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Abstract
Image denoising is an important technology for image preprocessing. In recent years, the
image denoising technology based on total variation (TV) has been rapidly developed.
However, However, although it can preserve image details well, which generates obvious
staircase effects. This is due to the traditional TV-based image denoising technology only
applies the gradient information and ignored the local variance of the image. In order to
suppress staircase effect, in this paper, a novel image denoising approach based on TVmodel
and weighting function is proposed. First, the theory mechanism of staircase effect brought
by the traditional TV model is analyzed. Second, the effects of weighting function on edge
regions, flat regions, and gradation and detail regions are also analyzed. Third, based on the
above analysis, an improved TVmodel is proposed. Finally, the image denoising approach is
implemented by an iterative algorithm. The experimental results show that, compared with
various state-of-the-art models denoising models, the proposed image denoising approach
can effectively suppress the staircase effect of the traditional TV model in most cases,
preserve the image details, and improve the image denoising performance.

Keywords Image denoising . Partial differential equation . Total variation .Weighting function .

Staircase effect

1 Introduction

Digital images have become an important medium for people to access and transmit complex
information [5, 13, 17]. Due to the limitation of imaging methods and conditions as well as the
presence of outside interferences, the actual image is inevitably contaminated by the noise
signals and difficult to understand, which will have a significant impact on subsequent image
processing operations [10, 15, 25, 41]. The research on image denoising approach is not only
important to improve the performance of image processing systems, but its progress and
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development will also promote the development of many related fields. Therefore, the research
on image denoising approaches has important theoretical and practical values. [10, 14, 15, 41].

Image denoising has twomain purposes, one is denoising, and the other is to preserve image
detail as much as possible, including texture, edges, contrast and so on. Roughly, traditional
image denoising approaches can be divided into two categories [10]: one is based on the
frequency domain, and the other is based on the spatial domain. For the first type [39], after an
image is transformed, it is filtered by selecting an appropriate bandpass filter and then obtaining
the denoised image by inverse transform. For the second type [28], various image smoothing
templates are applied for image convolution processing to achieve the purpose of suppressing or
eliminating noise. Traditional filters based on spatial and frequency domains, such as mean,
median, Butterworth, exponential filters etc., will filter a contaminated image as a whole, and
however which ignores the noise distribution and details of the image texture. Even if filtering
out the noises, this method will lead to blurring of the edges, and therefore it is very important to
design an image denoising approach with maintaining edges and local details [18].

Usually, an image contains many kinds of regions, such as edges, textures, flat regions etc.
When the traditional image denoising approaches were applied to remove noise of the images
containing complex features, the implementation of these approaches is relatively simple. For
example, they achieve denoising mainly through filtering high frequency information of an
image. However, the noise and structural information of an image belong to high frequency
information, so it is difficult to preserve the structural information of the image when denoising
[14]. To overcome the limitations of existing image denoising approaches, many mathematical
theories are applied for image denoising. Image den oising based on partial differential
equation (PDE) is a typical approach of applying mathematical theory. In PDE-based image
denoising approach, the total variation (TV) model [11] based on TV regularization, proposed
by Rudin et al. [26], has been the focus of many researchers. TV model has an anisotropic
diffusion characteristic of PDE, which not only may effectively remove image noise, but also
protect image edges without being blurred. TV model can better solve the balance problem
between denoising and protection details [30–32]. As a classical model based on PDE, TV
model has an important influence on image denoising, and its advantages are very obvious,
however which still has some shortcomings [20, 35–37, 40] as follows.

(1) In TV model, all pixels of an image are processed using the same operations, which
results in that the detail regions of an image are over-smoothed.

(2) The image is smoothed using TV model along the orthogonal direction of the pixel
gradient, and the denoising result tends to a piecewise constant, which is easy to generate
the staircase effect in the regions of the image intensity changing slowly.

In this paper, a novel image denoising iterative approach based on TV model and weighting
function is proposed. Specifically, the TV model is applied to transform the image denoising
into a problem of minimizing the energy function, and a weighting function is used to calculate
the gradient magnitude and local variance values of each pixel and analyze their characteristics
in the different regions of an image. The main contributions of this work are as follows.

(1) The mechanism of generating staircase effect by the traditional TV model is analyzed,
which provides a theoretical basis for proposing an improved TV model.

(2) The weighting function is employed so that different regions of the image are processed
differently during image denoising.
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(3) In order to suppress the staircase effect, an improved TV model based on weighting
function is proposed. Its advantages are that it is unsupervised and has lower CPU time.

The remainder of this paper is organized as follows. In Section 2, we introduced related work
of the image denoising approaches based on TV model. In Section 3, an improved TV model
is proposed including the traditional TV model, staircase effect analysis of TV model, analysis
of variance and gradient, weighting function, improved TV model based on weighting
function, etc. In Section 4, experimental setup is provided including performance evaluation
and parameters selection. In Section 5, the experiment and comparison results are introduced.
Finally, conclusions are given in Section 6.

2 Related work

The image denoising principle based on traditional TV model is that TVof the contaminated
image is larger than that of the original image, so the problem of image denoising may be
transformed into a minimization of the energy function according to TVoptimal criterion of the
image. In general, traditional TV model contains not only regular and data fidelity items, but
also regularization parameters [35]. The regular term is used as denoising, the data fidelity term
is used to calculate the approximation degree between the denoised and original images, and
the regularization parameter is used to balance the relationship between the regular and data
fidelity terms. The main steps of the traditional image denoising approach based on TV model
are as follows.

Step 1. According to the actual problem of image denoising, an energy function and
corresponding constraints are designed.

Step 2. Using the variational principle and gradient descent method, an Euler-Lagrange
equation corresponding to the energy function is designed.

Step 3. Solve Euler-Lagrange equation and obtain an approximate solution of the image
denoising problem.

Since the traditional TV model has a good denoising effect, many improved image
denoising approaches based on TV model have been proposed [2, 3, 8, 16, 22, 29,
38]. Chen et al. [2] proposed the proximity algorithm to solve the fractional order TV
optimization problem, provided an effective tool for the study of the fractional order
TV denoising model, and it was effective to deal with the problem of algorithm
implementation. Mousavi et al. [16] proposed a TV-based shearlet shrinkage for
discontinuity-preserving denoising using a combination of shearlet with a TV model.
For TV denoising numerical procedure, two approaches were used, which gave very
good image denoising results. He et al. [8] proposed an improved fractional differen-
tial operator for image denoising, a G-L fraction based denoising filter operator mask
was further constructed, its total coefficient of filter mask was not equal to zero, and
this nonlinear filter mask can preserve the detail features when denoising. Shen et al.
[29] proposed a denoising model based on the combination of TV and nonlocal
similarity in the wavelet domain in order to suppress the noise and keep the distinct
edges of the images. TV regularization in the wavelet domain can effectively suppress
the noise with the biorthogonal wavelet function and the nonlocal similarity
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regularization may improve the image details. Ma et al. [22] proposed an image
denoising model based on the total generalized variation (TGV) regularization. In this
model, in order to adaptively fit the local image features, a spatially dependent
regularization parameter was utilized, and the denoising potential of the TGV regu-
larization was further exploited. Inspired by the ability of lp-regularized algorithms
and the close connection of TV to the l1 norm, a p-th power type TV denoted as TVp

was proposed by Yan et al. [38] for 0 ≤ p ≤ 1. Due to the TVp-regularized problem for
image denoising was non convex, and authors processed it by proposing a weighted
TV (WTV) minimization through updating the weights iteratively to locally approx-
imate the TVp-regularized problem. Du et al. [3] introduced the minmax-concave TV
(MCTV), which can strongly induce the signal sparsity in gradient domain. Although
MCTV was non convex, the cost function can maintain convexity by specifying
parameter in a proper range.

TV model has good properties. For example, it propagates information only along the edge
direction, has anisotropic etc. Therefore, it may compensate the lack of diffusing information
for the traditional image denoising approach, and can better protect the image details. However,
its disadvantages are also obvious, for example, it is easy to generate the false edges, its steady
state numerical solution of Euler equation has a significant staircase effect etc. [38].

3 Improved TV model

3.1 Traditional TV model

Assume the original image I(x, y) is contaminated by additive noise n(x, y) with mean zero and
variance σ2, the noise model of an image is

I0 x; yð Þ ¼ I x; yð Þ þ n x; yð Þ; x; yð Þ∈Ω ð1Þ
where I0(x, y) is a noisy image, and (x, y) is the position of one pixel in image whole region Ω.
Since TV of the noisy image is usually significantly larger than that of the original image

[26], the image denoising can be achieved by minimizing TV. The minimum problem of image
denoising is calculated as follows

min∫Ω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2x þ I2y

q
dxdy ¼ min∫Ω ∇Ij jdxdy ð2Þ

where, Ix and Iy are gradients of the image in the x and y directions respectively, the gradient
magnitude at the position (x, y) is calculated as follows

∇I x; yð Þj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2x þ I2y

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂I
∂x

� �2

þ ∂I
∂y

� �2
s

ð3Þ

Eq. (2) satisfies the following constraints

∫ΩIdxdy ¼ ∫ΩI0dxdy ð4Þ

1

Ωj j ∫Ω I−I0ð Þ2dxdy ¼ σ2 ð5Þ
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where |Ω| is total number of pixels in image region Ω. So, the energy function of TV model is
constructed as follows

min
I

E Ið Þ ¼ ∫Ω ∇Ij jdxdyþ λ
2
∫Ω I−I0j j2dxdy ð6Þ

where the first term on the right side of Eq. (6) is the regular term of the energy
function, which can be used to remove the noise of the image; the second term on the
right side of Eq. (6) is the approximation term of the energy function, which is an
approximation degree between the approximate and real solutions; λ is Lagrange
multiplier, which controls the balance between the regularization and approximation
terms.

According to the Euler-Lagrange equation and gradient descent method [23], the diffusion
equation is calculated as follows

∂I x; y; tð Þ
∂t

¼ div
∇I
∇Ij j

� �
−λ I−I0ð Þ

I x; y; tð Þjt¼0 ¼ I0 x; yð Þ

8<: ; t > 0 ð7Þ

where, div is the divergence operator. According to previous research results [2, 8, 16],
although TV model can protect the edges of the image well, it may generate false edges in
the non edge regions of an image, i.e., the staircase effect [33, 37].

3.2 Staircase effect analysis of TV model

In recent years, TV model has attracted the attention of many researchers and are
widely used in image denoising. However, image denoising results based on TV
model will be easy to generate significant staircase effect. In this subsection, the
staircase effect is analyzed from mathematical theory to improve the TV model.

Let γ and ξ be the image gradient direction and gradient orthogonal direction respectively,
and Iγγ and Iξξ the image edge gradient direction and direction derivative of the gradient
orthogonal direction respectively, then we have

γ ¼ ∇I
∇Ij j ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2x þ I2y

q Ix
Iy

� �

ξ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2x þ I2y

q −Iy
Ix

� �
8>>>>><>>>>>:

and

Iγγ ¼
I2x Ixx þ 2I xIyIxy þ I2y Iyy

I2x þ I2y

I ξξ ¼
I2x Ixx−2I xI yIxy þ I2y Iyy

I2x þ I2y

8>>>><>>>>: ⇒Iγγ þ I ξξ ¼ Ixx þ Iyy
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Decompose ∂I x;y;tð Þ
∂t ¼ div ∇I

∇Ij j
� �

−λ I−I0ð Þ, we may get

div
∇I
∇Ij j

� �
¼ 1

∇Ij j ∇ ∇Ið Þ þ ∇I∇
1

∇Ij j
� �

¼ Ixx þ I yy
∇Ij j þ Ix; Iy

� � ∂
∂x

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2x þ I2y

q
0B@

1CA;
∂
∂y

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2x þ I2y

q
0B@

1CA
0B@

1CA
T

¼ I xx þ Iyy
∇Ij j þ Ix; I y

� �
−
IxIxx þ I yIxy

∇Ij j3 ;−
IxIxy þ I yIyy

∇Ij j3
 !T

¼ Ixx þ I yy
∇Ij j −

I2x Ixx þ 2IxIyI xy þ I2y I yy

∇Ij j3

¼ I xx þ Iyy
∇Ij j −

I2x I xx þ 2I xI yIxy þ I2y Iyy
I2x þ I2y

1

∇Ij j ¼
Iγγ þ I ξξ

∇Ij j −
Iγγ
∇Ij j ¼

I ξξ
∇Ij j þ 0Iγγ

From the above equation, we can find that TVmodel may better preserve edge information of the
image. However, since the pixel points in the flat region (non-edge region) of an image do not
have the gradient direction and gradient orthogonal direction, which will cause the false edges,
i.e., staircase effects, and therefore easily occur in a flat region (non-edge region) of the image.

Fig. 1(a) is an original image. After adding Gaussian noises with mean zero and standard
deviation σ = 20, the denoised image using TV model is shown in Fig. 1(b).

It can be seen from Fig. 1 that the denoising results using TV model may generate
significant staircase effect.

3.3 Analysis of variance and gradient

3.3.1 Local variance

Variance is an important concept in mathematics, which is a deviation metric between the
sample value and the overall sample mean. In the image processing process, the concept of
local variance is often used.

(a) Original image Plane (b) Denoised image by TV model

Fig. 1 An example generating staircase effect
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Taking a 3 × 3 neighborhood window as an example, at the k-th iteration of an image I(x, y),
the local variance σ2k x; yð Þ at the position (x, y) is calculated as follows

σ2
k x; yð Þ ¼ 1

3� 3
∑
i¼1

i¼−1
∑
j¼1

j¼−1
I k xþ i; yþ jð Þ−Ik x; yð Þ
� �2

ð8Þ

where Ik x; yð Þ is the mean of intensitys in the 3 × 3 neighborhood window at the k-th iteration,
which is calculated as follows

Ik x; yð Þ ¼ 1

3� 3
∑
i¼1

i¼−1
∑
j¼1

j¼−1
Ik xþ i; yþ jð Þ ð9Þ

3.3.2 Gradient

At the k-th iteration of the image I(x, y), the gradient magnitude at the position (x, y) is
calculated as follows

∇I x; yð Þj jk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂I
∂x

� �2

k
þ ∂I

∂y

� �2

k

s
ð10Þ

where ∂I
∂x

� �2
k and ∂I

∂y

� �2
k
is the gradients in the horizontal and vertical directions at the k-th

iteration respectively. The horizontal and vertical gradients are calculated by the mean
difference as follows

∂I
∂x

� �
k
¼ Ik xþ 1; yð Þ−Ik x−1; yð Þ

2
∂I
∂y

� �
k
¼ Ik x; yþ 1ð Þ−Ik x; y−1ð Þ

2

8>><>>: ð11Þ

We select Camera image as an example to illustrate its gradient and local variance. In Camera
image, 200 pixels are randomly selected from different regions of Camera image. In these 200
pixels, the red, blue, yellow and green pixel regions are part of the texture, building, edge and
smooth regions in Camera image respectively. Figure 2.

The gradients magnitude and local variance values of 10 pixel points, which are randomly
selected from the red, blue, yellow and green point regions respectively, are shown respec-
tively in Tables 1, 2, 3, 4 according to Eqs. (10) and (8).

As shown in Tables 1, 2, 3, and 4, the gradient magnitude and local variance values are very
small in the smooth regions (i.e., green regions) of Camera image. The gradient magnitude and
local variance values are very large of the edge regions (i.e., yellow regions) of Camera image.
Although the gradient magnitudes of the blue and red regions are similar, the difference
between their local variances is large.

In order to preserve the details of the image and effectively remove the noise, the gradient
magnitude and local variance are utilized in the improved TV model. Since the local variances
are usually larger than the gradient magnitudes, Eqs.(8) and (10) are rewritten as follows

σ2
k;New x; yð Þ ¼ σ2

k x; yð Þ−Minσ2k
Maxσ2k−Minσ2

k
� 255 ð10Þ
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∇I x; yð Þj jk;New ¼ ∇I x; yð Þj jk−Min ∇Ij jk
Max ∇Ij jk−Min ∇Ij jk

� 255 ð11Þ

where Minσ2
k and Maxσ2

k are the minimum and maximum local variances of the denoised
image at the iteration k respectively; Min|∇I|k and Max|∇I|k are the minimum and maximum
gradient magnitudes of the denoised image at the iteration k respectively. For simplicity, let σ2

and |∇I| be the abbreviations of σ2
k;New x; yð Þ and |∇I(x, y)|k, New respectively.

3.4 Weighting function

The TV model can protect the edges of the image well. To continue to preserve this advantage
of TV model, a weighting function is introduced to TV model. In this paper, weighting
function is calculated as follows

p xð Þ ¼ 1

1þ x
T

� �2 ð12Þ

Where, p(x) is a non negative monotonic decreasing function, which satisfies the following
conditions.

0 ≤ p(x) ≤ 1, p(0) = 1, and lim
x→∞

p xð Þ ¼ 0.

Fig. 2 Different regions of Camera image

Table 1 Gradient magnitude and local variance values of red point regions in Camera image

|∇I| 7.07 7.28 7.52 7.76 8.02 9.55 10.20 10.31 10.98 11.18
σ2 1035.6 1095.9 750.4 1019.1 756.3 1004.1 1173.7 1088.2 1405.7 942.02
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Figure 3 shows the relationship between p(x) and x, where x = |∇I| ⋅ σ2, and T > 0 is an
adjustment parameter.

According to the properties of the weighting function p(x), the gradient magnitude and the
local variance, we further discuss the relationship between p(x) and the regions of an image.

(1) In the edge regions.

In this case, the value of |∇I| ⋅ σ2 is very large. We also novice that, when |∇I| ⋅ σ2→∞, p(|∇I|
⋅ σ2)→ 0is gotten, which indicates that the intensity diffusion is very small, therefore the edges
of the image can be protected.

(2) In the flat regions.

In this case, the value of |∇I| ⋅ σ2 is very small. We also novice that, when |∇I| ⋅ σ2→ 0, p(|∇I|
⋅ σ2)→ 1 is gotten, which indicates that the intensity diffusion is very large, therefore the
image noises can be removed effectively.

(3) In the gradient and details regions.

In these cases, we have 0 < |∇I| ⋅ σ2 < 1, which indicates that the intensity diffusion is
moderate and the image is relatively smooth, therefore the staircase effect can be
reduced.

Through the above discussions, we notice that, if weighting function p(x) is
selected according to the gradient magnitude and local variance of an image, the
image denoising approach based on TV model and weighting function can achieve
good results for denoising and maintaining the details of the image.

3.5 Improved TV model based on weighting function

For the problem of TV model easy generating a staircase effect, in this paper, a weighting
function p(x) is introduced into the regular term of TV model, i.e., the first term on the right
side of Eq. (6). The energy functional of improved TV model is rewritten as follows

E Ið Þ ¼ ∫Ω p ∇Ij j⋅σ2
� �

∇Ij j� �
dxdyþ λ

2
∫Ω I−I0j j2dxdy ð13Þ

Table 2 Gradient magnitude and local variance values of blue point regions in Camera image

|∇I| 8.38 8.51 8.54 8.73 8.73 9.01 9.01 9.12 9.12 9.12
σ2 41.28 47.56 59.73 51.73 66.22 51.33 58.25 50.54 52.47 64.22

Table 3 Gradient magnitude and local variance values of yellow point regions in Camera image

|∇I| 104.50 108.25 101.02 102.24 100.59 102.75 107.22 105.58 102.30 104.13
σ2 5150.9 5246.5 5615.4 5474.7 5041.3 5319.6 6109.7 5760.2 5424.9 6046.7
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p ∇Ij j⋅σ2
� � ¼ 1

1þ ∇Ij j⋅σ2
T

� �2 ð14Þ

According to the Euler-Lagrange equation and gradient descent method, PDE scheme of Eq.
(13) is

∂I x; y; tð Þ
∂t

¼ p ∇Ij j⋅σ2
� �

div
∇I
∇Ij j

� �
−λ I−I0ð Þ

I x; y; tð Þjt¼0 ¼ I0 x; yð Þ

8<: t > 0 ð15Þ

We notice that, in the flat region, we have |∇I| = 0 and σ2 = 0, which indicates that div ∇I
∇Ij j

� �
is

meaningless at this time. In order to avoid this situation, the regularized gradient magnitude
and local variance are generally used in practice. Where, the regularized gradient magnitude is
calculated as follows

∇Ij jε ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∇Ij j2 þ ε

q
ð16Þ

And the regularized local variance is calculated as follows

σ2
		 		

ε
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2j j2 þ ε

q
Where, ε is a number greater than zero.

Table 4 Gradient magnitude and local variance values of green point regions in Camera image

|∇I| 0.50 1.00 0.50 0.71 0.50 0.50 0.71 1.12 0.71 0.71
σ2 0.99 0.67 0.91 0.89 0.47 0.40 0.32 0.89 0.54 0.84

Fig. 3 The relationship between p(x) and x
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In improved TV model, PDE is discretized by the finite difference scheme. In this paper, in
order to utilize the peripheral information of each pixel in image, an eight-neighbor system is
employed, as shown in Fig. 4.

Let the time and grid step sizes beΔt and h respectively. For convenience and simplicity, let
I x; yð Þ ¼ I i; j; I0 i; jð Þ ¼ I0i; j, we have

Ixð Þki; j ¼
Ikiþ1; j−I

k
i−1; j

2h

Iy
� �k

i; j ¼
Iki; jþ1−I

k
i; j−1

2h

Ixxð Þki; j ¼
I kiþ1; j−2I

k
i; j þ I ki−1; j
h2

I yy
� �k

i; j ¼
Iki; jþ1−2I

k
i; j þ Iki; j−1
h2

Ixy
� �k

i; j ¼
I kiþ1; jþ1−I

k
i−1; jþ1−I

k
iþ1; j−1 þ Iki−1; j−1

4h2

div
∇I
∇Ij jε

� �
¼ IxxI2y−2IxI yI xy þ I2x I yy

I2x þ I2y þ ε2
� �3

2

8>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>:

ð17Þ

So, the discrete scheme of Eq. (15) is calculated as follows

The discrete scheme of Eq. (15’) satisfies the following boundary conditions

Ik0; j ¼ Ik1; j; IkN ; j ¼ IkN−1; j; I ki;0 ¼ Iki;N ¼ I ki−1;N

where, N is total number of iterations.

(i-1, j-1) (i-1, j) (i-1, j+1) 

(i, j-1) (i, j) (i, j+1) 

(i+1, j-1) (i+1, j) (i+1, j+1) 

Fig. 4 Eight-neighbor system
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Until now, the pseudo-code of the improved TV model based on weighting function is
summarized in Algorithm ITVWF.

4 Experimental setup

All experiments are programmed in Matlab2016A and executed on a computer with Intel Core
i5–4200 CPU at 1.6GHz and 8GB physical memory.

4.1 Performance evaluation

In order to evaluate the performance of image processing technology [4, 19], peak signal-to-
noise ratio (PSNR) [12, 24] and structure similarity (SSIM) index [21, 27] commonly used
metrics. PSNR is calculated as follows

PSNR ¼ 10� log10
2552

1

M 1 � N1
∑i; j I i; jð Þ−bI i; jð Þ
� �2 ð18Þ

where, the size of the original image I(x, y) is M1 ×N1, and bI i; jð Þ is denoised image. PSNR is
the approximation degree between the denoised and original images.

The greater PSNR indicates better denoising performance.
SSIM is another evaluation metric based on image structures, which is closer to human

subjective visual features. SSIM is calculated as follows

Table 5 Used parameters

Parameters Vault

In Eq. (12), parameter T: 1
In Eq. (15), time step Δt: 0.2
In Eq. (15’), ε: 0.01
In Eq. (16), λ: 0.02
In Eq. (17), h: 1
The maximum iteration N: 200
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Original image Camera Noisy image Camera

Original image Boat Noisy image Boat

Original image Plane Noisy image Plane

Original image Test Noisy image Test

Fig. 5 Original images and their noisy images

(a) TV (b) NLM (c) ITVWF

Fig. 6 Three different denoising results for noise image Camera with Gaussian noise σ = 20
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SSIM ¼
2μIμbI þ C1

� �
2σ

IbI þ C2

� �
μ2
I þ μ2bI þ C1

� �
σ2I þ σ2bI þ C2

� � ð19Þ

where μI and μbI are the means of images I and bI respectively; σI and σbI are the standard

deviations of the images I and bI respectively. σ
IbI is the covariance of I and bI ; C1 and C2 are

positive constants to avoid a null denominator, and they are determined as follows.

C1 ¼ k1Lð Þ2 and C2 ¼ k2Lð Þ2 ð20Þ
where L is the dynamic range of the image (255 for 8-bit grayscale images) while k1 and k2 are
two constants whose values are k1 = 0.01 and k2 = 0.03 respectively [7].

The value range of SSIM is [0, 1]. The larger SSIM indicates the more similar between the
denoised and original images and the better the denoising effect.

4.2 Parameters selection

The parameters have an impact on the performance of the image processing technology [34].
During these experiments, for comparing denoising performance with other models, six

(a) TV (b) NLM (c) ITVWF

Fig. 8 Three different denoising results for noise image Plane with Gaussian noise σ = 20

(a) TV (b) NLM (c) ITVWF

Fig. 7 Three different denoising results for noise image Boat with Gaussian noise σ = 20

20960 Multimedia Tools and Applications (2020) 79:20947–20971



parameters of ITVWF are determined in advance, they are listed in Table 5. Of course, they are
not meant to be optimal.

5 Experiment results and analysis

These experiments are divided into three parts: one is that three original images
Camera, Boat, Plane and a test image Test to add Gaussian random noise with mean
zero and standard deviation 20 are used in the experiments, the other is that four
original images Bridge, Barbara, Peppers and Male with other noises such as salt-
and-pepper with density (d) 0.03 or 0.1, Poisson, Speckle with deviation 0.04 noises
are used in the experiments, and the third is to compare the CPU time between TV
and ITVWF models for different images.

5.1 Experimental results and analysis of adding Gaussian noise

Three original images Camera, Boat, Plane and a test image Test are first applied in the
experiments to add Gaussian random noise with mean zero and standard deviation 20, the size
of Camera, Boat and Plane is 256 × 256, the size of Test is 98 × 256, and their grayscale is
256. These images are shown in Fig. 5. The results of image denoising are analyzed first by
observation.

In order to verify the effectiveness of ITVWF, for four noisy images in Fig. 5, the denoising
results of ITVWF are compared with that of the traditional TV model and NLM method. The
denoising results are shown in Figs. 6, 7, 8, and 9 respectively.

By observing Figs. 6, 7, 8, and 9, the denoising results are discussed as follows.

(1) Observe Fig. 6(a)-(c)

Comparing Fig. 6(a) and the original Camera, we find that, although TV model can preserve
the edges of original Camera, there are some staircase effects in regions where intensity

(a) TV (b) NLM (c) ITVWF

Fig. 9 Three different denoising results for noise image Test with Gaussian noise σ = 20

(a) TV (b) NLM (c) ITVWF

Fig. 10 Local amplification images of noising image Camera
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changes slowly and flatly. Comparing Fig. 6(b) and the original Camera, although there is no
staircase effect in Fig. 6(b), many details of the original Camera have been lost. Comparing
Fig. 6(a) and (c), the denoising effect of ITVWF is better than that of TV model. For example,
although there is no obvious difference between the denoising effects of ITVWF and TV
models in the human body and the camera regions, the denoising effect of ITVWF is
significantly better than that of TV model especially in building region.

(2) Observe Fig. 7(a)-(c)

Comparing Fig. 7(a) and the original Boat, we find that, although TV model can preserve
many details of the boat itself, the denoising effect of TV model is not ideal in regions where
intensity changes slowly and flatly such as boat’s sides and sky. Comparing Fig. 7(b) and the
original Boat, although there is no staircase effect in Fig. 7(b), a lot of detailed information has
been lost in the entire image especially in sea and boat regions, i.e., NLM method achieves too
smoothing effect than TV model and ITVWF. Comparing Fig. 7(a) and (c), the denoising
effect of ITVWF is better than that of TV model. For example, although there is no obvious
difference between the denoising effects of ITVWF and TV models in the boat itself region,
the denoising effect of ITVWF is significantly better than that of TV model especially in the
sky region.

(3) Observe Fig. 8(a)-(c)

Comparing Fig. 8(a) and the original Plane, we find that, although TV model can preserve
many details of original Plane, there are staircase effects in regions where intensity changes

(a) TV (b) NLM (c) ITVWF

Fig. 11 Local amplification images of noising image Boat

(a) TV (b) NLM (c) ITVWF

Fig. 12 Local amplification images of noising image Plane
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slowly and flatly such as outside the cabin. Comparing Fig. 8(b) and the original Plane,
although there is no staircase effect in Fig. 8(b), many details of the original Plane have been
lost. Comparing Fig. 8(a) and (c), there is almost no difference between the TV model and
ITVWF’s denoising effects only by human eyes. In other words, by observation only,
denoising effect of ITVWF is not better than that of TV models for image Plane.

(4) Observe Fig. 9(a)-(c)

Although the original Test looks like a binary image, it is actually a grayscale image. Because
the original Test has no details, which makes almost no difference between the original Test
and the denoising effects of TV model, NLM method and ITVWF.

In addition to the above experiments, the local amplification images of Camera, Boat,
Plane and Test are also used to further observe the denoising results in more detail, which are
shown in Figs. 10, 11, 12, and 13.

By observing Figs. 10, 11, 12, and 13, the denoising results are discussed as follows.

(1) Observe Fig. 10(a-c)

From Fig. 10(a-c), we find that TV and ITVWF models can preserve more detailed
information than that of NLM method, and their denoising effects are more natural in
visual performance. However, through observing Fig. 10(a) and (c), there are more
obvious staircase effects in the sky region of Fig. 10(a) than that of Fig. 10(c).
Comparing Fig. 10(b) and Fig. 10(c), Fig. 10(c)'s detailed information is richer than
that of Fig. 10(b) especially in the neck and the eyes, nose, mouth regions of the
human face. These facts show that the denoising effect of ITVWF is better than that
of TV model and NLM method.

(a) TV (b) NLM (c) ITVWF

Fig. 13 Local amplification images of noising image Test

Table 6 Compare results of TV, NLM and ITVWF for four denoised images

Denoising
Image Metric

TV NLM ITVWF

Camera PSNR 27.9206 (26) 26.7998 29.5308 (27)
SSIM 0.8177 0.8002 0.8461

Boat PSNR 27.6098 (25) 26.4928 29.6601 (23)
SSIM 0.7798 0.7632 0.8089

Plane PSNR 28.9594 (34) 26.5408 30.7494 (30)
SSIM 0.8464 0.8489 0.8968

Test PSNR 30.0094 (30) 27.6023 33.8304 (32)
SSIM 0.9718 0.9561 0.9879
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(2) Observe Fig. 11(a-c)

From Fig. 11(a-c), we find that there are obvious staircase effect in the sky region of Fig. 11(a),
which indicates that the denoising performance of TVmodel is not very good. For Fig. 11(b), there
is almost no detailed information on the sky and mast regions, which indicates that the denoising
performance of NLMmethod is not ideal. For Fig. 11(c), there are almost no staircase effects in the
sky region, and detailed information on the sky andmast regions is also well preserved, which show
that the denoising performance of ITVWF is better than that of TV model and NLM method.

(3) Observe Fig. 12(a-c)

From Fig. 12(a-c), we find that the denoising result of ITVWF is clearer and richer than that of
TV model and NLMmethod in the letter region of the cabin, there are some staircase effects in
the outside the cabin of Fig. 12(a) and (c), and there are no more details on the outside of the
cabin in Fig. 12(b), these facts show that, in general, the denoising performance of ITVWF is
not better than that of TV model and NLM method.

(4) Observe g Fig. 13(a-c)
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Fig. 14 Comparisons of PSNR for Camera, Boat, Plane and Test images
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From Fig. 13(a-c), the denoising results of TVmodel, NLMmethod and ITVWF are almost similar.
Of course, for these four experimental images, ITVWF can achieve better denoising results

in most cases only by observation, which shows that the denoising performance of ITVWF for
Gaussian noise is better than TV model and NLM method in most cases.

Except above these experiments, we also calculated PSNR and SSIM for each denoised
images when σ = 20 to analyze denoising results. Table 6 lists these results with the highest
PSNR and SSIM, and the number in parentheses is the optimal times of iterations. Since NLM
is not an iterative algorithm, there is no optimal number of iterations.

From Table 6, the optimal times of iterations for the denoised images Boat and
Plane obtained by ITVWF are the least. Although TV model achieves the smallest
optimal number of iterations for the other two denoised images Camera and Test, the
difference is not significant. Therefore, from the optimal number of iterations, the
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Fig. 15 Comparisons of SSIM for Camera, Boat, Plane and Test images

Fig. 16 Original images Bridge, Barbara, Peppers and Male
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performance of ITVWF is more ideal. Further, PSNR and SSIM of ITVWF are
compared to those of TV model and NLM method. We found that PSNR and SSIM

(a) d = 0.03 (b) d = 0.1 (c) Poisson (d) Speckle

Fig. 17 Noisy images of Bridge, Barbara, Peppers and Male

Table 7 . The PSNRs of the six denoising models for image Bridge, Barbara, Peppers and Male.

Images Noise TV FBD TSM TV-FF TV-FBD ITVWF

Bridge d = 0.03 26.48 30.12 22,69 29.79 30.35 31.29
d = 0.1 23.64 26.76 21.04 25.91 26.80 27.13
Poisson 26.53 28.84 22.71 28.46 27.63 29.17
Speckle 27.27 26.41 20.96 26.22 27.52 28.78

Barbara d = 0.03 28.32 30.63 24.90 30.01 31.04 32.17
d = 0.1 25.71 28.09 20.73 27.84 28.37 29.28
Poisson 29.04 30.45 26.44 30.12 31.16 32.25
Speckle 27.23 26.24 22.57 26.16 28.72 28.86

Peppers d = 0.03 29.79 33.28 25.77 33.15 33.57 34.04
d = 0.1 25.95 29.92 26.13 29.86 30.28 30.21
Poisson 30.84 31.27 26.67 31.16 32.16 32.35
Speckle 25.46 25.08 21.52 24.07 26.37 27.18

Male d = 0.03 30.11 31.30 26.65 31.12 31.51 32.21
d = 0.1 25.87 28.99 21.50 28.62 29.38 29.52
Poisson 27.12 30.56 24.68 29.26 29. 94 30.45
Speckle 26.75 26.21 23.84 25.06 26.87 27.10
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of ITVWF are always higher. Therefore, from PSNR and SSIM, the performance of
ITVWF is also more ideal.

To further validate the effectiveness of ITVWF, PSNR and SSIM of noised images Camera,
Boat, Plane and Test by adding Gaussian noises with standard deviations σ = 5, 10, 15, 20, 25
respectively using ITVWF, TV and NLM are shown in Figs. 14 and 15.

From Figs. 14 and 15, we find that ITVWF always obtains the higher PSNR and SSIM for
noised Camera, Boat, Plane and Test images, which show that ITVWF can achieves better
denoising performance that that of TVmodel and NLMmethod for various Gaussian noises by
comparing the PSNR and SSIM values.

From subjective and objective results, ITVWF can not only obtain better denoising results
for adding various Gaussian noises, but also obtain more realistic visual effects between the

Table 8 The SSISs of the six denoising models for image Bridge, Barbara, Peppers and Male

Images Noise TV FBD TSM TV-FF TV-FBD ITVWF

Bridge d = 0.03 0.8702 0.9837 0.7837 0.9527 0.9875 0.9887
d = 0.1 0.7616 0.8618 0.7065 0.8205 0.8547 0.8965
Poisson 0.8983 0.9304 0.7792 0.8921 0.9047 0.9542
Speckle 0.9029 0.8673 0.7096 0.8608 0.9022 0.9264

Barbara d = 0.03 0.9161 0.9776 0.8076 0.9443 0.9831 0.9889
d = 0.1 0.8544 0.9158 0.7058 0.9122 0.9268 0.9647
Poisson 0.9573 0.9836 0.8986 0.9776 0.9757 0.9831
Speckle 0.9007 0.8678 0.7678 0.8634 0.8948 0.9198

Peppers d = 0.03 0.9552 0.9933 0.8653 0.9917 0.9939 0.9962
d = 0.1 0.8570 0.9635 0.8935 0.9428 0.9745 0.9779
Poisson 0.8791 0.9741 0.9517 0.9704 0.9813 0.9840
Speckle 0.8218 0.8276 0.7076 0.8135 0.8411 0.8536

Male d = 0.03 0.9805 0.9848 0.8548 0.9799 0.9837 0.9873
d = 0.1 0.8407 0.9480 0.7582 0.9326 0.9586 0.9572
Poisson 0.9003 0.9804 0.8284 0.9633 0.9798 0.9810
Speckle 0.8704 0.8696 0.7896 0.8249 0.8712 0.8728

Table 9 CPU time of different models (In seconds)

Image Noise TV FBD TSM TV-FF TV-FBD ITVWF

Bridge d = 0.03 0.971 2.462 1.953 2.011 1.758 1.051
d = 0.1 1.114 2.590 2.087 2.519 1.953 1.106
Poisson 0.992 2.584 2.108 2.242 1.786 1.039
Speckle 1.079 2.573 2.004 2.376 1.794 1.082

Barbara d = 0.03 1.105 2.457 2.088 2.165 1.792 1.103
d = 0.1 1.213 2.484 2.370 2.387 1.801 1.229
Poisson 1.018 2.461 2.293 2.144 1.809 1.027
Speckle 1.136 2.583 2.486 1.426 1.873 1.156

Peppers d = 0.03 0.989 2.398 1.987 2.130 1.764 1.078
d = 0.1 1.155 2.469 2.116 2.259 1.787 1.184
Poisson 0.998 2.433 2.105 2.184 1.803 1.092
Speckle 1.106 2.452 2.120 2.275 1.776 1.005

Male d = 0.03 1.004 2.401 2.010 2.186 1.782 1.101
d = 0.1 1.217 2.537 2.314 2.433 1.805 1.137
Poisson 1.015 2.483 2.227 2.318 1.797 1.113
Speckle 1.120 2.526 2.263 2.357 1.809 1.124
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noisy image and original image. The denoising performance of ITVWF is the best matching
with human visual perception in most cases.

5.2 Experimental results and analysis of adding other noises

Although Gaussian noise is the most common, it is not all. In order to more fully examine the
performance of ITVWF, other noises such as salt-and-pepper with density (d) 0.03 or 0.1,
Poisson, Speckle with deviation 0.04 are added to the four images including Bridge, Barbara,
Peppers and Male respectively, their size is 256 × 256 and grayscale is 256. These images are
shown in Fig. 16.

In Fig. 17, the images of each column from left to right are noisy images added salt-and-
pepper with d = 0.03, d = 0.1, Poisson, and Speckle noises into original image Bridge,
Barbara, Peppers and Male respectively.

In order to show the denoising performance of ITVWF, in addition to TV model, other
state-of-the-art TV-based models such as FBD [6], TSM [1], TV-FF [9] and TV-FBD [31] are
also compared for adding salt-and-pepper, Poisson, and Speckle noises. Tables 7 and 8 list the
PSNR and SSIS of the six compared denoising models respectively. In these tables, black bold
numbers indicate better values than ITVWF.

In Table 7, for the image Peppers to add salt-and-pepper with d = 0.1 noise, TV-FBD
achieved the highest PSNR, i.e. PSNR= 30.28, and PSNR of ITVWF is 30.21, the difference
between them is 0.07, which is not significant.

For the imageMale to add Poisson noise, FBD achieved the highest PSNR, i.e. PSNR= 30.56,
and PSNR of ITVWF is 30.45, the difference between them is 0.11, which is not significant.

In addition to the above two cases, ITVWF always achieved the highest PSNR for all other
cases, which obviously indicates that, in most cases, ITVWF can achieve better denoising
performance than the other five compared models in terms of PSNR.

In Table 8, for the image Barbara to add Poisson noise, FBD achieved the highest SSIS, i.e.
SSIS = 0.9836, and SSIS of ITVWF is 0.9831, the difference between them is 0.0005, which is
not significant.

For the image Male to add salt-and-pepper with density d = 0.1, TV-FBD achieved the
highest SSIS, i.e. SSIS = 0.9586, and SSIS of ITVWF are 0.9572, the difference between them
is 0.0014, which is not significant.

In addition to the above two cases, ITVWF always achieved the highest SSIS for all other
cases, which obviously indicates that, in most cases, ITVWF can achieve better denoising
performance than the other five compared models in terms of SSIS.

From Tables 7 and 8, we notice that, for four images with Speckle noise, their PSNR and SSIS
are lower than those of adding other two types of noises, i.e., salt-and-pepper with density d= 0.03
and Poisson, only are higher than some adding salt-and-pepper with density d= 0.1, which indicates
that the denoising effect of ITVWF is not very satisfactory for Speckle noise with density d= 0.1.

From Tables 7 and 8, we further notice that PSNR (and SSIS) of ITVWF are always higher than
that of TV model, which shows that improved TV model based on weighting function is very
effective.

5.3 Comparison of CPU time

In addition to comparing the performance of different image denoising models, another
important issue for image denoising is the CPU time. Table 9 shows CPU time of different
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image denoising models for images Bridge, Barbara, Peppers andMale with salt-and-pepper,
Poisson, and Speckle noises. In Table 9, black bold numbers indicate that ITVWF has the least
CPU time for specific noise.

From Table 9, we find that, except for the images Bridge with salt-and-pepper noise d = 0.1,
Barbara with salt-and-pepper noise d = 0.03 and Peppers with Speckle noise, although
ITVWF is not a denoising model with the least CPU time, it has the least CPU time than all
other four denoising models compared except TV model, which shows that IVTWF not only
can provide satisfactory denoising performance, but also has a smaller computational cost in
most cases, so it is a practical image denoising model.

6 Conclusions

Due to the traditional TV-based image denoising model only applies the gradient information
and ignores the local variance of the image, it is easy to generate obvious staircase effects. In
order to make better use of the advantages of TV model and overcome its disadvantages, in
this paper, we propose a novel image denoising model ITVWF, which introduces the
weighting function into the regular term of TV model. TV model is applied to transform the
image denoising into a problem of minimizing the energy function, and the weighting function
is used to calculate the gradient magnitude and local variance values of each pixel and analyze
their characteristics in the different regions of an image. The experimental results show that the
proposed image denoising model ITVWF has several main advantages.

(1) The advantages of ITVWF are that it is unsupervised and simple to operate, and its
denoising process is fully adaptive and does not require manual intervention. During
image denoising, different regions of the image are processed differently, which only
depends on the content of the image.

(2) ITVWF can effectively suppress the staircase effect of the traditional TV model in most
cases, and image details and local information can be better protected.

(3) ITVWF can be used for denoising various noises with lower CPU time.
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