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Abstract
Crowd counting is getting more and more attention. More and more collective activities,
such as the Olympics Games and the World Expo, are also important to control the crowd
number. In this paper, we address the problem of crowd counting in the crowded scene. Our
model accurately estimated the count of people in the crowded scene. Firstly, we proposed
a novel and simple convolutional neural network, called Global Counting CNN (GCCNN).
The GCCNN can learn a mapping, transforms the appearance of image patches to estimated
density maps. Secondly, the Local to Global counting CNN (LGCCNN), calculating the
density map from local to global. Stiching the local patches constrains the final density
map of the larger area, which makes up for the difference values in the perspective map. In
general, it makes the final density map more accurate. The dataset we used is a set of public
dataset, which areWorldExpo’10 dataset, Shanghaitech dataset, the UCF CC 50 dataset and
the UCSD dataset. The experiments have proved our method achieves the state-of-the-art
result over other algorithms.

Keywords Crowd density map · Convolutional neural network · Perspective distortion

1 Introduction

The crowd counting has important social significance and market value. Managers can rea-
sonable scheduling of manpower, material resources and optimize resources configuration
by using the number of ROI area statistics. For some of the square, passageway and other
public occasions, the result of crowd statistics have very good warning effect to social secu-
rity problems. Therefore, the crowd counting becomes the key point in the field of video
analysis and intelligent video surveillance. This involves estimating the number of people
in the crowd and the crowd distribution over the entire region.
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Traditional crowd counting algorithms share a common procedure. 1) Foreground seg-
mentation, but the split of foreground can not entirely separate people and background
because sometimes people are still in high density scenarios, such as the queue in front of
the station ticket window. 2) Crowd feature extraction, due to the dense scenarios perspec-
tive distortion, brightness condition and low resolution of the image, the handcraft features(
eg, Scale Invariant Feature Transform(SIFT) [13], Histogram of Oriented Gradient(HOG)
[3], Local Binary Patterns(LBP) [16]) cannot fully express characteristics of the crowd. For
the dense crowd, typical static crowd scenes come from the WorldExpo’10 Dataset [19].

It is difficult to detect the number of people because of occlusion, and it is not wise to
calculate the number by the foreground segmentation due to the randomness of foreground
segmentation. Some typical scenes from the WorldExpo’10 dataset [19] are shown in Fig. 1.

In recent years, there has been tremendous progress in certain area [14] of computer
vision built on the success of deep learning. There has been a significant recent progress in
the field of crow counting due to the development of deep learning (eg the convolutional
neural networks (ConvNets)) [12, 19]. To the best of our knowledge, Zhang et al. [2] first
train a CNN model to learn a map to solve the crowd counting problem, but in order to
get the crowd count, the result need to feed a ridge regressor with the output features. The
MCNN [22], which output is an estimated density map and it solve the large scale variation.
But the output final estimated density map is distortion due to the size of the the final
estimated density map is decreased. Recent researches [19, 22] have proven the learned
features performed better than the traditional hand-crafted features. As illustrated in Fig. 2,
in order to make up for the shortcoming of the resent search [19, 22], we propose our
convolutional neural network architectures to learn the regression function that mapping the
image appearance into a crowd density map. The number of people in the crowd scene is
calculated through integration over the crowd density map.

Fig. 1 Sample crowd scene from the WorldExpo’10 dataset
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Fig. 2 We define the crowd counting task like a regression problem where a CNN model to map the appear-
ance of image to crowd density map. The yellow box indicates that the training image dataset is densely
extracted from the whole image

The main contributions of this work can be conclude into these three aspects.

– In Section 3.1, we propose a novel convolutional neural network architectures, named
Global Counting CNN (GCCNN). Which is a fully convolutional neural network [12]
can get an accurate regression of a crowd density map of image patches. Since we
adopted a bilinear interpolation algorithm, Fig. 4 clearly shows that the final output
feature map is the same size as the input patch.

– Due to the scale variation in the crowd images, we introduce the Local to Global Count-
ing CNN (LGCCNN) in Section 3.2 which provide an algorithm, calculating the final
density map form local to global. The algorithm make up for the differences caused by
different values in the perspective map then makes the density map of the larger area
more accurate.

– Our architecture has been evaluated on three benchmark datasets and is shown to
achieve state-of-the-art outperforms.

The rest of this paper are organized as follows: previous research about the crowd count-
ing is in Section 2. The proposed method and the overall structure of the two CNN models
are detailed listed in Section 3. Experiments and the comparisons of results are summarized
in Section 4. In the end, we make a conclusion about this paper in Section 5.

2 Related works

In recent years, the crowd counting method in the literature can be divided into two
categories: counting by detection and counting by regression.

Counting by detection [4, 9, 15, 21]. Many algorithms counting people by detection.
First, they use the appearance and the motion feature to separate the moving objects from the
background over the two consecutive frames of a video clip. Then these algorithms utilize
the handcraft features (such as Haar wavlet features or edgelet features [21]) to obtain the
moving objects. However, these methods can be used in the video clip not suit for the still
image and the handcrafted features often sustain a decline in accuracy when the scene is
perspective distortion, severe overlapping, and varying illumination.

Counting by regression [1, 6–8, 11, 14, 18, 19, 22]. Counting by regression aims to lean
a mapping between the low-level features and people count via certain a regression function
without foreground segmentation or pedestrian detection. It is more suitable for complex
environments and more crowded instance like pedestrians. Zhang et al. [2] first trained a
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deep CNN model. It makes good performance. But they reported the results feeding a ridge
regressor with the output features of their CNN model and the input patches of their CNN
model is random which does not consider the large scale-invariant to large scale changes
well. Our network diminish the perspective distortion and estimates both the crowd count
as well as the crowd density map.

3 Methodology

In this section, we will state our notation and crowd counting methodology. Here, we treat
the crowd counting problem as the density map estimation.

Previous research has followed [10, 19] and defined the groundtruth of the density map
regression as sum of the Gaussian kernels centered on the locations of objects. This men-
tioned density map is more suitable for representing the density distribution of circle-like
objects like cells and bacteria. Considering the shape of the pedestrian in an ordinary
surveillance camera is ellipse-like. We follow the method of the [19]. Before generate the
groundtruth density map, we should consider the large scale variation due to the perspective
distortion. Perspective normalization is necessary to describe the pedestrian scale. After we
get the perspective map of each scene and a set of head annotations images, where all the
heads are marked by dots. We can generate the groundtruth density map Di , for an image
I , is defined as a sum of Gaussian functions centered on each dot annotation. We generate
the crowd density map is generated as:

Di(P ) =
∑
P∈Pi

1

‖Z‖ (Nh(P ; Ph, σh) + Nb(P ; Pb, Σ)) (1)

Where Pi is the set of 2D points of the image I ,Nh(P ; Ph, σh) andNb(P ; Pb,Σ) respec-
tively represent a normalized 2D Gaussian kernel as a head part and a normalized 2D
Gaussian kernel as a body part. Ph is the head position and Pb is the body position, esti-
mated by the head position value and the value in the perspective map. Some groundtruth
density maps is shown in Fig. 3.

Our CNN model is to learn a non-linear regression function that takes an image patch
P with associated groundtruth density map and groundtruth crowd count. As an assistant
object, the crowd count associated with the training patch is integrated from groundtruth
density map. It returns an estimated density map D

(P)
pred .

D
(P)
pred = F(P |θnet ) (2)

Where θnet is the set of parameters of the CNN model. For the image patch P , we could
get the D

(P)
pred . Thus for a given unseen test image, at first our algorithm densely extracted

Fig. 3 Crowd images with their corresponding groundtruth density maps
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image patches over the image. Then our CNN model could generate an estimated density
map corresponding to the image patch. At last, all the density maps are aggregated into a
density map for a whole test image.

3.1 The global counting CNNmodel

Let us introduce our first ConvNet structure called the Global Counting CNN model
(GCNN). As illustrated in Fig. 4.

The crowd density estimation does not like image classification, it need per pixel predic-
tions. So we adopt the fully convolutional neural networks natural. This would reduce the
overfitting due to the fully convolutional neural network has much fewer parameters than
a network trained on an entire image. The structure consists of 6 convolution layers and 2
pooling layers. They are specially designed to extract the crowd features. The Conv1 layer
has 3×3 filters with a depth of 64. The Conv2 layer has 3×3 filters with a depth of 128.
The max pooling layer with a 2×2 kernel size is used after conv1 and conv2. The Conv1
layer has 33 filters with a depth of 256. The Conv4 layer and Conv5 layer are made of 1×1
filters with a depth of 1000 and 400. The Conv6 layer is another 1×1 filters with a depth
of 1. The output from these convolution layers is upsampled to the size of the input image
patch using bilinear interpolation to directly obtain the estimated crowd density map.

Due to the good performance for the CNNs of the Parametric Rectified Linear Unit
(PReLU) [5], the PReLU was adopted as the activation function and it is not shown in the
Fig. 2. Equation (2) has point out, our CNN models is to learn a mapping from a set of
features extracted from training image patches to an estimated crowd density map. So, our
GCCNN is trained to solve the regression problem. The Euclidean distance is used as the
loss function.

L1 (θnet) = 1

2N

N∑
i

||F (P i|θnet) − D
(P i)
gt ||2 (3)

L2 (θnet) = 1

2N

N∑
i

||C (P i|θnet) − C
(P i)
gt ||2 (4)

Where θnet denotes the learned parameters of the CNN model, N is the number of the
training images, P i is the image patch will be training in the CNN model. F(P i|θnet) and
C(P i|θnet) represent the corresponding image patch stand for the estimated crowd density
map and the crowd count. DPi

gt and C
pi
gt respectively represent the groundtruth density map

and ground truth crowd number of the corresponding image patch. Different from Zhang
et al., the master loss task is the L1(θnet) . We let the two loss functions pass through all

Fig. 4 Our GCCNN structure, treated the input patches and their associated groundtruth density maps and
groundtruth crowd counts as input, which returns an estimated density map, the size is same as the input patch
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previous layers together. The master loss task is the L1(θnet). The L2(θnet) is treated as
the auxiliary loss. The auxiliary loss task helps optimize the learning process, while the
master loss task takes the most responsibility. We add weight to balance the auxiliary loss.
The two loss tasks assisted each other and trained together to obtain optimization.

After obtaining the parameters θnet of the CNN model. How do we implement the pre-
diction stage on the unseen target test image? First, we densely extracted image patches.
Then all the image patches are resized to 72×72 pixels. These input image patches with
their associated groundtruth density maps and groundtruth crowd count are as illustrated
in Fig. 5, which passed through our CNN architecture. It returns an estimated density map
corresponding to the input image patch. Lastly, all the output estimated density map will
be aggregated into a density map over the whole test image. Due to the extracted image
patches are overlap. So the each location of the final estimation density map must by nor-
malized according the number of patches that calculated into the final estimated density
map.

3.2 The local to global counting CNNmodel

On the basis of a counting by regression model, using the annotated perspective map of
each scene to solve the perspective distortion and scale variation. Due to the impact of the
perspective distortion on each image, the size of pedestrian will exhibit scale variation. The
features extracted from the same pedestrian at different scene depths would have notable
differences in values.

Go a step further, in order to get an accurate estimated crowd density map, we use the
Local to Global Counting CNN model (LGCCNN). We proposed an algorithm for estimat-
ing a density map from local to global which is specialized in the perspective distortion and
scale variation. The ConvNet structure was specialized designed is shown in Fig. 6.

Our CNN model was consisted of three columns CNN. The three parallel CNNs contain
the same structure(i.e., conv-pooling-conv-pooling) and the same size of filters. The CNN
model takes different but related inputs. The input is the training image patches cropped
from the training images. The patch of the first column was resized to 94×94 pixel. The
next two columns take the upper and lower two parts of a complete patch. Each parallel
CNN is in charge of learning features of input patch for a different perspective value. Then

Fig. 5 Patches with their associated labels
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Fig. 6 The CNN architecture for LGCCNN

the output feature maps of the last two columns CNN model are stitched. Compared the
losses of the GCCNN, we added the same loss function as show in (7).

L1 (θnet1) = 1

2N

N∑
i

||F (Pi |θnet1) − D
(Pi)
gt ||2 (5)

L2 (θnet1) = 1

2N

N∑
i

||C (Pi |θnet1) − C
(Pi)
gt ||2 (6)

L3 (θnet2) = 1

2N

N∑
i

||F (
Pi1; Pi2 |θnet2

) − F(Pi |θnet2)||2 (7)

Where θnet1 denotes the learned parameters of the LGCNN model in the first column,
θnet2 denotes the learned parameters of the LGCNN model in the next two columns. N is
the number of the training images, Pi is the image patch will be training in the CNN model.
Pi1 and Pi2 are the corresponding upper and lower image patch of the completed image
patch Pi . F(P i|θnet) is the output feature map of the first column CNN model. Noticed,
the upper and lower estimated density maps were calculated by the different values of the
perspective map. We constrain the final estimated density map on the lager region which
makes up for the difference caused by the different perspective values. In the end, it makes
the estimated density map more accurate and provide a method for crowd density map was
from local to global.

4 Experiments

We first evaluate our CNN model on the challenging the WordExpo’10 dataset [19]. The
detail of theWorldExpo’10 dataset is shown in Table 1. This dataset contains 1132 annotated
video clips, captured by 108 surveillance cameras. 1,127 one-minute long video sequences
are treated as training datasets. Testing datasets, 5 one-hour long different video sequences.
Each video sequence contains 120 labeled frames. We train our deep convolution neural
network on the basis of caffe library and some modifications are applied. The NVIDIA GTX
TITAN X GPU is used. We use the standard Stochastic Gradient Descent(SGD) algorithm
to optimize ConvNet parameters with a learning rate of 1e - 3 and momentum of 0.9. The
training epoches is 60. During the experiment, we found that if we trained directly on our
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Table 1 The attribution of the public datasets: NUM is number of frames; Total is the number of labeled
people; MAX is the maximum number of people in the ROI of a frame; MIN is the minimum number of
people in the ROI of a frame. AVG indicated the average crowd count

Dataset NUM TOTAL MAX MIN AVG

UCSD 2000 49885 46 11 25

UCF CC 50 50 63974 1279 4543 1279

WorldExpo’10 4.44 million 199623 253 1 50

ShanghaiTech Part A 482 241677 3139 33 501

shanghaiTech PArt B 716 88488 578 9 123

CNN model. The final trained model would have a good effect in certain sences, so we used
imagenet dataset training to fine tuning our CNN model and get the final result as shown in
Table 2.

4.1 Evaluation criteria

In order to make the experimental results more intuitionistic. We use the two evaluation
criteria: the mean absolutely evaluation(MAE) and the mean square evaluation(MSE).which
are defined as follows:

MAE = 1

N

N∑
1

|Ci − Ei | (8)

MSE =
√√√√ 1

N

N∑
1

|Ci − Ei |2 (9)

Where N denotes the number of the training images, Ci is the true pedestrians number of
the ith test image. Ei is the estimated pedestrians number of ith test image. MAE represents
the actual situation of the estimates error. MSE represents the robustness of the estimates.
And the smaller the value of MAE and MSE, the more accurate the counting result.

4.2 Data preprocessing

The dataset consists of 108 scenes. In order to train our GCCNN model, we typically
selected 2600 images from the 103 scenes in the dataset. We collected 200 patches of
72×72 pixels extracted all over the image with their associated groundtruth density maps

Table 2 Quantitative results with other state of the art methods on the WorldExpo’10 dataset. Only MAE

Method Scene 1 Scene 2 Scene 3 Scene 4 Scene 5 Avg

LBP+RR [17] 13.6 58.9 37.1 21.8 23.4 31.0

Zhang et al. [2] 9.8 14.1 14.3 22.2 3.7 12.9

MCNN. [22] 3.4 20.6 12.9 13.0 8.1 11.6

ACSCP [19] 2.8 14.05 9.6 8.1 2.9 7.5

CP-CNN [20] 2.9 14.7 10.5 10.4 5.8 8.9

GCCNN 7.5 22.6 15.7 16.0 6.2 13.6

LGCCNN 2.6 19.3 17.4 14.8 4.7 11.0
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and groundtruth crowd counts. It contains 100 positive patches which center is the area
of people and the 100 negative patches which center is the area of the ground. Then we
performed a data augmentation by flipping each patch randomly.

To train our LGCCNN model, we performed the same method as previously mentioned
to extract the image patches of 94×94 pixels. For a given complete patch of 94×94 pixels,
we will get the upper and lower patch of 58×94 pixels by cropped the complete patch.

We typically selected 2600 images from the 103 scenes in the dataset as the training
images. Firstly, we collected 200 patches of 94×94 pixels extracted all over the images
with their associated groundtruth density maps and groundtruth crowd counts . It contains

Fig. 7 Sample predictions of our LGCCNN model and GCCNN model in the World-Expo’10 dataset. The
first column is the target test image. The second column is the groundtruth density map corresponding to the
target test image. The third an fourth columns show the estimated density maps for LGCCNN model and
GCCNN model, respectively
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Table 3 Comparing performances of different methods on Shanghaitech dataset, the UCF CC 50 dataset
and the UCSD dataset

Method The Shanghaitech dataset The UCF CC 50 The UCSD

PartA PartB dataset dataset

MAE MSE MAE MSE MAE MSE MAE MSE

LBP+RR [17] 303.2 371.0 59.0 81.7 — — — —

Zhang et al. [2] 181.8 277.7 32.0 49.8 467.0 498.5 1.60 3.31

MCNN [22] 110.2 173.2 26.4 41.3 337.6 509.1 1.07 1.35

ACSCP [19] 75.7 102.7 17.2 27.4 291.0 404.6 1.04 1.35

CP-CNN [20] 73.6 106.4 20.1 30.1 295.8 320.9 - -

LGCCNN 105.2 169.8 25.6 40.3 336.5 510.2 1.05 1.27

100 positive patches which center is the area of people and the 100 negative patches which
center is the area of the ground. Then we peform a data augmentation by flipping each patch
randomly. After we got these patches and in order to meet our CNN model. We will collect
the small local patches by cropped the global patches.

4.3 Results

Our GCCNN data preprocessing is similar to the method of Zhang et al. [2]. In the Table 2,
our GCCNN model gets a better performance in scene 1 and scene 5. These two subdatasets
contain pedestrians is about 80 in each image which is more suitable in the actual world.
By contrast, the best performance is LGCCNN, which is reduced the MAE effectively.
The LGCCNN combined the local and the global features, is well to solve the problem of
perspective distortion and scale variation. The ACSCP and CP-CNN solve the problem of
crowd counting from different aspects, generative adversarial networks and crowd density
level. Using the generative adversarial networks which will lead to poor convergence in the
training procedure. The CP-CNN fusions crowd density level feature and image feature to
gain a more accurate density map, which need extra information. However, we proposed a
LGCCNN to deal with crowd counting, considering calculating the density map from local
to global. Stiching the local patches constrains the final density map of the larger area,
which make up for the difference values in the perspective map. Extensive experimental
results show that the proposed method is effective and it does not need extra information and
complex training procedure. Figure 7 shows some of qualitative results of theWorldExpo’10
dataset that are obtained by the LGCCNN model and GCCNN model. Table 3 shows the
experimental results that our algorithm with some algorithms on the Shanghaitech dataset,
the UCF CC 50 dataset and UCSD dataset.

5 Conclusions

In this paper, we proposed two convolution neural network architectures. For our first archi-
tecture, the GCCNN model can learn a mapping which transforms the appearance of crowd
image to the crowd density map effectively. Our second architecture, the LGCCNN model
which goes a step further, provide a method that was from local to global for crowd density
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map. The final estimated density map on the lager region which makes up for the difference
caused by the upper and lower image patch of different perspective values. In the end, it
makes the estimated density map more accurate. The density map is generated in the output
layer of network and the number of people is obtained by integral regression. We test our
proposed method in the Shanghaitech dataset, the WorldExpo’10 dataset, the UCF CC 50
dataset and the UCSD dataset. Moreover, the experimental results show the accuracy the
robustness of our method outperforms the state-of-the-art crowd counting method.
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