0383 21.0383 21.0383 511.9813 511.9813 511.9813

7 22.1921 22.2271 23.6187 392.7075 389.7416 284.7962

9 24.0711 24.3698 24.9259 255.0979 238.0847 209.3731

11 25.6010 26.0544 26.7735 182.3216 161.5543 137.0723

Baboon 5 21.2950 21.2950 21.2950 482.3216 482.3216 482.3216

7 23.7236 23.8240 23.9151 275.8934 269.6454 263.9901

9 25.4600 25.6887 25.8588 185.6943 175.5128 168.7902

11 26.6043 26.8219 27.2100 142.3692 135.2800 123.9134

Cameraman 5 20.9418 20.9418 20.9418 523.4753 523.4753 523.4753

7 23.5111 23.5311 23.5556 289.7218 288.5328 286.7626

9 25.5442 25.6053 25.6804 181.4624 178.9001 175.8752

11 26.2291 26.3649 26.7181 155.0875 150.4582 138.4693

(c) CPU time comparison (s) (d) SSIM comparison

Lena 5 9.5379 8.5060 7.9931 0.7715 0.7715 0.7715

7 10.5661 9.3823 8.7194 0.7872 0.7876 0.8220

9 11.4806 10.2308 9.5662 0.8294 0.8328 0.8413

11 12.5901 11.3930 10.4029 0.8536 0.8608 0.8727

Baboon 5 9.4943 8.6282 7.8874 0.7957 0.7957 0.7957

7 10.5696 9.4960 8.7405 0.8632 0.8667 0.8680

9 11.3745 10.4586 9.6199 0.8991 0.9032 0.9055

11 12.3720 11.3412 10.4581 0.9191 0.9224 0.9270

Cameraman 5 9.2219 8.6487 7.8934 0.7095 0.7095 0.7095

7 10.2626 9.4833 8.7314 0.7415 0.7418 0.7430

9 11.0546 10.4926 9.7636 0.7569 0.7579 0.7595

11 12.1457 11.4214 10.6497 0.7680 0.7699 0.7740

better than CS. In Fig. 6, at n=11, the background in the Lena image is the clearest using
IACS algorithm, to some extent, the hat and hair are identifiable clearly. But the segmen-
tation quality of CS algorithm is not accurate, especially for hat. This phenomenon of
segmenting is also observed in other two images.

Figure 9 presents the convergence curve of the three algorithms for n=11. In Fig. 9a,
after about 60 iterations, the maximum fitness value is acquired only in the case of IACS
algorithm. ACS and CS algorithms require at least 150 iterations. In Fig. 9b, at 20 itera-
tions, the fitness value is 1.445e+03 by using IACS algorithm. However, the fitness value
is 1.440e+03 for ACS and CS algorithms at 20 iterations. In Fig. 9c, when the fitness value
is 3.782e+03, there are not more than 20 iterations for the IACS algorithm, while the ACS
algorithm requires 40 iterations and the CS algorithm needs 60 iterations at least. Therefore,
the proposed IACS algorithm is much faster to get the global optimum.

35006 Multimedia Tools and Applications (2020) 79: –34 35993 016



Ta
bl
e
7

C
om

pa
ri
so
n
of

op
tim

al
th
re
sh
ol
ds

an
d
co
rr
es
po
nd
in
g
fi
tn
es
s
va
lu
es

be
tw
ee
n
C
S,

A
C
S
an
d
IA

C
S
us
in
g
T
sa
lli
s
en
tr
op
y
m
et
ho
d

Im
ag
es

n
M
ea
n
op
tim

al
th
re
sh
ol
ds

M
ea
n
fi
tn
es
s
va
lu
es

C
S

A
C
S

IA
C
S

C
S

A
C
S

IA
C
S

L
en
a

5
26
,6
4,
97
,1
38
,1
79

26
,6
4,
97
,1
38
,1
79

26
,6
4,
97
,1
38
,1
79

23
.2
90
2

23
.2
90
2

23
.2
90
2

7
26
,6
4,
97
,1
30
,1
62
,1
93
,2
41

26
,6
3,
95
,1
28
,1
61
,1
91
,2
43

26
,6
4,
94
,1
28
,1
62
,1
92
,2
43

28
.6
67
2

28
.7
19
3

28
.7
26
5

9
25
,6
0,
85
,1
09
,1
33
,1
56
,1
79
,

25
,6
0,
84
,1
09
,1
34
,1
57
,1
80
,

26
,5
9,
82
,1
07
,1
31
,1
55
,1
77
,

33
.4
12
1

33
.4
52
1

33
.4
87
6

20
6,
24
3

20
4,
24
3

20
1,
24
3

11
24
,4
9,
70
,9
1,
11
1,
13
1,
14
9,

24
,4
9,
70
,9
2,
11
2,
13
3,
15
3,

25
,5
4,
74
,9
5,
11
51
,1
34
,1
54
,

37
.6
10
6

37
.6
76
7

37
.7
26
2

16
9,
19
1,
21
2,
24
3

17
3,
19
2,
21
3,
24
3

17
5,
19
5,
21
4,
24
3

B
ab
oo
n

5
47
,8
1,
11
7,
15
8,
22
0

47
,8
1,
11
7,
15
8,
22
0

47
,8
1,
11
7,
15
8,
22
0

23
.4
17
2

23
.4
17
2

23
.4
17
2

7
28
,5
4,
84
,1
13
,1
42
,1
73
,2
20

28
,5
3,
82
,1
11
,1
41
,1
72
,2
20

28
,5
3,
82
,1
12
,1
42
,1
72
,2
20

28
.6
60
7

28
.6
60
7

28
.6
61
0

9
26
,4
8,
73
,9
6,
12
0,
14
4,
16
9,

27
,5
0,
73
,9
7,
12
0,
14
3,
16
6,

27
,4
9,
72
,9
5,
11
9,
14
2,
16
6,

33
.4
18
6

33
.4
25
0

33
.4
43
5

19
5,
22
3

19
0,
22
0

19
0,
22
0

11
25
,4
6,
68
,9
0,
11
0,
13
0,
15
0,

25
,4
6,
67
,8
7,
10
8,
12
9,
15
0,

26
,4
7,
69
,8
9,
11
0,
13
0,
15
0,

37
.7
47
8

37
.8
08
1

37
.8
67
0

17
1,
19
2,
22
0,
23
6

17
1,
19
2,
22
0,
23
7

17
1,
19
2,
22
0,
23
8

C
am

er
am

an
5

24
,6
1,
10
0,
14
6,
19
6

24
,6
1,
10
0,
14
6,
19
6

24
,6
1,
10
0,
14
6,
19
6

23
.3
19
1

23
.3
19
1

23
.3
19
1

7
23
,5
8,
95
,1
24
,1
56
,1
91
,2
16

24
,5
9,
95
,1
25
,1
56
,1
91
,2
16

24
,5
9,
95
,1
25
,1
56
,1
91
,2
16

28
.9
85
3

28
.9
85
5

28
.9
85
9

9
19
,4
5,
70
,9
6,
12
0,
14
5,
16
8,

19
,4
4,
69
,9
5,
11
9,
14
5,
16
8,

20
,4
5,
70
,9
5,
12
0,
14
6,
16
9,

33
.8
66
4

33
.8
69
2

33
.8
77
1

19
1,
21
6

19
1,
21
7

19
1,
21
7

11
19
,4
0,
62
,8
4,
10
4,
12
5,
14
7,

19
,4
1,
64
,8
5,
10
5,
12
6,
14
7,

19
,4
2,
65
,8
8,
10
8,
13
0,
15
1,

38
.2
81
9

38
.2
95
7

38
.3
26
0

16
9,
19
1,
21
2,
23
2

16
9,
19
1,
21
2,
23
3

17
0,
19
1,
21
2,
23
2

35007Multimedia Tools and Applications (2020) 79: –34 35993 016



Fig. 6 Results of segmenting Lena using CS, ACS and IACS for 4 different threshold levels maximizing
Otsu’s method

Fig. 7 Results of segmenting Baboon using CS, ACS and IACS for 4 different threshold levels maximizing
Otsu’s method
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Fig. 8 Results of segmenting Cameraman using CS, ACS and IACS for 4 different threshold levels
maximizing Otsu’s method

4.3.2 Analysis of the consequences employing Kapur’s method

In Table 4, the number of thresholds exceeds 5, for all the test images, IACS algorithm per-
forms superior to the other algorithms quantitatively, it obtains the highest values of PSNR,
SSIM and minimum values of MSE, ACS has gained acceptable results than CS. This indi-
cates the IACS is more accurate and robust in image segmentation. Table 4c illustrates the
information of average CPU time. IACS algorithm is always around 1 second faster than
ACS and CS algorithms. Additionally, at higher threshold levels, IACS algorithm remains
the lowest computational time that makes it efficient for segmenting.
In Figs. 10, 11 and 12, the results depict that the segmented outputs based on IACS algo-
rithm are much clearer visually for all the test images, ACS follows the IACS and CS is the

Fig. 9 Convergence curves of segmenting using Otsu’s method with 11 threshold levels using CS, ACS and
IACS algorithms
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Fig. 10 Results of segmenting Lena using CS, ACS and IACS for 4 different threshold levels maximizing
Kapur’s method

Fig. 11 Results of segmenting Baboon using CS, ACS and IACS for 4 different threshold levels maximizing
Kapur’s method
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Fig. 12 Results of segmenting Cameraman using CS, ACS and IACS for 4 different threshold levels
maximizing Kapur’s method

last. In Fig. 12, for the Cameraman image when n=11, the sky and buildings are clear and
become recognizable by using IACS algorithm, but the thresholded images gained by the
CS and ACS algorithms lose some information to some degrees. Similarly, Figs. 10 and 11
also demonstrate that the results of IACS algorithm seem better qualitatively.
Fig. 13 displays the convergence curve of the three algorithms at n=11. In Fig. 13a, when the
fitness value is 34.5, just 20 iterations for IACS algorithm, whereas CS requires about 120
iterations and ACS needs 150 iterations at least. In Fig. 13b, it’s not competitive for IACS
algorithm, the maximum fitness value is obtained at around 100 iterations. For CS and ACS
algorithms, the maximum fitness value is gained after about 150 iterations. In Fig. 13c, the
convergence curve of CS and ACS are not obviously different. For IACS algorithm, it only
takes about 40 iterations to reach the fitness value, while the ACS and CS algorithms require

Fig. 13 Convergence curves of segmenting using Kapur’s method with 11 threshold levels using CS, ACS
and IACS algorithms
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Fig. 14 Results of segmenting Lena using CS, ACS and IACS for 4 different threshold levels maximizing
Tsallis method

150 iterations at least. Therefore, the IACS algorithm displays a faster convergence to the
best solutions.

Fig. 15 Results of segmenting Baboon using CS, ACS and IACS for 4 different threshold levels maximizing
Tsallis method
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Fig. 16 Results of segmenting Cameraman using CS, ACS and IACS for 4 different threshold levels
maximizing Tsallis method

4.3.3 Analysis of the consequences employing Tsallis method

In Table 6, with the number of thresholds increasing, it’s clear that IACS algorithm has
better values of PSNR, SSIM and minimum values of MSE, and ACS algorithm has slightly
better results than CS algorithm. In summary, the IACS algorithm can segment images more
accurately than other algorithms. In Table 6c, the IACS has taken the least time compared to
CS and IACS algorithms, CS algorithm costs the most. At different threshold levels, IACS
algorithm is always around 2 seconds faster than CS algorithm and about 1 second faster
than ACS algorithm.

Figures. 14, 15 and 16 give the segmented results visually. From these figures, It can be
concluded that higher-threshold images contain more details. When n=11, for the Baboon
image, the results of IACS algorithm make the beard and nose object clearer, but in CS and
ACS algorithms, the nose is not clearly distinct.

Further, Fig. 17 shows the convergence curve of the three algorithms at n=11. It is clearly
shown from Fig. 17a the convergence rate of the three algorithms have produced similar
results in the early period, but the fitness value of IACS is always higher than the others.
Only IACS obtains the maximum fitness value after about 100 iterations. ACS and CS
algorithms require at least 150 iterations. In Fig. 17b, at 20 iterations, the fitness value is
about 37.5 for IACS algorithm, whereas at least 80 iterations for ACS and CS algorithms
to gain the value. In Fig. 17c, convergence rate of the proposed IACS algorithm is much
faster. Only IACS algorithm obtains the maximum fitness value after about 80 iterations.
ACS and CS algorithms require at least 150 iterations. Consequently, the IACS outperforms
CS and ACS algorithms. In summary, from different

assessment measures, the proposed IACS algorithm gives higher segmentation perfor-
mance using less CPU time and is well suited for segmenting,
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Fig. 17 Convergence curves of segmenting using Tsallis method with 11 threshold levels using CS, ACS and
IACS algorithms

5 Conclusions

Due to multi-level thresholding based on Yang’s CS algorithm has larger calculated amount,
the IACS algorithm is introduced. Without employing the Lévy distribution, the iterative
step size based on its fitness adaptively, it enables step size variable in the process of search-
ing. Moreover, the dynamic adjustment strategy is also applied to the discovery probability
pa , which can enrich the population variety and avoid premature. The IACS algorithm is
then applied to searching optimal thresholds. To validate its performance, it is compared to
Yang’s CS and ACS algorithms. The results reveal that the IACS algorithm can efficiently
select the multi-level thresholds and has better segmented quality than other two algorithms.
According to the rate of convergence curve, the IACS algorithm attains its optimal value in
less iterations without falling into local optima. Next step is to check the effectiveness of
IACS algorithm for all kinds of issues in image processing.
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