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Abstract
In recent years, convolutional neural networks (CNN) have been extensively used for
generic object detection due to their powerful feature extraction capabilities. This has hence
motivated researchers to adopt this technology in the field of remote sensing. However,
remote sensing images can contain large amounts of noise, have complex backgrounds,
include small dense objects as well as being susceptible to weather and light intensity vari-
ations. Moreover, from different shooting angles, objects can either have different shapes
or be obscured by structures such as buildings and trees. Due to these, effective features
extraction for proper representation is still very challenging from remote sensing images.
This paper therefore proposes a novel remote sensing image object detection approach
applying a fusion-based feature reinforcement component (FB-FRC) to improve the dis-
crimination between object feature. Specifically, two fusion strategies are proposed: (i) a
hard fusion strategy through artificially-set rules, and (ii) a soft fusion strategy by learning
the fusion parameters. Experiments carried out on four widely used remote sensing datasets
(NWPU VHR-10, VisDrone2018, DOTA and RSOD) have shown promising results where
the proposed approach manages to outperform several state-of-the-art methods.
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1 Introduction

With the development of remote sensing technologies, remote sensing image analysis is
becoming more and more important. It can facilitate applications such as disaster control,
environmental studies [6] and traffic planning [27]. As one fundamental task in computer
vision, object detection is the basis of remote sensing image analysis. However, remote
sensing images have vast backgrounds with many cluttered areas [26] and different size
objects, which declining the performance of object detection on remote sensing images.
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Object detection includes three main tasks: feature extraction, proposals classification
and bounding box regression [1, 17]. Traditional feature extraction usually uses the hand-
crafted features, such as Scale Invariant Feature Transform (SIFT) [20], Histogram of
Oriented Gradients (HOG) [5] and texture features [11]. However, with the broad appli-
cation of deep convolutional neural network (DCNN) [13] in image feature extraction,
hand-crafted features are gradually replaced by automatically learned feature representa-
tion. The classification task is used to judge the category of objects. There are two main
kinds of object detection models. One divides the object detection process into two steps.
The first step is to generate the region proposals by doing a binary classification (object
or background) on the extracted feature maps [8], the second step is to judge the cate-
gory of each region proposal. The other just uses one step, doing a multi classification
directly (including object categories and background) on the extracted feature maps. The
regression task is used to revise the bounding box position and output the coordinate
offset.

In early studies on remote sensing image object detection, Cheng et al. [2] applied
multi-scale HOG features to build a discriminatively trained mixture method for object
detection to detect different size objects in remote sensing images. To effectively iden-
tify the objects in remote sensing images, Senaras et al. [25] analyzed various object
features (e.g., color, texture and shape), and applied different base-layer classifiers in the
fuzzy stacked generalization architecture for detecting buildings. Han et al. [10] used a
deep Boltzmann machine to find the spatial and structural information of features encoded
in low-level and middle-level. Despite the great success of methods above, they are
all based on hand-crafted features, which are time-consuming and require the domain
expertise.

With the development of deep learning, DCNN has enjoyed a massive success in com-
puter vision. As an essential task in computer vision, the object detection based on deep
learning, such as R-CNN [9], Faster R-CNN [23] and YOLO [22], has a significant improve-
ment on the detection performance compared with traditional object detection methods.
Long et al. [19] proposed an unsupervised score-based bounding box regression for the
accurate object localization in remote sensing images. Dai et al. [4] proposed the position-
sensitive score maps to get accurate and fast object detection. However, those methods using
the single-scale feature cannot adapt to the cluttered background and multi-scale objects in
remote sensing images. Liu et al. [18] proposed a single shot multibox detector, using multi-
scale feature maps to detect various size objects to improve the detection speed. However,
the weak semantic of high-resolution feature maps limited the detection accuracy. Li et al.
[14] used a coarse-to-fine merged manner to get discriminative candidate regions, never-
theless, the simple and single merged manner limited the feature representation due to the
difference between the high-resolution features and low-resolution features after undergoing
several convolution layers.

In recent years, some detection models take advantage of the pyramid structure of back-
bone networks, using nearest neighbor upsampling and element-wise sum to fuse different
resolution feature maps to obtain strong feature representation, improving the performance
on generic object detection, such as FPN [15]. However, there are a lot of complex back-
ground (e.g., cities, forests and grasslands), noise and dense tiny objects in remote sensing
images. Simply using nearest neighbor upsampling and element-wise sum to fuse the high-
resolution feature maps and low-resolution feature maps lacks enough feature information,
which is not suitable for remote sensing object detection. Due to the large difference
between high-resolution feature map and low-resolution feature map, the fused feature maps
can not achieve a good balance between details and semantics.
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In this paper, we propose a novel remote sensing image object detection method with
the fusion based feature reinforcement component (FB-FRC). Firstly, we apply the fea-
ture reinforcement component (FRC) to filter out some redundant details and strengthen
the semantics of high-resolution feature maps. FRC can generate a new feature layer and
provide more feature information for fusion, making up the high-resolution feature maps
lack of semantics and low-resolution feature maps lack of details. Then, two feature fusion
strategies (hard fusion strategy and soft fusion strategy) are designed to get the strong
feature representation. Finally, experiments carried out on four remote sensing images
datasets (NWPU VHR-10 [3], VisDrone2018 [30], DOTA [28] and RSOD [29]) verify the
effectiveness of the proposed method.

In summary, the main contributions of the proposed method are listed in the following.
1) The FRC is applied to filter out some redundant details and strengthen the semantics

of high-resolution feature maps, providing more feature information for fusion.
2) The hard fusion and soft fusion strategies are proposed to fuse the feature maps of

different scales to get strong feature representation.
The rest of this paper is structured as follows. The details of proposed method are

described in Section 2. Section 3 presents experimental results. Finally, Section 4 lists the
conclusions of this paper.

2 Proposed method

In this section, we introduce the FB-FRC for remote sensing image object detection in detail.
The framework of proposed method is illustrated in Fig. 1. This is a two-step detection
method. In step one, the FRC and fusion strategies are used to generate the pyramid feature
maps with high object discrimination for obtaining the region proposals. In step two, the
region proposals are fed into the classifier and regressor to get final detection results. The
details are described in the following.

2.1 Enhancing feature extraction

The dense objects and cluttered background in remote sensing images are prone to reduce
the performance of object detection. Therefore, we add the FRC and apply two fusion
strategies to enhance the object feature representation.

Fig. 1 The framework of the proposed method
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The Fig. 2 shows the structure of FRC. The high-resolution feature map is downsam-
pled by a residual block firstly, then undergoing a deconvolution (kernel size = 2, stride =
2) and 1×1 convolution to get the reinforced feature map, where a residual block is used
to downsample the high-resolution feature map and further extract the semantic features. In
the subsequent deconvolution operation, we use the small size kernel for upsampling. Dif-
ferent from ordinary images, the remote sensing images include the tiny and dense objects
(e.g., the crowded pedestrians and congested vehicles), therefore, the two pixels next to each
other in a feature map can represent two different objects. If the kernel size is too big, the
corresponding size of receptive field would be large, which containing many pixels with
different objects. After undergoing deconvolution, one pixel in the feature map contains
the mixed feature from multiple objects, which disturb or even loss the tiny object feature.
Therefore, we use a small kernel size in deconvolution. In FRC, the 1×1 convolution fol-
lowing deconvolution is applied to unify the dimensions for feature fusion. In this paper, the
output of FRC is unified to 256 dimensions.

Referring to the description of ResNet in [12], we defined the residual block in FRC as:

y = F(x,W) + x (1)

where x and y are the input and output of FRC respectively. The function F represents a
residual mapping. The operation F + x is performed by a shortcut connection and element-
wise addition. The structure of the residual block is shown in Fig. 3, where F as a residual
mapping consist of 3 convolution layers and 2 ReLU functions, the output of residual block
is activated by a ReLU function. In residual block, the 1×1 convolution are responsible

High Resolution Feature

Residual block

1×1 Conv

Deconv

Reinforced Feature

FRC

Fig. 2 The structure of FRC
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 shortcut connections

Fig. 3 The structure of residual block

for reducing and then increasing (restoring) dimensions, leaving the 3×3 convolution with
smaller input/output dimensions [12], which decreases the computation and training time
compared with using two 3×3 convolutions.

Different from blurring operations, FRC is applied to enhance the semantic while reduce
the redundant details of the high-resolution feature map, and parameters in FRC are updated
constantly during the training. In many cases, blurring operations are mainly used to filter
image noise, where the parameters in the blurring operations are generally fixed or manually
adjusted, such as mean blur and gaussian blur.

For the deeper networks, there is a degradation problem during training: with the depth
increasing, accuracy gets saturated and then degrades rapidly. To solve this problem, the
ResNet [12] was proposed, using residual learning to catch the subtle changes of net-
works to make the network training more effective. In this paper, the proposed method
uses ResNet101 as the backbone network. As shown in Fig. 1, according to the times
of downsampling, the backbone architecture can be divided into five stages, denoted as
{C1, C2, C3, C4, C5}, where the feature map resolution decreases continuously from C1 to
C5, and the feature maps in one stage have the same resolution. The outputs of the last
residual block in {C2, C3, C4, C5} are denoted as {C2l , C3l , C4l , C5l}, in which {C2l , C3l ,
C4l} undergoes a FRC to generate the reinforced feature maps as {C2d , C3d , C4d}, and
FRC shares the first residual block with {C3, C4, C5}. Compared with {C2l , C3l , C4l},
{C2d , C3d , C4d} has stronger object semantic features and weaker background details. C5l

is the last feature output of C5 and has very strong semantic, we just append a 3×3 con-
volution (stride=1) on C5l to generate P5 and apply another 3×3 convolution (stride=2)
downsampling C5l to generate P6.

Figure 4 shows the examples of feature maps after undergoing FRC. The original image
contains six oil tanks. Figure 4a and c show the feature maps of C2l and C3l . Figure 4b
and d are C2d and C3d undergoing FRC. As shown in Fig. 4b and d, the background features
in C2d and C3d are less cluttered than before, while the features of six oil tanks are more
semantic, compared with the features in C2l and C3l .

As shown in Fig. 4, FRC can filter out some redundant details and strengthen the seman-
tic of the feature maps. This makes the feature maps appear coarse-grained. Instead of
simply using pooling and nearest neighbor upsampling, both residual block and deconvo-
lution are applied in FRC, which is a lightweight component that can perform parameter
learning during downsampling and upsampling. Therefore, the feature maps after FRC also
retains some main details while enhancing the semantics. As shown in 1, we fuse the high-
resolution feature map, the feature map undergoing FRC and the low-resolution feature
map to get better object feature representation. As a new added layer, the feature map after
undergoing FRC can make up for the high-resolution feature map’s lack of semantics and
low-resolution feature map’s lack of details. Due to more feature information being consid-
ered, the fused feature map has better balance between details and semantics, making the
remotely sensed objects easier to identify.
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Fig. 4 Visualized feature map from a remote sensing image containing six oil tanks. a C2l feature map. b
C2d feature map. c C3l feature map. d C3d feature map

2.2 Feature fusion strategies

As shown in Fig. 5a and b, two strategies are used to fuse the different feature maps, respec-
tively. One is called hard fusion strategy by the element-wise sum of feature maps. The
other is called soft fusion strategy by learning the fusion parameters.

For hard fusion strategy, the feature maps need to be unified to the same size and channel
dimensions before fusion. Therefore, as shown in Figs. 1 and 5a, the feature map in (i+1)
level appends a nearest neighbor upsampling and a 1×1 convolutional layer to generate Fi

1,
where nearest neighbor upsampling can be defined as:

f (a + u, b + v) =

⎧
⎪⎪⎨

⎪⎪⎩

f (a, b) u <= 0.5 and v < 0.5
f (a, b + 1) u <= 0.5 and v > 0.5
f (a + 1, b) u > 0.5 and v <= 0.5
f (a + 1, b + 1) u > 0.5 and v >= 0.5

(2)

where (a, b) is pixel coordinates in the feature map before upsampling. f (a, b) represents
the value of pixel (a, b). (a + u, b + v) is the mapped coordinates from the upsampled
feature map into the original feature map, which u ∈ (0,1) and v ∈ (0,1).

The reinforced feature Cid is as Fi
2. Cil undergoes a 1×1 convolutional layer to output

Fi
3. After that, {Fi

1, Fi
2, Fi

3} is unified to 256 channels. Then, element-wise sum is applied
to merge Fi

1, Fi
2 and Fi

3. Finally, We use a 3×3 convolution to learn feature representation
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Fig. 5 The illustration of the two fusion strategies. a The hard fusion strategy. b The soft fusion strategy

from the merged feature map and unify the feature dimensions to generate the final fusion
feature map P i

hard . This can be expressed as (3).

P i
hard = fsum(F i

1, F i
2, F i

3) ⊗ conv3×3 (3)

Where ⊗ represents a convolution operation. To start the iteration, we attach a nearest
neighbor upsampling and a 1×1 convolutional layer on C5l to produce F4

1 for fusion.
For soft fusion strategy, as shown in Figs. 1 and 5b, we make a nearest neighbor upsam-

pling on the previous final fusion feature map P(i+1) to generate Fi′
1 . And the reinforced

feature Cid is as Fi
2. Then, Cil as Fi′

3 concat with Fi′
1 and Fi′

2 . After the concat operation,
the first 3×3 convolution is used to fuse three feature maps, the second 3×3 convolution
extract feature representation from the fused feature map and unify feature dimensions to
generate the final fusion feature map P i

sof t . The process which can be defined as (4).

P i
sof t = fconcat (F

i
1, F i

2, F i
3) ⊗ conv3×3 ⊗ conv3×3 (4)

Similar to hard fusion strategy, we attach a nearest neighbor upsampling on C5l to start
the iteration.

The final fusion feature maps are called as {P2, P3, P4}. {P2, P3, P4, P5, P6}, as a feature
pyramid, shares a 3×3 convolutional layer and two 1×1 convolutional layers to generate
region proposals, where nonmaximum suppression (NMS) [21] is used to filter out the sim-
ilar region proposals. After NMS, the region proposals are unified to the same dimensions
by ROI pooling [23], then undergoing the two fully connected layers to produce the final
predicted results.

2.3 Loss function of the proposed method

The classifier and regressor are shared between fusion feature map of each level to gen-
erate the region proposals. The classifier is used to predict the class probability (object or
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background) of each anchor in the fusion feature maps. The regressor estimates the coordi-
nate offset of object bounding boxes, corresponding to the anchors’ position. We define the
anchor areas {5122, 2562, 1282, 642, 322} on {P2, P3, P4, P5, P6} respectively, and set the
aspect ratios of anchors {0.5, 0.75, 1, 1.5, 2} on each level to fit different object shapes.

During training stage, we set the anchors whose values of Intersection-over-Union (IoU)
[23] with any ground-truth is greater than 0.7 as positive labels and set the anchors’ IoU
with all ground-truth lower than 0.3 as negative labels, where IoU is used to measure the
percentage of intersection between two bounding boxes, defined as:

IoU = area(ri) ∩ area(gi)

area(ri) ∪ area(gi)
(5)

where ri is a detection bounding box, and gj represents a ground-truth. The area(ri) is the
area enclosed by detection bounding box ri .

The unmarked anchors are dropped out during training. The loss function for the region
proposals is defined as (6).

Loss =
∑

i∈Levels

(
1

Ni
cls

∑

k∈Ai

Lcls(pk, p
∗
k )

+λ
1

Ni
reg

∑

k∈Ai

p∗
kLreg(ck, c

∗
k )) (6)

Where i is the index of level which the fusion feature maps belong to and Ai is the anchors
set defined in the i-th level. pk represents the probability that anchor i contains an object,
and p∗

k is the label of ground-truth (1 for the positive labels, 0 for the negative labels).
ck represents the coordinates offsets of the predicted bounding box and c∗

k denotes the
true coordinate offsets to ground-truth. Losscls is softmax classfication loss and Lossreg is
soomth L1 loss which is used to learn four coordinate transformation [23] of the predicted
bounding box and minimize the error between the predicted coordinates and ground truth
coordinates. Ni

cls is the number of anchors in classification. Similar Ni
reg is the number of

anchors in position regression. The λ is used to balance Losscls and Lossreg .
During training, the parameters is updated in a batch training, where the parameters is

the weights of each layer in the network, used for network mapping. Taking a batch training
as an example, the training process can be divided into two part. In the first part, a batch of
images with the corresponding labels are fed into the proposed model, as shown in Fig. 1,
after undergoing the step one and step two, the network outputs the predicted results, then
the classification loss and regression loss can be calculated according to the predict results
and labels. In the second part, based on the loss function, the gradients of each parameter in
network are calculated by chain rule. Then the parameters in each network layer are updated
according to the gradients and learning rate. This batch training process will be iterated
during the training stage until the network converged.

3 Experimental study

To evaluate the effectiveness of the proposed method, experiments are conducted on four
widely used remote sensing datasets, i.e. NWPU VHR-10 [3], VisDrone2018 [30], DOTA
[28] and RSOD [29]. We compare the proposed method with several state-of-the-art meth-
ods, i.e. Faster R-CNN [23], R-FCN [4] and FPN [15]. The mean average precision (mAP)
[16] and visualized results are adopted to evaluate the performance of these methods.
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Table 1 Details of four remote sensing datasets

Datasets Train images Test images Categories Resolution

NWPU VHR-10 500 150 10 800∼1000

VisDrone2018 6471 548 10 900∼2000

DOTA 8813 2993 15 800∼4000

RSOD 736 194 4 900∼1000

3.1 Datasets and evaluation metric

Table 1 shows four commonly used remote sensing data sets, all of which are made by well-
known scientific research teams in recent years. The main contents of these datasets are as
follows.

In NWPU VHR-10, there are 650 positive label remote sensing images. We choose
500 images for training and the remaining 150 for testing. DOTA is a large-scale dataset
including 2806 aerial images with very high-resolution. We cut the images larger than
3000 pixels to 1280×1280 pixels and get 8813 images for training and 2993 for testing. In
VisDrone2018 and RSOD, we use the default training set and testing set.

We use VOC2007 11 point metric [7] to evaluate the proposed method performance,
where mAP@[0.5:0.95] is the mean of mAPs which IoU thresholds from 0.5 to 0.95,
step 0.05, and mAP@0.5 and mAP@0.75 are for the detail evaluation. The instructions of
symbol in evaluation metric is shown in Table 2. The evaluation process is as follows:

Precision = T P

T P + FP
(7)

Recall = T P

T P + FN
(8)

The average precision (AP) of each category can be demonstrated according to precision
and recall, which can be defined as:

AP = 1

11

∑

x∈MP

(x) (9)

Table 2 Instructions of symbol in the evaluation metric

Symbol Instruction

TP The number of bounding boxes which are accurately detected

FP The number of error detection

FN The number of the ground-truth which have not been detected

MP The maximum precision value from 0 to 1 step by 0.1 in the recall area

AP The mean of MP of the 11 points

C Collection of categories

mAP The mean of all categories’ AP
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mAP is the mean of all categories’ AP , as shown in (10).

mAP =
∑

c∈C

APc

|C| (10)

The proposed method is implemented on MXNet and trained on a graphics worksta-
tion (2 CPUs E5-2609v4@1.70GHz, 32-GB memory and 2 NVIDIA GTX 1080TI GPUs).
During training, we fit a remote sensing image each batch and train ten epochs until conver-
gence, where an epoch completed an iteration of all training images. The learning rate is set
as 0.005 in the first 2/3 epochs and 0.0005 in the last 1/3. For enough training, we augment
datasets by flipping each image. The backbone networks of all methods are pre-trained on
the ImageNet dataset [24] before training.

3.2 Experimental results and analysis

We compare the performance of proposed method with three state-of-the-art methods:
Faster R-CNN, R-FCN and FPN. Faster R-CNN applies a region proposal network to obtain
the region proposals, then these region proposals are unified to the same size by pooling
operation for the later classification and regression. R-FCN uses the position-sensitive score
maps to get better results of classification and position regression. FPN builds the feature
pyramid of images to detect the different size objects. For a fair comparison, these state-
of-the-art methods also use ResNet101 as the backbone, and the hyperparameters with the
highest performance in the original papers are used during training. All the mAPs shown in
the tables are converted to percentage (%).

Tables 3, 4, 5 and 6 show the performance of proposed method compared with other
state-of-the-art methods on four widely used remote sensing images datasets, respectively,
where the best results are shown in bold. On the whole, the proposed method performs better
than other three methods at mAP@[0.5:0.95], mAP@0.5 and mAP@0.75. Compared with
detecting on a single-scale feature map (Faster R-CNN, R-FCN), object detection on multi-
scale feature maps (FPN and the proposed method) can assign detection tasks in detail. For
the large-scale (high resolution) feature map, due to containing rich detail features, it is
convenient to detect small objects. The small-scale (low resolution) feature map has strong
semantics, benefiting the large objects detecting. Using the multi-scale feature maps for
object detection can obtain more accurate results than the methods detecting on a single
scale feature map. The results show that the methods using multi-scale feature are more
than 10% higher on mAP than those using single-scale feature.

Table 3 The result of NWPU VHR-10 dataset with the same input size (800×800 pixels)

Methods mAP[0.5:0.95] mAP0.5 mAP0.75 1 2 3 4 5 6 7 8 9 10

Faster rcnn 36.18 79.92 25.93 44.99 28.65 28.81 49.19 37.09 30.99 69.82 27.65 20.05 24.57

R-FCN 44.83 86.36 41.29 51.59 38.64 40.83 61.21 43.94 35.70 66.23 40.44 31.97 37.73

FPNhard 55.01 87.37 62.59 64.83 51.61 60.30 67.04 61.19 43.70 75.98 45.35 29.52 50.62

FPNsof t 54.13 87.92 59.81 65.00 53.12 62.48 68.21 57.63 40.48 74.77 44.59 26.60 48.41

ourshard 57.13 89.89 66.11 66.20 51.41 62.62 68.58 60.74 45.16 77.47 51.92 36.83 50.37

ourssof t 56.23 90.08 63.74 64.23 51.36 61.85 66.13 62.19 46.73 71.93 49.67 34.95 53.26

From 1 to 10 corresponding represent airplane, ship, storage tank, baseball diamond, tennis court, basketball
court, ground track field, harbor, bridge and vehicle
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Table 4 The result of VisDrone 2018 dataset with the same input size (1280×800 pixels)

Methods mAP[0.5:0.95] mAP0.5 mAP0.75 1 2 3 4 5 6 7 8 9 10

Faster rcnn 15.97 27.38 16.13 10.16 1.41 7.30 35.74 24.18 24.90 10.52 11.46 27.42 6.62

R-FCN 19.10 30.02 21.61 14.79 2.12 5.63 43.29 31.12 28.51 11.08 9.58 34.89 9.99

FPNhard 24.13 38.15 25.82 26.57 8.91 7.44 55.66 31.53 29.89 14.33 13.13 38.06 15.76

FPNsof t 23.36 37.31 26.08 25.18 8.87 7.49 55.02 31.82 28.89 12.00 14.44 34.77 15.08

ourshard 26.36 40.81 28.92 28.31 8.42 10.35 57.17 36.34 30.74 14.79 15.38 43.92 18.16

ourssof t 25.01 39.15 27.90 27.41 8.45 9.97 55.61 33.57 30.34 13.63 14.07 39.99 17.08

For better training, the difficult samples (occluded objects) are dropped. From 1 to 10 corresponding
represent pedestrian, people, bicycle, car, van, truck, tricycle, awning-tricycle, bus and motor

Table 5 The result of DOTA dataset with the same input size (1280×1280 pixels)

Methods mAP[0.5:0.95] mAP0.5 mAP0.75 1 2 3 4 5

Faster rcnn 23.94 44.31 23.36 42.19 7.88 15.91 27.66 53.48

R-FCN 26.88 48.01 26.67 48.86 10.56 22.43 28.31 61.59

FPNhard 36.19 60.23 37.82 56.55 32.53 39.08 34.98 69.79

FPNsof t 37.58 60.66 39.91 57.25 31.50 40.24 39.13 71.54

ourshard 38.82 62.17 41.91 58.17 32.32 41.23 40.30 72.27

ourssof t 38.70 61.46 42.07 57.60 32.82 43.07 38.76 71.43

Methods 6 7 8 9 10 11 12 13 14 15

Faster rcnn 25.92 29.39 25.74 11.64 20.69 11.45 23.93 26.90 23.53 12.77

R-FCN 29.49 25.69 30.47 16.68 25.69 17.23 17.26 25.71 27.61 15.63

FPNhard 35.73 35.21 34.02 22.10 40.62 23.38 27.25 34.64 32.44 24.53

FPNsof t 38.55 34.77 36.13 22.83 42.35 23.02 31.99 37.33 31.23 25.85

ourshard 39.26 38.71 37.56 24.97 42.11 22.36 35.66 39.29 34.43 23.69

ourssof t 41.52 36.80 37.63 24.14 42.69 24.41 28.41 39.06 36.44 25.71

From 1 to 15 corresponding represent plane, ship, storage-tank, baseball-diamond, tennis-court, basketball-
court, ground-track-field, harbor,bridge, large-vehicle, small-vehicle, helicopter, soccer-ball-field, round-
about, swimming-pool

Table 6 These methods trained on ROSD dataset with the same input size (800×800 pixels)

Methods mAP[0.5:0.95] mAP0.5 mAP0.75 1 2 3 4

Faster R-CNN 44.40 84.94 41.84 41.13 58.42 24.18 53.86

R-FCN 48.24 83.99 49.85 51.15 53.98 24.10 63.73

FPNhard 56.08 86.18 62.06 64.47 55.65 33.43 70.79

FPNsof t 56.08 88.03 61.79 64.64 58.83 31.02 69.81

ourshard 56.81 88.07 63.53 64.06 63.08 29.39 70.70

ourssof t 57.63 92.27 63.19 65.06 63.03 33.08 69.34

From 1 to 4 corresponding represent aircraft, playground, overpass and oil tank
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Fig. 6 Visualized results of the NWPU VHR-10 detection results. Green rectangles: ground-truth. Red
rectangles: detection results of hard fusion. Blue rectangles: detection results of soft fusion

Fig. 7 Visualized results of the VisDrone2018 detection results. Green rectangles: ground-truth. Red
rectangles: detection results of hard fusion. Blue rectangles: detection results of soft fusion
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Compared with FPN, the proposed method applies the FRC to provide more feature
formation for the fusion, reinforcing the feature representation of objects. To prove the
effectiveness of FRC, we compared the proposed method with FPN under the hard fusion
strategy and soft fusion strategy, respectively. As shown in the results, the performance of
proposed method in two fusion strategies has the higher AP across most categories and gets
better mAP@[0.5:0.95], mAP@0.5 and mAP@0.75 than FPN. This indicates that adding
the FRC step in the fusion process can effectively improve the accuracy of object detection.

For the different datasets, the performance of two fusion strategies is similar at
NWPU VHR-10, DOTA and ROSD datasets. The difference of detection results on
mAP@[0.5:0.95] between two fusion strategies is less than 1%. While dealing with Vis-
Drone2018, the hard fusion strategy performs better than the soft fusion strategy on mAP
and most categories’ AP. And we found some potential reasons from the visible results.

Figures 6, 7, 8, and 9 exhibit visible results of the proposed method from four remote
sensing images datasets respectively, where the green bounding boxes represent the ground-
truth, red bounding boxes denote the detection results of hard fusion strategy, and the
detection results of soft fusion strategy are drawn with blue lines. Figure 7 shows the detec-
tion results on VisDrone2018 dataset, it contains many occluded objects. In Fig. 7, the hard
fusion strategy has better detection effect than the soft fusion strategy for some objects
which are difficult to identify, such as the occluded cars and pedestrians in Fig. 7a, c and
d. But this also makes the hard fusion strategy easy to produce some wrong results, such as
the false recognition of some pedestrians in Fig. 7a. And in Figs. 6 and 8, the soft fusion

Fig. 8 Visualized results of the DOTA detection results. Green rectangles: ground-truth. Red rectangles:
detection results of hard fusion. Blue rectangles: detection results of soft fusion
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Fig. 9 Visualized results of the RSOD detection results. Green rectangles: ground-truth. Red rectangles:
detection results of hard fusion. Blue rectangles: detection results of soft fusion

strategy has a better detection effect on some small and crowded objects without occlu-
sion compared with the hard fusion strategy, such as tennis courts in Fig. 6c and d, vehicles
and ships in Fig. 8a and c. Unfortunately, some of these objects are not labeled, therefore,
this may not make the mAP increase. The main reason for the results may be that the hard
fusion strategy merges feature maps by element-wise sum directly, which preserves the fea-
tures of occluded objects in feature maps. However, the soft fusion strategy uses the concat
operation to merge feature maps, this may filter out some occluded object features after
undergoing two 3×3 convolutions and enhance the object features without occlusion.

4 Conclusion

In this paper, the FB-FRC is proposed for remote sensing image object detection. We use the
FRC to strengthen the semantics and filter out the redundant details of the high-resolution
feature maps, providing more feature information for the fusion. Then two fusion strate-
gies are designed to enhance the feature representation, further improving the detection
performance. The experiments on four datasets show that the proposed method has better
performance than the three state-of-the-art methods after adding the FRC. For two fusion
strategies, from the experimental results, the hard fusion strategy has better performance in
detecting occluded objects, while the soft fusion has better detection effect for some small
and crowded objects without occlusion. In practical application, according to the situation,
we can train and test two fusion strategies firstly and select a better fusion strategy.
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In the future, we will focus on increasing the accuracy of position regression by adding
some direction parameters and try to use the generative adversarial networks to reconstruct
the occluded objects to improve the detection accuracy further.
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