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Abstract

In the current era of digital communication, the use of images is growing exponentially
since they are one of the best ways of expressing, sharing and memorizing knowledge. In
fact, images can be used in various real-world applications, like biology, medical
diagnosis, space research, remote sensing, etc. However, finding the most relevant images
that meet the users’ needs is a challenging task, especially when the search is performed
over gigantic amounts of images. This has led to the emergence of several image retrieval
studies during the past two decades. Typically, research studies in this area were focused
on the Content-based Image Retrieval (CBIR). However, extensive research have proved
that there is a ‘semantic gap’ between the visual information captured by the imaging
devices and the image semantics understandable by humans. As an alternative, re-
searchers’ efforts have been oriented towards the Text-based Image Retrieval (TBIR).
Indeed, TBIR is a typical method that helps bridge the issue of ‘semantic gap’ between
the low-level image features and the high-level image semantics. Its policy consists in
associating textual descriptions with the images, which constitute the focus of the
research queries later on. In this paper, we analyze various image annotation methods,
namely: Visual Content-based and Users’ Tags-based Image Annotation Methods. In
particular, we focus on the visual content-based image annotation techniques since they
are one of the dynamic research fields nowadays.
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1 Introduction

In the early days of digital communication, the exchange of information was mainly used
through text documents. Nowadays, and especially with the progress of multimedia technol-
ogies and the emergence of Web 2.0, vast amounts of information are stored in a visual form.
This has created an urgent need for effective and efficient tools that help find the required
visual information. Therefore, a large number of research studies that focus on image retrieval
have emerged over the past two decades. These research efforts can be divided into two types
of approaches:

1.1 The content-based image retrieval (CBIR)

This type of approach focuses on the retrieval of images based on their visual characteristics,
such as the shape, texture and color [149]. It involves three steps as shown in Fig. 1:

Offline feature extraction step It consists in representing the set of images of a collection
according to their visual contents. Thus, each image is indexed in a condensed form repre-
sented by visual characteristic vectors, color and texture histograms, etc.

Online feature extraction step It consists in extracting the visual content of the query image
and representing it by visual characteristic vectors, color and texture histograms, etc.

Similarity matching step It consists in matching the visual features of the query image with
those of the collection images in order to achieve the results that are visually similar.

1.2 Text-based image retrieval (TBIR)

This type of approach focuses on the return of potentially relevant images compared to a user-
described textual research query [335]. It involves three steps as shown in Fig. 2:

Image annotation step It consists in associating one or more keywords to each image stored
in the database.

Search formulation step It consists in defining a set of formulas in order to reformulate the
query initially sent by a user.

Matching step It consists in matching the image keywords with the reformulated query in
order to achieve the results that meet the user's needs.

Fig. 1 General architecture of CBIR systems
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In the last decades, the CBIR technology has been used in general-purpose applications [15,
34, 39, 41, 103, 114, 115, 162, 195, 206, 305, 329] and specific domains, such as medical
sciences [23, 209], robotics [141] and remote sensing [82]. Thus, it has been the focus of
numerous surveys in the literature [61, 160, 169, 173, 242, 257, 287, 288]. Indeed, the CBIR
technology is frequently adopted because of its ability to provide more than one related
outcomes occur by only one search if more than one equally likely image present in the
database. The required time also is less to find all these related images. In addition, the feature
extraction methods are easy, effective and less expensive. However, this technology suffers
from two major limitations: First, it is impractical for users to use CBIR systems because they
need to provide query images. Second, the ‘semantic gap’ between the low-level content
features and the semantic concepts used by humans to interpret images make the use of CBIR
systems a challenging task [261]. As defined in [261], the ‘semantic gap’ problem is ‘the lack
of coincidence between the information that one can extract from the visual data and the
interpretation that the same data have for a user in a given situation’. Thus, semantically
different images may have similar low-level characteristics. The example of the two images in
Fig. 3 illustrates the ‘semantic gap’ issue. Indeed, these images have similar color histograms,
but semantically they are different: in the foreground of the first image include flowers, while
the second image shows a man playing golf [218].

Fig. 2 General architecture of TBIR systems

Fig. 3 Two images with similar colors histograms, but two different semantic meanings
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To avoid the issues caused by the CBIR technology, most users prefer to use textual queries
[261]. Therefore, the images should be annotated. In fact, the annotation process consists in
associating textual descriptors (keywords, labels, terms or captioning descriptions) with the
image sets. These descriptors will be used at the indexing phase, and will be the focus of
research queries later on. In fact, the TBIR technology could lead to a lot of critical
applications.

Medicine: The importance of digital image retrieval techniques increases in the emerging
fields of medical imaging, picture archiving and communication systems (PACS). Up to now,
textual index entries are mandatory to find medical images from hospital archives or other
sources [4, 314].

Radiology: Automatic image search methods help radiologists interpret a given image by
identifying similar images in databases. Recent work has shown the interest of characterizing
the content of images by semantic terms [152]. These terms can be used to describe a large
number of information relating to the visual content of images. They can be derived from
radiologist observations or automatically predicted from low-level features extracted from
pixels [151].

Digital libraries: Some general digital libraries, such as the Internet Public Library and the
National Science Digital Library (NSDL), are widely known and used. In fact, the advance of
computer technology makes it possible to include a colossal amount of information in different
formats within a digital library. In addition to traditional text-based documents, such as books
and articles, other categories of materials, including images [106], audio, and video, can also
be easily digitized and stored. Therefore, an effective search of this multimedia information
based on textual queries through the interface of digital libraries becomes a significant research
topic.

Touristic attractions: Over the years, the number of images taken by tourists to memorize
their vacation memories, unfolded events and visited places has grown exponentially thanks to
the popularity of digital cameras and the integration of digital sensors into mobile phones.
Thus, there is an urgent need for effective and efficient annotation policies that help retrieve as
quickly as possible the relevant visual information from great collections of tourist-type
images [27, 28, 196].

Image research engines and social medias: In the era of digital communication, massive
amounts of information are daily exchanged between people via the World Wide Web. In
the beginning, the exchange of information was mainly used through text documents.
However, with the technological progress, the exchange of information covers different
other forms, such as audio, video and image. Thanks to the advancements of digital image
acquisition devices, image capturing is no longer a difficult task. In fact, images have been
increasingly used since they are one of the best ways of expressing, sharing and memo-
rizing knowledge. The retrieving of the relevant images from gigantic image collections by
using textual queries attracts more and more users in various professional and amateur
fields, specially through the Web engines (such as Google and Yahoo) and the social media
(such as Flickr and Instagram).

As previously mentioned, the TBIR technology requires the annotation of the image
sets. However, the annotation content as well as the techniques adopted to generate the
annotation vocabulary constitute challenges for researchers. In fact, some research studies
have focused on the annotation of social images based on the refinement of the tagging
information associated with them by the social community [83, 147, 199, 231, 316, 317,
342]. Others have processed to the extraction of textual information from the visual
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content of images [16, 19, 65, 106, 154, 167, 181, 200, 224, 227, 244, 274, 320, 343].
Thus, recent surveys have focused in studying TBIR technology in the literature [2, 47,
210, 336]. However, none of them gives attention to the techniques used to refine the
social information to annotate images. Besides, they do not provide complete studies over
the automatic image annotation (AIA) techniques. In order to supplement existing reviews
in the literature, we analyze in this paper various image annotation methods, namely:
Visual Content-based Image Annotation and Users’ Tags-based Image Annotation. We
specifically studying the social tag refinement techniques and the visual content-based
image annotation techniques, including image segmentation, visual feature extraction and
machine/deep learning.

The remaining of this paper is organized as follows: In Sect. 2, we focus on identifying the
parameters of the image annotation systems. In Sect. 3, we provide an overview on the image
annotation methods. In Sect. 4, the visual content-based image annotation techniques are
descripted. In Sect. 5, we discuss some challenges, open issues, and promising directions in
image annotation field.

2 Parameters of image annotation systems

Image annotation systems are characterized by a set of parameters. As shown in Fig. 4, the
values that can have these parameters make it possible to describe this type of systems.

The parameters of the annotation systems can be reviewed in the form of five questions:

2.1 What information should be analysed to annotate an image ?

It is about defining the set of features from which images can be analyzed and interpreted in
order to generate the necessary annotations [95]. We can mention:

The visual information [8, 19, 24, 65, 119, 154] It helps annotate images by using their
visual features (such as texture, color, shape, etc.).

The textual information [27, 49, 113, 120, 125] It helps annotate images by using their
textual features (such as URLs, title, users’ comments and tags, etc.).

These pieces of information cannot be employed in their raw form. Indeed, a treatment
process is a fundamental step to generate significant annotations for images. Different image
processing methods and techniques are detailed in Sect. 3 and Sect. 4, respectively.

2.2 What views should be considered to annotate an image ?

It is about defining the angles from which images can be seen and analyzed [26]. This can be
realized according to several views, such as:

The structural (anatomical) view [27, 224, 244, 265, 292, 297, 298, 343] It helps define the
sensory objects depicted on an image (people, buildings, monuments, means of transport, etc.)
as well as their components.

The behavior view [27, 197] It helps define the activities performed within an image (sports,
adventure, trade, etc.).

The event view [27, 274] It helps define the events unfolded within an image (festivals,
parties, etc.).
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The emotional view [107, 310] It helps define the emotions of the people visualized on an
image (sadness, joy, fear, etc.).

2.3 What views’ facets should to be descripted to annotate an image ?

It is about defining the different facets of each view of an image to be descript [26], among
which we can mention:

The Taxonomic facet [19, 27, 65, 167] It helps categorize the physical objects depicted on
the images, the unfolding activities and events, the characters’ emotions, etc. For instance, the
taxonomic facet of the visual object ‘Airplane’ is ‘Air Transportation Service’ and that of the
visual object ‘Bus’ is ‘Ground Transportation Service’.

The Qualificative facet [27, 167, 227, 292] It helps describe the observable specifications of
the physical objects as well as those of their components, the unfolding activities and events,

Fig. 4 Parameters of image annotation systems
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and distinguish them from other objects, activities and events. For example, the qualification
facet of the event ‘Battle of the Oranges’ is ‘Fruit Festival’ and that of the event ‘Las Fallas’ is
‘Folkloric Festival’.

The Spatial facet [16, 106, 200, 266] It helps indicate the location of the physical objects,
and the unwinding location of the events and activities. For instance, the spatial facet of the
landmark ‘Sagrada Familia’ is ‘Spanish Palace’ and that of the landmark ‘Eiffel Tower’ is
‘French Tower’.

The Temporal facet [27, 266] It helps indicate the epoch of construction of the historical
monuments, and the unwinding season of the events and activities. For example, the temporal
facet of the activity ‘Snowboarding’ is ‘Winter skiing’ and that of the activity ‘Kite surfing’ is
‘Summer skiing’.

2.4 What vocabulary should be used to annotate an image ?

It is about defining the basic source from which the vocabulary of the annotation can be
selected [26]. Indeed, image annotation can rely on an unstructured vocabulary [19, 65, 106,
112, 113, 120, 125, 147, 170, 199, 231, 297, 298, 316, 317, 342], such as the keywords chosen
and introduced by users, or on a structured vocabulary [4, 92, 151, 167, 181, 200, 224, 227,
244, 265, 274, 292, 343], such as the ontological terminologies. Indeed, an ontology is a
controlled and structured vocabulary of agreed-upon labels (or terms) that represent the
knowledge of the different entities of a particular domain [51]. The use of ontologies has
gained increasing importance since the complexity, number, and size of specific field datasets
have increased [12].

2.5 How to annotate an image ?

It is about defining the manner according to which the annotation process can be executed
[26]. In fact, there are three available modes of executing an image annotation process:

The manual annotation [4, 92, 151, 167, 227, 244, 265, 274, 297, 298] It requires that the
human annotators introduce some descriptive keywords when they browse a collection of
images.

The automatic annotation [14, 27, 48, 65, 83, 86, 112, 113, 120, 125, 147, 170, 199, 202,
231, 292, 303, 306, 316] It helps automatically detect and classify the objects depicted on any
image and label them with a set of keywords.

Table 1 Contrast of annotation modes

Annotation
mode

Initial human
interaction

Machine task Human effort

Manual Type some
descriptive
keywords.

Provide a storage space, such as a disk
space or database, to save the
image-associated annotations.

Provide sufficient descriptive
information for retrieval
purposes.

Automatic No interaction. Automatically generate descriptive
keywords by using recognition
technologies.

Verify and refine the quality of
the machine final output for
annotation accuracy.

Semi-automatic Provide initial
descriptions in
the beginning.

Analyze human descriptions and refine
them.

Provide some annotations and
work with machine input.
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The semi-automatic annotation [16, 106, 181, 200, 224, 343] It requires the intervention of
human annotators in order to generate initial descriptions of the images. These descriptions are
later refined by an annotator system in order to provide definitive descriptions of these images.

A comparison of the different annotation modes is demonstrated in Table 1.

3 Image annotation methods

Digital images are widely adopted in many fields and for multiple purposes since they are
good mediums of expression, memorization and communication of information. Therefore, it
is often necessary to analyze, understand and describe the semantic content of images in order
to annotate them. Indeed, image annotation is not only a key step that helps optimize the
quality of the search results [19, 27, 65, 106, 120, 147, 181] but also an efficiency factor of
other type of applications, such as computer vision training algorithms [298], supervised
machine learning [227, 265], comparative analyses [167, 297], etc. Image annotation can be
based on the information derived from the image visual content processing or image-
associated text processing.

3.1 Visual content-based image annotation methods

With the evolution of computer vision technologies, image processing has become a promising
solution for multiple applications, such as image annotation. The keywords generated after
executing an annotation process often constitute the focus of the retrieval process. These
keywords can reflect the visual objects depicted on the images or can be relative to their
semantic content, such as activities, events and emotions.

3.1.1 Low-level feature-based image annotation

The annotation based on the low-level features of images, like color, texture and shape, relies
essentially in recognizing the objects. Indeed, an object recognition process may often rely on
one of the region-based segmentation techniques. Thereafter, an identifier will be assigned to
each recognized object, either automatically [8, 109, 119, 219, 292] or through the intervention
of human operators [4, 92, 151, 224, 244, 265, 297, 298, 343]. Automatic image annotation
(AIA) is often based on one of machine learning techniques [53, 78, 121, 216, 228, 243, 272,
278, 315, 320]. Fig. 5 illustrates the progress of the automatic low-level features-based image
annotation process.

For example, the collaborative Web framework ‘WebMedSA’, designed by Vega et al. [292],
is founded on a client-server architecture that aims at managing a big set of biomedical images.
On the client-side, the role of the user is simply to send a query image. The server applies a
polygonal segmentation to the received image and annotate it according to its objects’ sub-
anatomies. The annotation terms are extracted from one of the used ontologies. When the
server accomplishes its tasks, it sends a notice to the user that receives the image described in
terms of its sub-anatomies localization (x, y, z) related to their names.

Yang et al. [320] considered the image annotation as an image classification issue, in which
each keyword is treated as a distinct class label. At first, each image is segmented into up to 10
regions, where each region is represented with a low-level feature vector. The classification
problem is next addressed by using a Bayesian framework. To preserve the in-variation of the
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training data and reduce the noises, an estimation of the class conditional probabilities in the
feature subspace is constructed via a Complement Components Analysis (CCA).

‘LabelMe’ is a Web-based image annotation tool designed by Russell et al. [244]. It aims at
building a large database of annotated images by collecting the contributions of many people.
Indeed, the users are supposed to contour and annotate the objects depicted on the images by
using a set of terms derived fromWordNet. One important concern is the quality control. This
control is provided by the users themselves. The obtained image collection, with ground truth
labels, is dedicated to the object detection and recognition research applications.

The ‘M-OntoMat-Annotizer’ tool, suggested by Petridis et al. [224], is designed to annotate
large collections of images. It is used by the information systems of research and organization,
as well as the knowledge-assisted analysis of multimedia. This desktop tool has the capacity to
automatically ensure the segmentation task, according to the low-level MPEG-7 visual
descriptions, in order to provide detailed annotations for the objects. It covers two main
functions: On the one hand, it helps users link the detected visual descriptors to the corre-
sponding ontological terms. On the other hand, it helps enrich the domain ontologies with
these multimedia descriptors, as an RDF instance form, in order to ensure an automatic
reasoning afterwards.

A collaborative annotation system called ‘EMERGSEM’ is suggested by Zomahoun et al.
[343]. The purpose of this system is to extract the image meanings from different interpreta-
tions suggested by human annotators thanks to a domain ontology. The annotation process
unfolds as follows: first, an ontology model and a lexical dictionary are proposed to the
annotators. Thus, the annotators propose a set of instances, indicating the objects depicted on
an image, by using the ontological concepts. Once the instances are attributed and stored as an
xml file, the initial image meanings are obtained. Thereafter, a computing of meaning

Fig. 5 Progress of the automatic low-level feature-based image annotation process
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similarities are executed to refine the users’ initial annotations. Finally, the resulting annota-
tions are displayed and will be the focus at the research process.

A novel interactive multiscale tagging framework is proposed by Tang et al. [276]. The
policy of this approach consists first in segmenting each image into multiple regions. Second, a
dynamic multiscale cluster labeling strategy is proposed in order to manually label these
regions, which are mapped into different buckets by efficient locality sensitive hashing (LSH)
method. This step can be regarded as a coarse clustering where each bucket is a cluster. In fact,
the coarse clustering can keep the efficiency of the proposed approach in dealing with large
dataset. Thereafter, each cluster is recursively clustered into smaller clusters until it is able to be
manually labeled with a one tag. During the labeling process, the partially obtained tags are fed
back in order to refine the hashing after finish labeling several buckets. After finishing the
labeling process, the region tags are combined into image tags. A tag refinement process is
then performed based on a matrix decomposition method. This process is able to refine the
image tags to boost their accuracy and assign tags to some unlabeled images.

3.1.2 Top-level feature-based image annotation

The annotation based on the top-level features of images aims at associating the images with a
set of keywords that reflect their semantic meanings. Indeed, the semantic meaning can be
related not only to the objects depicted on the images but also to their characteristics, such as
localizations, taxonomies, etc. The top-level feature-based image annotation methods can be
essentially divided into two categories: semantic annotation methods according to the objects
depicted on the images [65, 167, 181, 227, 274] and semantic annotation methods adding
spatial information [16, 19, 106, 200].

In fact, the first type of semantic annotation methods consists in detecting the visual
features of images, such as the regions or objects, and deducing from them the set of global
semantic meanings, such as the scenes (people, landscape, indoor, outdoor, animal, etc.) and

Fig. 6 Progress of the semantic annotation process using the objects depicted on an image
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the taxonomies of the objects (sheep/herbivore animal, car/means of transport, etc.). Fig. 6
illustrates the progress of the semantic annotation process according to the objects depicted on
an image.

For example, Magesh et al. [181] used ICONCLASS tool to extract the low-level visual
features of images. Thereafter, the images are integrated within the ‘protégé’ tool for the users
to associate the corresponding names with the extracted objects by using the instances of the
adopted ontology. Finally, the super-classes of each chosen instance as well as their semantic
properties are automatically mapped and associated with the target image to enrich its initial-
suggested semantic annotation.

A multi-level natural image annotation framework is suggested by Fan et al. [65] for a
semantic-based retrieval. The main idea of this framework is to automatize the salient object
detection [207] by using learning-oriented techniques. Indeed, the use of the salient objects
permits a precise extraction of the images’ features, and consequently a more expressive
representation of their contents. Thereafter, the image semantic concepts are modeled and
classified by using a finite mixture models that help approximate the class distributions of the
relevant salient objects. The resulting multi-level image annotation provides a more satisfac-
tory semantic retrieval based on various keywords expressed at different semantic levels.

We can also mention the multi-platform Java desktop application ‘AISO’ designed by Lingutla
et al. [167]. Indeed, ‘AISO’ tool extends the source code of the Interactive Segmentation Tool1 (IST),
originally developed for comparing the performance of image segmentation algorithms. ‘AISO’ is an
interactive tool that provides the researchers and curators the opportunity to work with two
alternative modes of operation: in the first step, users delineate the portions of images into multiple
highlighted segments through the Interactive Graph Cuts (IGC) [31]. In the second step, users
annotate the resulting segments with a biological Ontology-based controlled vocabulary. The
ontological terms are provided through the lightweight Plant Ontology Web service [51]. Moreover,
the users may assign a taxonomic name to each entire annotated image by using the uBio namebank
search Web service2. The quality of the segments of the annotated image can provide training data
sets for developing applications of data mining, machine learning, predictive annotation, semantic
inference, and comparative analysis.

The second type of semantic annotation methods pay more attention to the spatial positions
of the objects depicted on the images as well as the spatial relationships that exist between
them. Indeed, the use of spatial information helps enrich the semantic description of images
and enhance the precision of the queries handled for an automated retrieval. Fig. 7 illustrates
the progress of the semantic annotation process using the spatial relationships that exist
between the image's objects.

For example, the image annotation tool suggested by Hollink et al. [106] provides the
functionality to ensure an automatic region segmentation of an art painting image collection,
which are then manually labelled with annotation concepts [105]. In fact, when a user decides
that all relevant regions are labelled, the system carries out the calculation of the spatial
information. Two types of spatial concepts are considered: (i) the absolute positions of objects
(e.g., east, west) and (ii) the relative spatial relations between objects (e.g., left, above). Thus,
existing ontology concepts are used to specify the positions as well as the spatial relations that
are presented through an RDF schema. The spatial relations are extracted from SUMO [208],
which is a large and well-structured ontology that takes into account Cohn’s ideas about the

1 http://kspace.cdvp.dcu.ie/public/interactive-segmentation/index.html
2 http://www.ubio.org/index.php?pagename=xml_services
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spatial relations. The absolute positions are extracted from the general lexical of WordNet
database.

Likewise, Muda et al. [200] used spatial information derived from an ontology. In this
study, spatial annotations are addressed to enhance the precision of queries handled at the
automated semantic retrieval. Indeed, assuming that a preliminary object segmentation and
annotation step is realized (by adopting one method or another deriving from the literature), the
design and implementation of this tool help automatically extract, identify and deliver the
absolute spatial position of each object depicted on an image by providing the couple of
coordinates (xc, yc) of its center of gravity (C). The resulting absolute spatial information help
calculate and infer the relative spatial relationships of each pair of objects according to a set of
predefined inference rules. A general heuristics helps infer 3-dimensional annotations, which
indicate the relative closeness of the depicted objects to the viewer, by calculating the relative
order of magnitude height information.

3.1.3 Summary

Despite the fact that the low-level feature-based image annotation methods help reduce the
‘semantic gap’ problem by providing abstract-anatomical descriptions for the images, the
results are often considered subjective and far from describing the semantic details.

As an alternative, semantic-oriented annotation methods are originated. These methods help
generate and infer semantic descriptions, reflecting the image semantic content, either in terms
of their visual characteristics (regions, objects, etc.) or in term of the spatial relationships
existing between the objects that appear on the images. However, the expression of the image
semantic content is considered partial. This is due to the absence of a predefined and precise

Fig. 7 Progress of the semantic annotation process using the spatial relationships that exist between the image’s
objects
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semantic model (or pattern), which permits to define all semantic views and facets that must be
described for providing a complete semantic description of the semantic content of such an
image. In addition, even though visual content-based image annotation methods made it
possible to reduce the problem of the ‘semantic gap’, by adopting object recognition tech-
niques and occasionally recognizing their semantic facets, the recognition of the activities and
events that appear on the images is almost unnoticeable.

3.2 Users’ tag-based image annotation methods

The collaborative aspect of the World Wide Web has given users the possibility to not only
share images, but also to associate them with free textual descriptions known as keywords (or
tags). However, these tags can be noisy, subjective, superfluous, ambiguous and/or missing,
whence they are not considered as a reliable solution when it comes to image annotation.
Therefore, numerous research studies have dedicated considerable efforts to refine the users’
initial keywords. A refinement process helps certainly improve the quality of the image
annotations. The policy consists in crushing the noisy and redundant labels, adding new-
more expressive ones, finding a more-logical organization for the tags, etc. The annotation
based on the refinement of the users’ tags can be based on the calculation of the score of the
different relationships existing between the keywords or the richness of structured vocabulary
of external resources, such as ontologies.

3.2.1 Image annotation based on the measurement of semantic relationships
between tags

Numerous Web portals, like Flickr and Delicious, offer users the ability to share images that
they manually associate them with freely chosen tags [251, 275, 277]. However, the tagging
information are often ineffective for indexing images. Therefore, it is necessary to adopt
refinement techniques. These techniques can rely either on semantic similarity measurements
[83, 199, 231, 342] or co-occurrence measurements [147, 316, 317]. Fig. 8 illustrates the
progress of the semantic annotation process based on the calculation of the score of the
semantic relationships between tags.

For example, Quattrone et al. [231], illustrate that the real-world folksonomies are charac-
terized by power law distributions of tags and not commonly use similarity metrics. Indeed,
Jaccard coefficient and Cosine similarity often fail to compute the semantic similarity between
tags. As an alternative, a new metric is developed to capture the semantic similarities between
the large-scale folksonomies in order to increase the accuracy of the researches realized on the
images. This metrics is based on a mutual reinforcement policy: two tags are deemed similar if
they are associated with similar resources, and vice-versa two resources are deemed similar if
they are labelled with similar tags.

The research study of Mousselly-Sergieh et al. [199] consists in classifying the concepts
associated with the images obtained in real-life from specific geographical locations, and
shared later on the Flickr social network. Two steps are defined: the first one consists in
identifying and distributing the tags that frequently occur in the folksonomy on a set of
clusters. Thereafter, the probability distributions of each other tag is derived based on its co-
occurrences with the most frequent tags in the folksonomy. After computing the different
probability distributions, the distance between each pair of tags is calculated according to the
extended Jensen-Shannon Divergence measure (JSD), known as Adaptation of the JSD
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measure (AJSD) [187], such as: two tags are considered similar if the distance between their
distribution is under a certain threshold. Therefore, the resulting classification of tags helps
improve the quality of the image annotations by adding new similar concepts to the initial
concepts.

Ksibi et al. [147] proposed to improve the quality of browsing results provided by Flickr
social search engine. Indeed, a weighted graph is first constructed by using a new-suggested
measure named Second Order Context Flickr Similarity (SOCFS). This graph helps represent
the different co-occurrence relationships, which exist between the social data. The initial tags
are then refined by estimating the set of relevant concepts based on the weighted graph.

Xu et al. [317] measured the semantic relatedness between two images shared on Flickr
social network, according to their associated tags, in order to improve the clustering and
searching processes. The proposed approach follows a set of steps: in the first one, four
functions are defined based on the information theory to measure the semantic relatedness
between the tags. The second step consists in integrating each pair of tags on a bipartite graph
to remove noisiness and redundancy that they cause. The final step helps add the order
information of the semantic relatedness of the tags so that the tags with higher positions
become favorited.

3.2.2 Image annotation based on the richness of structured knowledge resources

The policy of this type of annotation method consists in refining the socio-tagging information
associated with the images thanks to the richness of external semantic resources in order to

Fig. 8 Progress of the semantic annotation process based on the measurement of semantic relationships between
tags
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generate more pertinent annotations [27, 112, 113, 120, 125, 170]. The accredited refinements
can have different forms: adding new semantic information, removing the noisy information,
reordering the tagging information according to a priority function, etc. Fig. 9 illustrates the
progress of the semantic annotation process based on the richness of structured vocabularies.

In this context, we can mention the ‘STAG’ and ‘Linked tag’ systems, designed by Im et al.
[112] and Im et al. [113], respectively. Indeed, ‘STAG’ system aims at providing the semantic
relationships connecting the users’ tags by using Dbpedia3. The final annotations associated to
the images are presented in the form of triplets, namely (Tag, Relationship, Tag), for a later
SPARQL interrogation. In ‘Linked tag’ system, the authors have added a new method for tag-
ranking that exploits the RDF annotation graph. More specifically, the most relevant tag is
placed at the first position and the least relevant is placed at the last one.

‘iTagRanker’ is also a socio-tagged image annotation system designed by Jeong et al. [120]. It
consists first in collecting the tags from similar images, and then propagating them towards the
untagged image in question. Thereafter, the collected tags are reorganized according to their
semantic relevance versus the image. The reorganization of the tags is based on a matrix that
contains the semantic relatedness measures of all tags by favoring labels over others. The computing
of the semantic relatedness degrees between each pair of concepts is performed based on the Lcn
(Leacock et al.) [157] and Lin [166] measurements and by relying on theWordNet Ontology.

‘Tourism-Annotizer’ tool [27] helps annotate 25.000 images derived from Flickr social
network. The first step consists in modeling the semantic content of the images by using an
Extended Conceptual Graph Formalism (ECGFs) and relying on the ‘Touring Ontology’. The

Fig. 9 Progress of the semantic annotation process based on the richness of structured vocabularies

3 http:// www.dbpedia.org/
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output of this step consists of a pattern that helps model the different semantic facets of an
image, namely: the taxonomic, temporal, spatial and qualificative facets of the visualized
objects, unfolding events and activities. The second step consists in building a set of semantic
rules, which are characterized by their types. These rules are expressed by the logics of
predicates. The application of any semantic rule generates a semantic value that is associated
with the image. An inference engine is implemented to create new semantic rules, and
consequently to generate new semantic results.

3.2.3 Summary

The image annotation method based on the refinement of the tags associated with the images
shared on the social networks is sometimes based on the calculation of the semantic similarities
between tags, and sometimes on their co-occurrence relationships. This method of annotation
is purely automatic, so it can be applied to annotate large collections of images. However, it is
not considered an effective solution to express the semantic content of the images because it is
based on static calculations not founded on a logical reasoning.

As an alternative, a method that consists in automatically ensuring the refinement of the socio-
tagging information based on structured-external resources emerged. This method helps generate
more pertinent annotations expressing not only the objects depicted on the images but also the
unfolding events and activities. However, the expression of the semantic content of images is often
considered a delicate task due to the need of a predefined-semantic model or pattern.

4 Visual content-based image annotation techniques

In the field of digital communication, images are represented using low-level features, namely:
texture, color, shape, etc. Since an image is an unstructured array of small integers called
pixels, the main step in the semantic understanding of its content is to extract the effective and
efficient visual features from these pixels. Indeed, an appropriate visual feature representation
helps significantly improve the quality of the semantic learning and annotation results. It
should be mentioned that the visual feature extraction is preceded by a global or region-based
representation. In the approaches based on a global representation, a global feature vector is
extracted from the whole image, such as color correlogram, color histogram, edge direction
histogram, and so on. The global features are useful for classifying simple scene categories,
like ‘mountain’, ‘sunset’, ‘building’, etc. The regional approaches require prior image seg-
mentation followed by a visual feature vector representation of each generated region. In
general, users are often more interested in specific regions rather than in the entire image given
that the image representation based on a regional level is proved to be closer to the human
perception system [127]. In this paper, we focus on the Region-based Image Representation
(RBIR), which is the cornerstone for many image annotation and research approaches.
Specifically, image segmentation, feature extraction and semantic learning algorithms and
techniques are reviewed successively.

4.1 Image segmentation

Image segmentation plays a significant role in computer vision, object recognition, tracking,
and image analysis as a preprocessing step [164]. There is a great amount of literature on

21694 Multimedia Tools and Applications (2020) 79:21679–21741



segmentation, among which region-based methods have shown promising results [133].
Indeed, for the region-based image representation, a fundamental step is to divide the images
into multiple components according to the homogeneity of their visual features. Therefore,
image segmentation techniques and algorithms have been the focus of numerous image
annotation and research studies in the literature. This will be the subject of this sub-section.

The grid-based image segmentation is a simple segmentation technique that consists in breaking
down the image into blocks [13, 190, 198, 228, 69]. The visual features are then extracted from these
blocks. Although the block-based segmentation is not greedy in terms of computation, it still has a
limitation for multi-object problems in a segmented region. In addition, region features are usually
not accurate because it is difficult to determine the size of blocks for the image representation. It is so
recommended to use this segmentation technique in domain-specific applications, such as medical
image archival and analysis [98].

The edge-based image segmentation technique consists in evolving a segmentation curve
around an object [35, 36, 151, 340]. For instance, in order to segment an object depicted on an
image, the active contour curve is evolving from an initial point and stopping when it coincides
with the boundary of this object. Therefore, the choice of the starting point of the curve is the
main issue of this technique. Some existing methods have proposed to manually assign the
initial seed point to start active contour, and others perform a reset if the first initialization did
not return the correct boundary of the object, which is an expensive task in terms of
computation. The edge-based image segmentation technique is generally used in specific
domains, such as image preprocessing applications [3]. For more details on the edge detection
techniques readers can refer to [145].

The clustering algorithm-based image segmentation technique, like k-means and Fuzzy k-
means algorithms [203], work usually as follows: At first, an image is divided into a set of
blocks of size (4x4) pixels. For each block, the texture and/or color features are extracted. A
clustering algorithm is then executed in order to cluster the feature vectors of the blocks.
Therefore, the pixels that belong to the blocks of the same cluster constitute a region [5, 150,
194, 282, 302]. The main problem of this segmentation technique is the need to predefine the
number of segments. In addition, an unsuitable choice of the number of clusters k can generate
poor results. The choice of the optimal centroids is also a complex task.

The statistical model-based segmentation technique assumes that the image’s objects are
understood by a certain pattern. The list of the models frequently used for image segmentation
are: Object Background/ Threshold Model [248], Markov Random Field Model [60, 76, 205,
214], Neural Model [296], Fractal Model [222], Fuzzy Model [33],Multi-resolution [271] and
Transformation model, namely: Watershed model [295] and Wavelet model [37]. For a deep
studying, interested readers can consult [11].

The graph-based segmentation technique consists in modeling an image with a weighted-
undirected graph. Indeed, a pixel is associated with nodes and edge weights that define the
(dis)similarity between the neighboring pixels. The image's graph is then partitioned according to a
criterion designed to model the best clusters. Each resulting partition is considered as a segment of the
image. Themore popular graph-based segmentation algorithms are:RandomWalker [86],Normalized
Cuts [254],Minimum Spanning Tree-based Segmentation [330], Isoperimetric Partitioning [87] and
Segmentation-based Object Categorization. The shortcoming of this segmentation technique is that
the finding of the optimal partition is a computationally expensive task.

The region-growing method is a typical serial region segmentation algorithm [132]. Its
main idea relies on the assumption that the neighboring pixels within one region have similar
values. The usual procedure requires first to select a seed pixel, and then compare it with its
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neighbors. If a similarity criterion is satisfied, the pixel will be merged in the cluster as one of
its neighbors. Indeed, the regional growth algorithm is simple and requires only a few seed
points to be executed. It helps separate the connected regions with the same characteristics, and
usually provide good boundary information and significant segmentation results. The selection
of the similarity criterion can be freely specified even a large number. The disadvantage of this
algorithm is that the computational cost is significant [10]. Besides, the noise and grayscale
unevenness can lead to emptiness and over-division. The shadow effect on the image is also
not very good [289].

Deep convolutional neural networks for semantic image segmentation have recently
become a dynamic study field [308]. Indeed, since the large breakthrough in deep
learning, the research efforts have been oriented towards the CNN-based approaches
[165]. The relentless success of deep learning techniques in various high-level com-
puter vision tasks, like the supervised approaches of CNN for image classification and
object detection [146, 260, 270], has motivated researchers to explore the effectiveness
of such networks for pixel-level labelling problems, such as semantic segmentation.
Therefore, many segmentation techniques have been suggested, among which we can
mention: Fully Convolutional Network [174], SegNet [17], Bayesian SegNet [139],
DeepLab [45, 46], MINC-CNN [20], CRFasRNN [338], DeepMask [226], etc. Readers
can refer to [75] for more detail on the semantic segmentation methods based on deep
learning.

4.2 Feature extraction

As previously mentioned, the first step at the region-based image representation is the image
segmentation. At this stage, the visual features are extracted from the segmented regions to be
later on the focus of the semantic learning, classification and annotation processes. This section
includes a brief description on the different low-level feature extraction, feature descriptors and
deeper feature extraction. Available extraction algorithms are also illustrated.

4.2.1 Low-level feature extraction

Indeed, the image annotation and retrieval systems often require an analysis of the image
content, which might refer to the color, texture, shape and spatial relationships of the image
segments.

• Color features Color features are among the most important and wide used components in
image retrieval systems. Color features are defined according to particular color space or
model, such as RGB, LAB, LUV, HSV (HSL), YCrCb and the hue-min-max-difference
(HMMD) [168, 185, 264]. After specifying the color space, the color features can be extracted
from the segmented regions. Numerous color features have been suggested in the literatures,
such as color moments (CM) [111, 118], color histogram [117, 269], color correlogram [110],
color coherence vector (CCV) [217], etc. On his side, MPEG-7 [186] standardizes various
color features, like color layout descriptor (CLD), dominant color descriptor (DCD), scalable
color descriptor (SCD) and color structure descriptor (CSD). Table 2 [336] presents a
summary data on the different color descriptors with their advantages and disadvantages.
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• Texture features It is usually thought that image annotation and retrieval systems use texture
features for recognition and interpretation. Thus, a large number of techniques have been
suggested to extract this type of features. According to the domain from which the texture
features are extracted, we can distinguish into spatial and spectral texture feature extraction
methods.

In essence, the spatial texture feature extraction approach consists in calculating the statistics of
pixels or finding the local pixel structures within the original image domain. The spatial texture
feature extraction techniques may be categorized as structural, statistical and model-based, with:

The structural techniques [96, 159, 191] represent the texture by well-defined primitives
(micro-texture) and a hierarchy of spatial arrangements (macro-texture) of those primitives.

The statistical techniques represent the texture by using non-deterministic properties that
govern the distributions and relationships between the grey levels of an image. Tamura texture
features [123, 273, 99], Moments [216] and features derived from Grey Level Co-occurrence
Matrix [173] are the common statistical features of the spatial domain.

The model-based texture analysis uses stochastic or generative models. Indeed, the underlying
texture property of an image is characterized by model parameters. Fractal Dimension (FD) [40]
and Markov Random Field (MRF) [52, 286] are from the most popular texture models.

In spectral texture feature extraction approach, an image is represented in a space whose
coordinate system has an interpretation, which is closely related to the texture features (such as
size or frequency). Fourier Transform (FT) [239], Gabor filters [30, 57, 21, 184], Discrete
Cosine Transform andWavelet Transforms [111, 153, 178, 183] are the common techniques of
the spectral domain.

Table 3 [225] provides a summary data on the different texture methods with their
advantages and disadvantages.

• Shape features Shape features help human beings identify and recognize the real-world
objects. Thus, this type of features was frequently used in numerous image annotation and
retrieval applications. Shape feature extraction techniques are classified into two main cate-
gories [332]: contour-based [70, 187, 327] and region-based [65, 167, 227] techniques.
Indeed, contour-based techniques compute shape features by using only a portion of the
region that is the boundary of the shape. Therefore, they are more susceptible to noise than

Table 2 Contrast of different color descriptors

Color
method

Pros Cons

Histogram Intuitive, simple to calculate. Important dimension, susceptible to noise,
ignoring spatial information.

CM Vigorous, compact. Does not describe all colors, ignoring spatial
information.

CCV Considering spatial information. Expensive computational cost, important
dimension.

Correlogram Considering spatial information. Expensive computational cost, ignoring scale and
rotation, susceptible to noise.

DCD Vigorous, compact, perceptual meaning,
considering spatial information.

Need for post-processing for spatial information.

CSD Considering spatial information. Susceptible to noise, ignoring scale and rotation.
SCD Scalability, compact on need. Less precise if compact, ignoring spatial

information.
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region-based techniques. Region-based techniques help extract shape features from the entire
regions. They are frequently employed by colored images annotation and search systems.
Yang et al. [322] presents a survey on the existing shape-based feature extraction approaches.
Fig. 10 shows the classification hierarchy of the shape feature extraction techniques [322].

• Spatial relationships Spatial relationships are also considered in image processing. They help
reveal the locations of objects depicted on a given image as well as the spatial relationships

Fig. 10 An overview on the shape description techniques

Table 3 Contrast of texture features

Texture
method

Pros Cons

Spatial
texture

Easy to understand, meaningful, can be extracted from any
shape without losing information.

Important dimension, susceptible to
noise, ignoring spatial
information.

Spectral
texture

Need less computation, vigorous. Need square image regions with
sufficient size, ignoring semantic
meanings.
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between the different objects.We canmention twomain cases: absolute spatial location of regions
(e.g., east, west) [106] and relative location of regions (e.g., left, above) [16, 106].

4.2.2 Feature descriptors

Over the last two decades, some descriptors, like SIFT and SURF, have been used on object
recognition for image annotation and retrieval purposes. These descriptors are defined by some
invariance properties, like scale, rotation, viewpoint and illumination. It should be mentioned
that other descriptors of scene recognition, like GIST, bypass the segmentation and the
processing of individual objects or regions.

• SIFT features The Scale Invariant Feature Transform (SIFT) was proposed by Lowe et al.
[177]. The policy of SIFT consists in estimating key points’ location, orientation and scale to
create the descriptor. The SIFT descriptor was founded on the human vision behavior. It
privileges gradients and orientations to slightly move location in order to recognize objects. It
computes gradients on key point’s region that is partitioned into (4×4) sub-regions. From each
region, the orientation histograms are estimated. SIFT performs better on invariant rotations
and scale changes but neither in the case of low-contrast and illumination changes within an
image. Some years later, the SIFT descriptor was normalized by L2 – norm, inducing
illumination invariances. The rotation and scale invariances are calculated from detector’s
information. The SIFT descriptor was employed in many TBIR systems, like [25, 62, 323].

• SURF features The Speeded-Up Robust Feature (SURF) was introduced by Bay et al. [18].
It needs key points’ location and scale to create the descriptor. The descriptor estimates first
interest point’s orientation and then the gradients’ approximation (dx and dy). The key point’s
region is partitioned into sub-regions, where for each one, ∑ dx, ∑ dy, ∑ |dx| and ∑ |dy| are
computed. SURF descriptor is also normalized by L2 – norm. It is a sparse, scale and rotation-
invariant descriptor, which performs better in the case of repeatability, robustness and distinc-
tiveness. It is also robust to noise, geometric, detection errors and photometric deformations.
SURF performs better at low illumination within an image. Recent TBIR systems have used
SURF descriptor, like [258, 312].

• GIST features GIST descriptor is a computational model, proposed by Olive et al. [212],
which focuses on the shape of the scene itself, on the relationship between the surface outlines
and their properties, and neglects the objects depicted on the images and their relationships. The
policy of GIST descriptor is based on a very low dimensional representation of a given image,
which is called Spatial Envelope. A set of perceptual dimensions (openness, naturalness,
expansion, roughness and ruggedness) are proposed in GIST to represent the dominant spatial
structure of a given scene. These dimensions can be effectively estimated by using the spectral
and coarsely localized information. The proposed model generates a multi-dimensional space in
which scenes that share membership in semantic categories, such as highways, streets, and
coasts, are projected closed together. The performance of the Spatial Envelope model demonstrates
that specific information about object shape or identity are not necessary for scene categorization
and the modeling holistic representation of the scene generates information about its probable
semantic category. The GIST descriptor has been used in TBIR systems, like [281, 323].
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4.2.3 Deeper features

Because of the diversity of appearances, backgrounds, rotation of cameras, object scales and
illumination conditions, it is hard to manually design an efficient feature descriptor that helps
describe all object types. With the rapid advancement in deep learning, deep Conventional
Neural Network (CNN), which can learn deeper features, was introduced in order to address
the different issues caused by the traditional architectures. The CNN model is investigated in
Sect.4.3.2.

4.3 Semantic learning

The image feature extraction is followed by a higher-level semantic learning. In the beginning,
the image semantic learning was based on the use of relevance feedback technique (RF) [241,
313]. Nevertheless, this type of learning causes similar issues than the traditional manual
annotation approach. As an alternative, automatic image annotation approaches (AIA), using
machine learning techniques (ML), have emerged.

4.3.1 Machine learning

The increasing volume of digital images in numerous fields, the availability of different types
of data and the progress of computational processing have made ML an important aspect in the
Artificial Intelligence (AI). Indeed, ML techniques are intended to enhance the learning
competence of computers and construct models that help predict future data. ML is the most
important data analysis method, which iteratively learns from the available data by using
algorithms. The Iterative follow-up is performed thanks to models, which are programmed to
accept new data. Significant predictions and decisions may be provided by these models. The
ML techniques are classified into two distinct types, namely: supervised-learning (SL) and
unsupervised-learning (UL). Recently, deep-learning techniques (DL) emerged as new in-
stances of ML. Fig. 11 shows the diagrammatic representation of ML techniques.

• Supervised-learning Supervised-learning (SL) is the research of algorithms, which reason
from externally supplied instances in order to produce general hypotheses that constitute
predictions about future instances. In other words, the aim of the SL is building a concise
model of the class labels distribution in terms of predictor features. The resulting classifier is
thereafter used to assign class labels to the testing instances, where the predictor feature values
are known but the class label value is unknown. Fig. 12 illustrates gradually the process of SL.

SL is the most used technique in applications where available past data predict the expected
future events. Equation (1) shows the general representation of SL [211] as:

D ¼ X i; yið ÞNi¼1;X i x1i ;……; xdi
� �n o

ð1Þ

Where D is the training dataset, N is the number of training examples, Xi is the attributes
set, and yi is the categories assigned to Xi.

& The k-Nearest Neighbor (k-NN), which is known as a simple and efficient approach,
is a non-parametric supervised classifier. It has been adopted since the early 1970’s in
statistical applications [71]. Assuming that a distance function is used (e.g., Euclidean
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distance and Manhattan distance formula), the primary theory behind k-NN consists
in finding a group of k samples in the calibration dataset, which are nearest to
unknown samples. From these k samples, the label (or class) of unknown samples
are determined by computing the average of the response variables (i.e., the class
attributes of the k-nearest neighbor) [6, 309, 229]. K-NN was the focus of many
research studies. For instance, an algorithmic model for automatic classification of
different types of flowers using k-NN classifier was proposed by Guru et al. [91]. This
model is based on textual feature extraction preceded by a threshold segmentation
method. In Ref. [131], ten morphological characteristics have been analyzed to
identify four Monogenean species of fishes. An accuracy of 91.25% was yield using
a k-NN classifier. Ref. [121] proposes a new Visual-Semantic Nearest Neighbor (VS-
KNN) method by collectively exploring visual and semantic similarities for image

Fig. 11 Diagrammatic representation of SL techniques

Fig. 12 Steps of the supervised learning process
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annotation. In Ref. [219], a categorization based approach is presented for an auto-
matic image annotation. Images are first segmented using k-means clustering, and
then processed to form color and texture feature vectors. The feature vectors are tested
using k-NN. The system is validated using ten categories from COREL images.

& The Decision Trees (DT) are multi-stage decision tools [232, 233, 32]. They are
named binary or n-ary trees according to the number of decisions taken at each of
their internal node. DTs accept inputs as a situation described by a set of attributes and
provide the predicted output for the given input later on. The input/output relation-
ships may be expressed by using human understandable rules, such as if-then rules.
The DTs are trained by using a group of labelled training samples that are character-
ized by a set of attributes. The policy of construction of a DT consists in recursively
partitioning the training samples into groups without overlapping. At each division
step, the used attribute is ignored. The process continues until all samples of a group
are put in the same class or when the tree achieves its maximum depth and any
attribute persists to divide them. In order to label new samples, a tree is crossed from
the root node towards a leaf node by using the attribute values of the new samples. It
should be mentioned that several DT induction methods have been proposed in the
literature, such as ID3 [232], C4.5 [233] (improved version of ID3), and CART [22].
Just as illustration, Sethi et al. [250] adopted the CART methodology for classifying
outdoor images into four classes, namely: ‘marine’, ‘sunset’, ‘nocturne’ and ‘arid’
images. For image representation, each component of HSL color space is partitioned
into 8 intervals. The 24 obtained intervals (3x8) are used as attributes for images. In
the study of Wong et al. [313], image acquisition parameters, such as exposure time,
aperture and focal length, are considered as attributes during the scenery images
annotation and classification processes. The C4.5 method is used to learn decision
rules for mapping these attributes to the image semantics. In the study of Shyu et al.
[259], a C4.5 decision tree is built based on a set of images that are relevant to the
query. This tree is then used as a model to classify database images into relevant and
irrelevant classes. A similar methodology is employed by Low et al. [176] to enhance
the performance of relevance feedback of image retrieval systems. ID3 decision tree is
designed to classify the images as relevant or irrelevant based on their color features.
Recently, a classifier using DT and Rough Sets (RS) [221] is designed by Patil et al.
[220] to tag untagged images. The suggested method helps accurately classify the
images of the database by using the strength of texture and color image features.
Tallapragada et al. [272] proposed a semi-decision algorithm that can target only the
tumor parts from the medical images. The identification and morphological process-
ing of the tumor images are based on a thresholding segmentation. Thereafter, texture-
based techniques are used to extract the feature vectors from the segmented regions.
Finally, medical images under-test are classified by using a DT classifier.

& The Support Vector Machine (SVM) is one of the standard ML algorithms that follows
statistical learning methods. Thanks to powerful theoretical foundations available, SVM
classifier has been frequently used to learn top-level concepts from low-level image
features. SVM helps classify linear and non-linear data by using kernel mapping. It helps
reach the optimal class boundaries by determining the maximum distance between the
classes. From a training dataset, an SVM classifier works by dividing the data into distinct
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sets via an optimal separator named hyper-plan. Therefore, the main objective of SVM is
to find the hyper-plan that separates the points closest to the separator in a data space. The
data points nearest to the separator are labelled as support vectors. An SVM is essentially a
binary classifier. Assume an example where it exists a set of training data {x1, x2,...,xn} as
vectors in space X ⊆ S belonging to two distinct labeled classes {l1, l2,...,ln}, with li ∈ {−1,
1}. The aim is to find a hyper-plane to separate the data. Indeed, it is possible to define
many hyper-planes. However, the optimal separating plane is the one which helps
maximize the margin between the nearest data point of each class and the hyper-plane.
Since that automatic image classification and annotation require multiclass classifiers, it is
necessary to train a distinct SVM for each concept, where each SVM provides a
probability value. The final class label attributed to the image is generated by merging
the output decisions of the all classifiers. SVM has been frequently used to resolve divers
classification issues, such as object recognition, text classification and image annotation [7,
29, 38, 42, 53, 68, 74, 81, 94, 109, 123, 158, 161, 179, 228, 230, 249, 255, 278, 285, 307,
321, 337, 343]. For example, Feng et al. [68] addressed the problem of providing large
labelled training data needed in the training step of a classifier to annotate the big
collections of images. The main idea consists in starting from a small set of labelled
training images, and successively annotate a larger set of unlabeled images by using the co-
training approach. Two statistically independent classifiers are used to co-train and co-
annotate the unlabeled images. Thus, the bootstrapping approach has been used to co-train
different features (color histogram, texture and shape) extracted from two segmentation
methods by using SVMs. An effective framework for AIA is suggested by Huang et al.
[109]. It consists in dividing respectively the main objects and background objects from an
image, and then extracting their color, texture and shape features. Indeed, a combination of
Active ContourModel (ACM) [137] and JSEG algorithm [58] is leveraged to segment and
detect themain objects in an image. Themain classifier and backgroundmodels are trained
using the object-based feature vectors. Gaussian Mixture Model (GMM) is employed to
explore the relationships between image classes and image backgrounds based on the built
association knowledge base.Wei et al. [307] addressed the problem of traditional methods
providing poor experiment results due to the learning of the co-occurrence of keywords
and images, and the ignorance of the correlation between keywords. Indeed, an automatic
image annotation approach, which helps reach a higher accuracy by using multi-class
SVM with ontology, was proposed. Specifically, semantic dictionary WordNet is used to
calculate the correlations between keywords of the derived hierarchy. To present the image
visual features and apply a mixed kernel in multi-class SVM, Bags of VisualWords model
is employed. Finally, the probability outputs from multi-class SVM and the word corre-
lations probability calculated from ontology are combined to provide a final result. More
recently, Alham et al. [7] introduced a distributed SVM algorithm for large-scale image
annotation (MRSVM), which divides the training dataset into smaller subsets and trains
SVM in parallel by using Map-Reduce pattern.

& The Naive Bayes (NB) classifier [63, 129, 331], is frequently employed in
AIA approaches since it is a simple probabilistic classifier that is based on the
Bayes theorem with strong assumptions. This classifier consists in building a
probability model independent of features. Indeed, the Naive Bayes classifier
supposes that the presence (or absence) of a particular feature of a class is
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unbound to the presence (or absence) of any other feature, given the variable
of class. In essence, NB classifier helps annotate images with multiple seman-
tic categories. Indeed, according to certain features extracted from an image,
NB classifier determines the posterior probability that this image belongs to
any particular category. Therefore, the image can be assigned to multiple
categories. The images with the same category can be classified according
to the probabilities. Rui et al. [243] proposed a new approach for auto image annota-
tion. In the learning stage, image segments are grouped into region clusters using k-means
algorithm with pair-wise constraints [299]. In the annotation stage, a semi-naïve Bayesian
model (SNB) is employed to compute the posterior probability of concepts given the
independent subsets of region clusters. Yavlinsky et al. [326] used the Gaussian and EMD
[240] kernels to estimate the feature distribution. They used color and texture features for
image representation if it consists of the Gaussian kernel and region-based image repre-
sentationwhen it consists of the EMDkernel. Indeed, the regions are segmented by using a
simple k-means clustering. The average of the kernel functions is measured in order to
compute the conditional probability p (I | c) for each image I. In the study of Sami et al.
[246], an automatic image annotation approach, which integrates theNaive Bayes classifier
with the Particle Swarm Optimization algorithm (PSO) [50, 140, 284] for classes proba-
bilities weighting, is suggested. This hybrid approach consists in refining the output of
multiclass classification that is based on the usage of Naive Bayes classifier to automati-
cally label images with a number of words. Indeed, each input image is segmented by
using the normalized cuts segmentation algorithm in order to create a descriptor for each
segment. One Naive Bayes classifier is trained for each class. PSO algorithm is employed
as a search strategy to identify an optimal weighting for classes probabilities from Naive
Bayes classifier.

• Unsupervised-learning Unlike supervised-learning, in which the presence of the
outcome variables guide the learning process, the learning dataset in the
unsupervised-learning consists only of input vectors of unlabeled data. Indeed,
the unsupervised-learning algorithms analyze the set of input data, group the data
points based on perceived similarities and derive conclusions from these similar-
ities. The most commonly used unsupervised-learning techniques are clustering,
Hidden Markov Model (HMM) and Artificial Neural Networks (NNs). These
techniques help explore the unlabeled data in order to identify intrinsic or hidden
patterns.

& Clustering [14, 124] is an unsupervised-learning process, where one seeks to identify a
finite set of categories for describing the items from a dataset. The groups generated
following the execution of a clustering process are called clusters. Unlike supervised-
classification that analyses class-labeled instances, clustering process has no training stage
and it is often used when the clusters are not known in advance. Indeed, the attributes
providing the best clustering should be often identified in a first stage. A similaritymetric is
then defined between objects of data so that similar data objects are grouped into the same
cluster, while the different data objects are distant towards other ones. The clustering of
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data is based on the principle of maximizing the intra-cluster similarity andminimizing the
inter-cluster similarity. A good clustering method helps produce high quality clusters with
high-intra-cluster similarity and low-inter-cluster similarity. The efficiency of the clustering
techniques depends on the use of algorithms as well as the functions for distance
calculation. The quality of a given clustering method is also computed according to its
ability to discover some or all of hidden patterns. The most common clustering techniques
are the partitioning clustering and the hierarchical clustering [89, 136, 334]. In the study of
Wang et al. [302], images are segmented into blocks of size (4x4) from which color,
texture, shape, and location are extracted. Thereafter, k-means clustering is applied for
grouping the feature vectors into several clusters with each cluster corresponding to one
region. The clusters representing high-level categories, such as ‘textured/non-textured’,
‘indoor/outdoor’, ‘objectionable/benign’ and ‘graph/photograph’ help improve the re-
trieval process by narrowing down the searching range in the databases and ensuring
semantically adaptive searching methods. A clustering algorithm is also proposed by
Pandey et al. [215] for achieving a dataset with images grouped semantically. The resulting
image dataset can be used in CBIR systems. Indeed, the visual feature extraction is
preceded by a global representation. A combination of color histograms and moments,
Gabor texture, and pseudo Zernikemoments is adopted to provide vectors in color, texture,
and shape feature spaces, respectively. The used clustering algorithm is based on the
agglomerative method of hierarchical clustering algorithm. The used similarity measures
are vector cosine distance for histograms, L2 distance for texture and shape, and weighted
L1 distance for color moments. Kumar et al. [263] introduced an approach for image
feature vector classification using an unsupervised clustering technique. The suggested
approach aims at partitioning the trained image feature vectors into highly relative clusters.
It consists of two stages : (i) Image pre-processing stage, and (ii) Classification stage. In the
pre-processing stage, the set of the image feature vectors is trained from the set of grayscale
images through the spatial-statistical operators. It consists of two steps: feature extraction
and feature selection. In the feature extraction step, the input image is decomposed into
(8x8) blocks. On each block, three spatial statistical operators are applied and three features
from each individual block, such as average, standard deviation and variance, are extract-
ed. In the classification stage, the trained image feature vectors are partitioned into “m”
highly relative clusters using k-means algorithm and Euclidean distance measure.

& The Hidden Markov Model (HMM) is a finite state machine that has some fixed
number of states. It permits to provide a probabilistic framework for modeling time
series of multivariate observations. It consists of a statisticalMarkovmodel where the
system being modeled is supposed to be a Markov process with unobserved (hidden)
states. A HMM can be considered as a simplest dynamic Bayesian network. In HMM,
the state is not directly visible, but the output, which dependents on the state, is
visible. Each state has a probability distribution on the possible output tokens. Then,
the sequence of tokens generated by an HMM provides certain information about the
sequence of states. The general architecture of an instantiated HMM is presented in
the survey [256]. Ghoshal et al. [78] have used a HMM for annotating images, by
positing that image feature vectors describing low-level image content may be
stochastically generated by a HMM, the states represent the keywords of interest.
Wang et al. [301] pointed that human beings tend to view images as a whole. Thus,
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some semantic concepts cannot be learnable through single regions. The relationships
between regions have also been considered for the semantic indexing of images using
2-D HMM for image annotation. Senthilkumar et al. [247] introduced a method to
annotate images with keywords from a generic vocabulary of concepts or objects for
the purpose of content-based image retrieval. The suggested method is based on
HMMs for an automatic annotation and annotation-based image retrieval. In the
automatic annotation task, a Semantic annotated Markovian Semantic Indexing
(SMSI) is introduced. It consists in modeling the images, represented as sequence
of feature vectors characterizing low-level visual features, like color, texture and
oriented-edges, as having been stochastically provided by a HMM, whose states
represent concepts. The parameters of the model are estimated from manually anno-
tated (training) images. Then, each image from a large test collection is automatically
annotated with a posteriori probability of concepts present within it. Image Annota-
tion Using Spatial HMM is a 2-D generalization of the traditional HMM in the sense
that both horizontal and vertical transitions between hidden states are taken into
consideration. After annotating images, semantic retrieval of images can be performed
by using Natural Language processing tool, namely WordNet, and measuring seman-
tic similarity of annotated images in the database by using Markovian Semantic
Indexing (MSI) [22].

& The Artificial Neural Network (ANN) is an unsupervised machine-learning algorithm
inspired from the biological way of information processing of the human brain. It is
able to learn from examples and provide decisions about new samples. ANN is
credited for its ability to learn multiple classes all at once. An ANN consists of three
layers, namely: input, hidden and output. Each layer consists of nodes (or neurons)
performing numerical computations and other operations. Each neuron from a layer is
interconnected with other neurons presented in consecutive layers. There are a bias
assigned to each layer and a weight assigned to each interconnection. Fig. 13 shows a
simple neural network. The input layer has neurons equal to the dimension of input
sample. It is responsible for receiving large volumes of data as inputs in different
formats (text, images, csv files, etc.). The output layer is responsible for producing the
target outputs. All the calculation are performed in the hidden layer. Indeed, each
neuron from the hidden layer operates as a processing element. It is governed by an
activation function, which provides output according to the weights of the connecting
edges and the outputs of the neurons of the previous layer. During the training
process, a NN learns the edge weights in order to minimize the overall learning error.
To classify a new sample, each output neuron generates a confidence measure. The
class that corresponds to the maximum measure indicates the decision about the
sample. Fig. 14 shows the procedure of the simple Neural Network. Hambali et al.
[93] proposed a fruit classifier using a simple neural network model. The main aim of
this study is to categorize ‘jatropha fruits’ according to their color features. The input
layer consists of six neurons {x1, x2,…, x6}, where each neuron represents the color of the
elements ; R, G, B, L*, A* and B*, respectively. The input layer receives the signal, and
then distributes the signal to the neurons in the hidden layer. The number of neurons in
the hidden layer is seven and it is assumed sufficient to generate good prediction results.
The output layer consists of four neurons, {t1, t2, t3, t4}, which represent the quality that a
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fruit can have ; ‘immature’, ‘under mature’, ‘mature’ and ‘over mature’, respectively.
Park et al. [216] suggested a method of content-based image classification using a 3-
layer ANN, where the hidden layer consists of 49 neurons. The images for classification
are object images, which can be divided into background and foreground. Thus, a pre-
processing step is proposed for segmenting an image into a set of regions. The largest
region at the centre of the image is used to identify the image. The regions with similar
color distribution to the central region are considered as foreground (objects) regions.
The foreground regions are used in order to extract the statistical texture features, which
are transmitted to the ANN to classify the image into one of 30 concepts. In the study of
Kaya et al. [138], the Butterfly dataset, containing 140 butterfly images, is divided into

Fig. 13 A simple Neural Network

Fig. 14 Procedure of the simple Neural Network
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14 classes of different butterfly species of Styridae family. A pre-processing and
tessellation step is implemented for resizing the image to (256×256) pixels. Five texture
(correlation, contrast, entropy, homogeneity and energy) and three color (average of R,
G, and B color bands) features of images are extracted. Each texture feature is calculated
for different GLCMs (orientations are 0°, 45°, 90°, and 135°) and the distances (d = 1, 2,
3, 4) parameters that are established from the butterfly images. The average value of the
texture features are calculated and used with the color features as input for the nodes of
the ANN. Therefore, the number of input neurons is equal to the number of features of
the data set. The number of hidden layers is 1, that of hidden neurons is 50 and that of
output neurons is 14. In their study, Kuroda et al. [150] used four different 3-layer ANNs
in order to hierarchically classify image regions. The numbers of neurons used in the
hidden layers of these networks are 30, 10, 20, and 20, respectively. In this classifier, an
image is first composed into some regions, and then each region is roughly classified into
three broad categories, namely : ‘sky’, ‘water’, and ‘earth’, by using SEW neural
network. Second, the image features are extracted from each of the category, and the
impression words (like ‘bright/dark’, ‘heavy/light’, ‘warm/cool’, ‘emotional/reasonable’
and ‘rural/urban’) are estimated from the image by using the second neural network
called IW network. The regions belonging to sky or earth categories are classified into
much more detailed objects, such as ‘blue sky’, ‘cloud’, ‘sunset’, ‘mountain’, ‘green’ and
‘rock’, by using the OR neural network. The fourth neural network does not classify any
region, but it permits to associate an image with a vector of 18 dimensions and each
dimensionmeasures the degree of certain global characteristics of the image, like ‘bright/
dark’, ‘rural/urban’ and ‘busy/plain’.

4.3.2 Deep learning

The remarkable progress of the hardware technologies as well as the explosive growth
and availability of data have guided to the emergence of new machine-learning technique
called Deep-Learning (DL). DL has its roots from artificial neural networks and signif-
icantly outperforms its predecessors. It uses graph technologies with transformations
between neurons to develop learning models that consist of many hidden layers, as
shown in Fig. 15, where the name Multi-Layer Perceptron (MLP). The choice of the
number of hidden layers as well as the number of neurons at each hidden layer are open
issues in the DL approaches.
Traditionally, the efficiency of machine-learning algorithms has been highly related to

the quality of input data representation. Indeed, a bad data representation often degrades
the quality of the results produced by a machine-learning and leads to lower performance
compared to a good data representation. Thus, feature engineering has been for a long
time considered as an important research direction in ML. In fact, it focuses on building
features from raw data, which expanded the research studies. In addition, feature engi-
neering is usually a very specific domain that requires significant human efforts. Once a
new feature is suggested and proven effective, it will be a trend for years.
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Deep-Learning algorithms offer the possibility to perform feature extraction with
automatically way. It helps researchers extract discriminative features even with minimal
domain information and reduce the human efforts [204]. These algorithms are character-
ized by a layered architecture of data representation where the low-level features are
extracted from the lower layers and the high-level features are extracted from the last
layers of the networks. This type of architecture has been originally inspired from the
Artificial Intelligence (AI), which simulates its process of the key sensorial areas of the
human brain. Indeed, a human brain can automatically extract data representation from
different scenes. The inputs are the scene information received from eyes and the outputs
are the objects classified by the brain. This highlights the major advantage of deep-
learning that mimics how the human brain operates. Fig. 16 shows the feature extraction
stage in traditional machine-learning and deep-learning.
Many DL techniques have been suggested in the literature. They have demonstrated

promising results through different categories of applications, such as: Recursive Neural
Network (RvNN) for Natural Language Processing (NLP) [262], Recurrent Neural
Network (RNN) for NLP [102] and speech processing [245], and Deep Boltzmann
Machine (DBM) for speech processing [77] and object recognition task [171].
Convolutional Neural Network (CNN) is also a popular and extensively used algorithm
in DL. It has been widely applied into different applications, such as speech processing
[1], NLP [304] and computer vision, spatially object recognition [80, 101], image
annotation and retrieval [193, 306] and image captioning [9, 88, 300]. Similar to the
traditional ANNs, the structure of the CNN is inspired from the neurons in human and
animal brains. More specifically, it simulates the visual cortex in a biological brain
containing arrangements of simple and complex cells. As shown in Fig. 17, these cells
are sensitive to sub-regions of the visual field rather than to the whole scene. These sub-
regions are named receptive fields.

Fig. 15 A Deep-learning Neural Network
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Similarly, neurons in a convolutional layer of a CNN connect to the sub-regions of the
layers before that layer rather than being fully-connected like in other models of NNs. The
neurons do not respond to the zones situated outside of these sub-regions in the image.
These sub-regions might overlap so the neurons of a CNN generate spatially-correlated
outcomes. However, the neurons do not share any connections and provide independent
outcomes in other types of NNs. In addition, in NNs with fully-connected neurons, the
number of parameters (or weights) can increase as the size of the input increases. A CNN

Fig. 16 Comparison between traditional machine-learning and deep-learning techniques

Fig. 17 Neural network inspired from the human brain
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helps reduce the number of parameters by minimizing the number of connections, shared
weights, and down-sampling.
A typical CNN consists of a number of convolutional layers followed by pooling layers

(sub-sampling), which are responsible for the feature extraction. The learned features
become inputs to the fully-connected layers for the classification task. Fig. 18 shows the
typical structure of a CNN.
In each layer of a CNN, the neurons are arranged in a 3-D manner enabling to transform

a 3-D input to a 3-D output. More specifically, as shown in Fig. 19, the layers in a CNN
have the inputs x arranged into three dimensions (m×m×r), where m refers to the width
and height of the input, and r refers to its depth or channel numbers (e.g., r = 3 for RGB
images).
In the convolutional layers, there are several filters (kernels) k of size (n×n×q). Indeed, n

can be smaller than the original image, but q should be smaller or the same size as r. The
kernels k are the base of local connections that are convolved with the input. They share
the same parameters (bias bk and weightWk) to produce k feature maps (hk). Similar to the
MLP, the convolutional layers compute the dot product between the weights and its
inputs, as illustrated in Equation (2), only the inputs are small regions of the initial input
volume.

hk ¼ f Wk*xþ bk
� � ð2Þ

In the pooling layers, each feature map is down-sampled to reduce the parameters in the
network, accelerate the training process, and therefore control the overfitting. The pooling
operation (e.g., max or average) is performed on a (p×p) contiguous region for all feature
maps, where p is the filter size.

The layers of the fully-connected stage receive the resulting low-level and mid-level
features as inputs and provide high-level abstractions for the processed image. The last layer
(e.g., Softmax or SVM) should be used for generating classification scores. Each score
represents the probability of some class for a given instance.

The general CNN model implementation can be presented as shown in Fig. 20.
CNN model helps perform a hierarchical feature representation, which can be automatically

learned from data. Compared with the traditional descriptors, CNN offers a deeper architecture
that can provides an exponentially evolved expressive capability. This architecture also

Fig. 18 Structure of a typical CNN

Multimedia Tools and Applications (2020) 79:21679–21741 21711



provides the opportunity to jointly optimize numerous related tasks together, such as bounding
box regression, feature extraction and classification. Thanks to its interest, CNN model has
been frequently applied into many research fields, such as image classification [146], image
annotation and retrieval [193, 306], object recognition [80, 101], image captioning [9, 88,
300], etc. For example, in Ref. [59], the deep CNN model that won the ImageNet Challenge in
2012, was employed for large-scale image classification and object recognition. The suggested
neural network architecture consists of 650,000 neurons with 60 million parameters containing
five convolutional layers. Some of these layers have been followed by max-pooling layers and
three fully-connected layers including a final 1000-way Softmax layer. Combined with new
techniques, such as Dropout, Rectified Linear Units (ReLUs) and a very efficient GPU
implementation, the suggested CNN model has achieved in the ILSVRC-2012 competition a
winning top-5 test error rate of 15.3%. However, it is concerned with single-label image
classification.

In order to generate multi-label image annotation, Gong et al. [84] have suggested to use the
same CNN model proposed by Deng et al. [59] and mainly focus on training the network with
loss functions adopted for multi-label prediction tasks. The first step of the proposed annota-
tion process consists in resizing each image to (256×256) to be sent to the convolutional layers.
Thereafter, (220×220) patches are extracted from the entire image, one from the center and
four from the corners, to generate an augmentation of the dataset. Convolution kernel sizes are
respectively set to squares of size 11, 9, and 5 for the different convolutional layers. Max-
pooling layers are employed in some of the convolutional layers to offer invariance. Each
fully-connected layer has output sizes of 4096 and it is followed by Dropout layers. For all the
layers, ReLU is used as non-linear activation function. For minimizing the multi-label Softmax
regression loss, a first loss function, inspired by Tagprop [90], has been used. The second used
loss is a simple modification of a pairwise-ranking loss [128] enabling to take multiple labels
into account. The third loss function consists of a multi-label variant of the WARP loss [311]

Fig. 19 A layer of CNN in 3 dimensions

Fig. 20 Example of a CNN model implementation
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enabling to use a sampling trick in order to optimize top-k annotation accuracy. For compar-
ison purposes, nine different visual features, including, GIST, D-SIFT, H-SIFT, HOG, have
been used as baseline features. Two powerful classifiers, namely: SVM and k-NN, have been
implemented for annotating image according to these features. The experimental results
demonstrated that the deep CNN outperforms the existing visual-feature-based methods in
image annotation. However, this type of model needs to be recycled when new labels are
released.

In the study of Mayhew et al. [193], two image annotation algorithms, called TagProp [90]
and 2PKNN [294], were trained with features derived from the two CNN architectures (VGG-
16 and AlexNet). Experimental results have proved that the annotation performance reached
by using features derived from a deep CNN outperforms the one that is based on larger
handcrafted features.

In Ref. [48], multi-label image annotation using deep CNN model was also suggested by
Chengjian et al. The overall architecture of the implemented CNN model consists of eight
layers with weights. The first five represent the convolutional layers and the remaining three
are the fully-connected layers. The outputs of the fully-connected layers are introduced into a
1000-way Softmax classifier that produces a distribution over 1000 labels. In implementation
stage, the global features that were extracted as visual descriptors are: (1) 128-dimension HSV
color histogram and 225-dimension LAB color moments; (2) 37-dimension edge direction
histogram; (3) 36-dimension Pyramid Wavelet texture; (4) 59-dimension local binary pattern
feature descriptor, and (5) 960-dimension GIST feature descriptor. The local features that were
extracted as visual descriptors are: (1) a Harris corner detector and the dense sampling method
that were adopted as patch-sampling methods; (2) SIFT feature, CSIFT feature, and RGBSIFT
feature that were extracted to form a codebook of size 1000 using k-means clustering; (3) a
two-level spatial pyramid that was adopted to construct a 5000-dimensional vector for each
image; (4) the TF-IDF weighing scheme that was utilized to generate the final bag-of-visual-
words. For the all experiments, the feature vectors were normalized to the range of [0, 1].
Experimental comparisons were performed between the proposed image classification method
and: (1) Lazy learning based approach (LL) [333]; and (2) Deep representations and codes
based approach (DRC) [142]. The results of the evaluations have demonstrated that the
proposed deep-structured semantic model considerably outperforms the two other approaches
for three used image datasets.

Murthy et al. [202] proposed a CCA-KNN model based on the Canonical Correlation
Analysis (CCA) framework. The new framework helps model both textual features (word
embedding vectors) and visual features (CNN features) of the data. The CNN features have
been proven more efficient compared with 15 handcrafted features from existing models,
which include JEC [182], SVM-DMBRM [201], TagProp [90] and 2PKNN [294]. Moreover,
this study has shown that the word embedding vectors performed better than the binary vectors
as a representation of tags associated with an image.

Wang et al. [306] have suggested aMulti-task Voting Automatic Image Annotation CNNmodel
(MVAIACNN) that helps interrogate training and test datasets. The Multi-task Voting method
(MV) helps achieve the adaptive label by combining the multi-task learning method with the
Bayesian probability model. Thereafter, a (AIACNN) model have been proposed. It consists of
five convolutional-layers for hierarchically extracting features, and four pooling-layers followed
by two fully-connected layers and a Softmax output layer that defines identity classes.

Wu et al. [315] designed a framework, called Deep Multiple Instance Learning (DMIL)
model, which helps learn the coincidences between image regions and keywords. In DMIL
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framework, object proposals and keywords are simultaneously learned based on a joint deep
multi-instance learning. Indeed, DMIL uses a CNN model that consists of five convolutional
layers, a pooling layer and three fully-connected layers. Thereafter, another deep neural
network framework, which contains one input layer, one hidden layer, and one output layer
with a Softmax for multi-instance learning is used. Finally, the text outputs and image in the
fully-connected layer are combined.

4.3.3 Summary (comparison between ML and DL algorithms)

Table 4 presents the advantages and disadvantages of the various ML and DL algorithms that
have been studied.

4.3.4 CNN-based object recognition frameworks

In essence, object recognition aims at detecting and classifying the objects depicted on any one
image, and labeling them with rectangular bounding boxes (anchor boxes), as shows in Fig.
21. Indeed, the labels attributed to the detected objects contributed for the image annotation
process. The pipeline of object recognition is divided into three steps:

– Object proposal: The main purpose of this step is to search within a given image the locations
that can contain objects by scanning thewhole image based on slidingwindows [56, 97, 291]. To
detect information about multi-scale objects, input images are resized into different scales. Multi-
scale windows are also employed to slide via these images.

– Feature vector extraction: For each location detected on the image, a fixed-length feature
vector is provided from the sliding windows in order to get discriminative semantic
information about the covered region. The feature vector is usually encoded by using a
CNN model.

– Region classification: Categorical labels are associated with the covered regions by using
region classifiers. Support Vector Machines (SVM) are the most commonly used
classifiers.

The frameworks of the generic object recognition methods based on the CNN model can
mainly be categorized into two types: region proposal-based frameworks and regression/
classification-based frameworks.

1) The region proposal-based frameworks follow the classical object detection pipeline,
which first generates region proposals and thereafter classify each proposal into different
object types. Among the most popular region proposal-based frameworks are R-CNN
[80], SPP-net [100], Fast R-CNN [79], Faster R-CNN [236], R-FCN [54] and Mask R-
CNN [101]. The contract of the different region proposal-based frameworks is introduced
in Table 5.

& Regions with CNN features (R-CNN): Girshick et al. [80] proposed a novel CNN
architecture that helps improve the quality of the candidate bounding boxes and extract
the top-level characteristics by using a deep architecture. The flowchart of the R-CNN
architecture consists of three steps such that :
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Table 4 Advantages and Disadvantages of the different ML and DL algorithms that have already been studied.

Algorithm Advantages Disadvantages

k-NN 1. Manipulate non-parametric training data,
2. Training step is very fast,
3. Simple to learn,
4. Robust to noisy training data,
5. Effective when training data is large.

1. Biased by the value of k,
2. Computation are complex,
3. Limitation of the memory,
4. Testing step runs slowly.

DT 1. Manipulate non-parametric training data,
2. Does not required an extensive training
3. Generates the deep learning features

hierarchical associations between input
variables to predict class membership and
produces a set of rules that are easy to
interpret,

4. Simple and efficient computational.

1. The computation becomes complex when
various outcomes are correlated and/or vari-
ous values are undecided.

SVM 1. Achieves optimal class boundaries by
finding the maximum distance between
classes,

2. Provides a good generalization capability,
3. The adjustment problem is eliminated,
4. Computational complexity is reduced,
5. Simple to manage the error frequency and

decision rule complexity.

1. Result transparency is weak,
2. Training step is time consuming,
3. Structure of the algorithm is difficult to

understand,
4. Determination of optimal parameters is

complex when there is non-linearly separable
training data.

BN 1. Performance is good,
2. Easy to implement,
3. Takes less computational time for

processing.

1. The dependencies existing between variables
are ignored, which would cause it to provide
less accurate predictions.

Partitioning
clustering

1. Simple and relatively scalable,
2. Appropriate for datasets with compact

spherical clusters, which are well-separated.

1. Serious effectiveness degradation in high
dimensional spaces.

2. Poor description for clusters.
3. Requires a manual specification of the

number of clusters in advance.
4. High sensitivity to initialization phase,

outliers and noise.
5. Frequent entrapments in the local optima.

Hierarchical
clustering

1. Embedded flexibility concerning the level of
granularity,

2. Well adapted for problems that involve point
linkages, such as taxonomy trees.

1. Inability to perform corrections once the
splitting or merging decision is made,

2. Cloudiness of termination criterion,
3. Expensive for massive and high dimensional

datasets,
4. Serious effectiveness degradation in case of

high dimensional spaces.
HMM 1. Allows an efficient learning that can be

performed directly from raw sequence data.
1. Not completely automatic and requires

training using annotated data,
2. The size of training data can be an issue.

ANN 1. Enables to manipulate non-parametric train-
ing data,

2. Capability to present functions, such as
AND, OR and NOT,

3. Consists of data driven self adaptive
technique,

4. Efficiently handles noisy inputs,
5. Computation rate is important.

1. Semantic poverty,
2. Problem of over-fitting,
3. The training of ANN is time consuming,
4. Difficult to define the network architecture.

CNN 1. Treats large data,
2. Process complicated relationships,
3. Derives robust characteristics,
4. No manual choice is needed,
5. Multi-labeling of images.

1. Optimum is local,
2. Training stage cannot be controlled,
3. Needs large training images.
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– Region proposal generation: By adopting a selective search, the R-CNN model helps
provide about 2k region proposals for each image. In fact, the selective search method
[290] is based on simple bottom-up clustering and saliency indices enabling to quickly
generate precise candidate boxes with arbitrary sizes for reducing the searching space of
the object detection.

– Deep feature extraction: The generated region proposals are warped due to the fixed
resolution. Thereafter, the CNN module [146] is applied to extract a 4096 dimensional
feature as a final representation. The large learning capacity and the hierarchical structure
of CNNs have enabled a high-level feature representation for region proposals.

– Classification and localization: Based on pre-formed SVMs classifiers, the different
region proposals are labeled on a set of positive and negative regions. Thereafter, these
regions are adjusted by using bounding box regression and filtered with a non-maximum
suppression (NMS) in order to generate the final bounding boxes of the detected objects.

Despite the fact that the R-CNN model has achieved high accuracy rate versus the traditional
methods, some drawbacks are noted. Indeed, due to the existence of Fully Connected layers
(FCs), the CNN model requires a fixed-size input image (e.g., 256×256) to re-calculate the
whole CNN for each evaluated region proposal, which is a time-consuming operation in the
testing period. In addition, the R-CNN model distorts the generated region proposals and
design them into the same size. However, unwanted geometric distortion may be produced,
and consequently some object information can be lost. This distortion of content can reduce
the recognition accuracy, in particular when the scales of objects vary. On the other hand, the
generated region proposals are redundant although the selective search helps generate them
with relatively high recalls, which is also a time-consuming procedure (2s to extract 2k region
proposals). Besides, features are extracted from the region proposals and stored on the disk.
Thus, a very long time may elapsed to access them and the storage memory required by these
features can be also expensive. Finally, the R-CNN is multi-stage pipeline. Indeed, at the
training of the R-CNN model, a convolutional network (ConvNet) on object proposals is fine-

Fig. 21 Object recognition based on the CNN model (example)
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tuned. Thereafter, the softmax classifier learned by fine-tuning is replaced by an SVM one in
order to fit in with (ConvNet) features. Finally, the bounding-box regressors are trained.

& Spatial Pyramid Pooling in Deep Convolutional Networks (SPP-net): To resolve the
issue of the information distortion of the region proposals caused by the R-CNNmodel, He
et al. [100] took into account the theory of the Spatial Pyramid Matching (SPM) [156]
and [223], and proposed a novel CNN model called SPP-net. Indeed, the SPM takes many
thinner to coarser scales in order to divide the image into a some number of partitions and
regroup the quantized local characteristics into intermediate level representations. In
addition, the R-CNN model is heavy because it realizes a ConvNet forward pass for each
object proposal without dividing computation. Therefore, the SPP-net model proposed to
speed up R-CNN by sharing computation. It computes a conv feature map for the whole
input image. Thereafter, it classifies the object proposal set by using a feature vector
extracted from the shared feature map. In fact, the features are extracted from a given
region proposal by max-pooling the portion of the feature map inside the proposal into a
fixed-size output (e.g., 8 × 8). The multiple output sizes are grouped and then concatenated
as a spatial pyramid pooling. SPP-net speed up the R-CNN model by 10 to 100× at test
time and reduce the training time by 3× thanks to the fast proposal feature extraction.

Despite its advantageous interventions, SPP-net shares some limitations with R-CNN, such as
the multi-stage pipeline, including feature extraction, SVM training, network fine-tuning and
bounding box regressor fitting. Therefore, the storage memory required is also expensive.
Besides, the conv layers foregoing the SPP layer cannot be updated based on the fine-tuning
algorithm. Thus, a decrease accuracy of deep networks has been noted.

& Fast R-CNN:Girshick [79] proposed a novel CNN architecture called Fast R-CNN to
resolve the multi-stage pipeline issue by introducing a multi-task loss at the classi-
fication and bounding box regression steps. The R-CNN model takes as input a given
image and the region proposal set. At first, it processes the whole image with conv
and max pooling layers to generate a conv feature map. Thereafter, a region of
interest (RoI) pooling layer extracts a fixed-length feature vector from the feature
map for each object proposal. Each feature vector is then introduced into a sequence
of FC layers, which finally branched into two output layers where the first one
generates softmax probability that estimates over C object classes and a 'background'
one. The other output layer encodes the refined bounding-box positions based on
four real-valued numbers. The parameters in these processes are optimized through a
multi-task loss in an end-to-end way, exceptionally the generation of the region
proposals.

The Fast R-CNN model also proposed an efficient training method, which takes
advantage of feature sharing at the training step. In this context, we recall that if the
region of interests come from different images, the back-propagation via the SPP layer
becomes very inefficient. Therefore, Stochastic Gradient Descent (SGD) mini-batches
are hierarchically sampled by sampling first X images and then Y/X RoIs from each
image (Y is the number of RoIs). In the other words, the RoIs of the same image share
memory and computation in the forward and backward passes. Besides, the truncated
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Singular Value Decomposition (SVD) [319] is used in order to compress large FC
layers and speed up the testing procedure.

Although the Fast R-CNNmodel permits to execute the training of the all network layers in
a one-stage with a multi-task loss, reduce the additional expenses on storage memory, and
improve both accuracy and efficiency thanks to robust training schemes, the time spent on
region proposals is still ignored.

& Faster R-CNN: R-CNN and Fast R-CNN use a selective search to find out the region
proposals. However, the selective search process is a slow and time-consuming process,
which affects the performance of the network. Therefore, Ren et al. [236] defined an object
detection algorithm that lets the network learn the region proposals and hence eliminates
the selective search algorithm.

Similar to the Fast R-CNN model, an image is provided as an input to a convolutional
network, which generates a convolutional feature map. However, instead of using the selective
search algorithm on the feature map to identify the region proposals, Faster R-CNN model
proposed to use a novel network named Region Proposal Network (RPN) in order to predict
the region proposals. Thereafter, the predicted region proposals are reshaped by using a RoI
pooling layer, which is also used to classify the image within the proposed region and predict
the offset values for the bounding boxes. The Faster R-CNN model is much faster than its
predecessors. Then, it can be used for real-time object detection. However, RPN produces
object-type regions, including backgrounds, instead of object instances. Therefore, Faster R-
CNN is not efficient in proceeding with very small objects.

& Region-based Fully Convolutional Networks (R-FCN): The RoI pooling layer of the
Faster R-CNN detector is unnaturally inserted between two sets of convolutional layers
due to the dilemma of increasing translation invariance for image classification versus
respecting translation variance for object detection. Indeed, the framing of an object
depicted on an image is random at the classification process while any translation of an
object in a bounding box may be meaningful in object detection. Thus, fully convolutional
architectures, that are translation invariant, are preferable. Besides, the object detection
step requires localization representations, which are translation-variant to an extent. As
instance, the translation of an object within a candidate bounding box must produce
meaningful responses to describe how good the candidate bounding box overlaps the
object. To address this dilemma, the RoI pooling layer was inserted into convolutional
layers. However, this design can affect the training and testing efficiency because it
introduces a considerable number of region-wise layers. It is also a costly per-region
subnetwork hundreds of times.

In contrast to the previous region-based detectors, namely Fast/Faster R-CNN, Dai et al. [54]
proposed position-sensitive score maps to address the dilemma between translation-invariance
in image classification and translation-variance in object detection. With the Region-based
Fully Convolutional Networks R-FCN, more effective classification networks can be used to
perform the object detection procedure in a fully-convolutional architecture by sharing all the
layers. A test speed of 170ms per image is achieved on both Microsoft COCO and PASCAL
VOC datasets.
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& Mask R-CNN: Instance segmentation is challenging because it requires detecting all
objects within an image and segmenting each instance. However, the execution of these
two tasks independently can provoke a problem of overlapping instances. To solve this
issue, He et al. [101] proposed to extend Faster R-CNN by adding a novel branch that can
predict segmentation masks in a pixel-to-pixel way. More specifically, Mask R-CNN
predicts an m × m mask from each RoI by using an FCN [175]. This helps each layer
in the mask branch to maintain the explicit m × m object spatial layout without collapsing
it into a vector of representation that miss spatial dimensions. As demonstrate the
performed experiments, the proposed FC representation for mask prediction requires fewer
parameters but it is very accurate. However, the proposed pixel-to-pixel approach requires
the aligned of the RoI features in order to preserve the explicit per-pixel spatial correspon-
dence. This motivated authors to develop a RoIAlign layer.

Indeed, the RoIAlign consists in avoiding any quantization of the RoI boundaries. Thus, a
bilinear interpolation [116] was used for computing the exact values of the input features at
four regularly sampled locations in each RoI bin and then aggregate the result. This has led to
large improvements.

In essence, theMask R-CNNmodel is an extension of Faster R-CNNwhere the construction of
the mask branch helps rapidly achieving good results in terms of object detection by cooperating
with other tasks, and adding only small computational burden allowing a fast system. TheMask R-

Table 5 Contrast of region proposal based frameworks

Frameworks Pros Cons
R-CNN 1. Selective search for region of interests,

2. Extracting high-level image features thanks to
the use of a deep architecture.

1. Warping can loss object information,
2. Region proposal generation step is

time-consuming,
3. Training is time consuming and expensive

in terms of space,
4. Multi-stage pipeline,
5. Not suitable for real-time usage.

SPP-net 1. More significant in object proposals in their
corresponding scales,

2. Speed up R-CNN by sharing computation,
3. Reducing the training time.

High memory consumption,
Training is inefficient,
Multi-stage pipeline.

Fast R-CNN 1. One fine-tuning stage,
2. Fast and efficient training,
No disk storage is required for feature caching.

1. Ignoring the time spent on region proposals.

Faster
R-CNN

1. Real-time object detection. 1. Limited success for detecting small objects,
2. Training is inefficient,
3. A costly per-region subnetwork.

R-FCN 1. Boosting classification and object detection,
2. Much faster during training and inference,
3. A robust and efficient feature extractor.

1. Requires a deep model over-fitting for the
most real-word applications.

Mask
R-CNN

1. Efficient solution for overlapping instances,
2. Good inference speed,
3. Good accuracy,
4. Intuitive and easy to implement,
5. Extension capability.

1. False alerts,
2. Missing labels.
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CNN is also simple to implement and train given the Faster R-CNN model that facilitates a wide
range of flexible architecture designs. However, the Mask R-CNN has the disadvantage of
sometimes generating false alerts and some labels may also be missing.

2) The regression/classification-based frameworks consists of many correlated steps, which
are often trained separately. These steps include region proposal generation, feature
extraction with CNN, classification and bounding box regression. The most popular
regression/classification-based frameworks are MultiBox [64], YOLO [235], SSD
[172], YOLOv2 [234], DSSD [72] and DSOD [252]. The contrast of the different
regression/classification-based frameworks is introduced in Table 6.

& MultiBox: Erhan et al. [64] proposed a regression based MultiBox. The model helps
achieve a class-agnostic scalable object detection by predicting a set of bounding
boxes that represent potential objects. More precisely, a Deep Neural Network
(DNN) is used in order to produce a fixed number of bounding boxes. Besides, a
score is attributed to each box containing an object in order to express the network
confidence.

Although the proposed algorithm manages to produce large number of objects, an additional
boost when using higher resolution image crops has been noted. In addition, the achieved
Average Precision (AP) was not too satisfactory.

& You only look once (YOLO): In essence, YOLO [235] consists in dividing each image
into a grid of S x S where each from them predicts N bounding boxes and confidence. The
confidence score reflects the accuracy of the bounding box and whether the bounding box
really contains an object regardless of class. YOLO also helps predict the classification
score for each box for every class in training. The classes can be combined in order to
calculate the probability of each class being present in a predicted box. Thus, a total of S x
S x N boxes are predicted.

YOLO consists of 24 conv layers and 2 FC layers where some conv layers build sets of
inception modules with 1 × 1 reduction layers followed by 3 × 3 conv layers. It can treat
images in real-time. Furthermore, it can cooperate with Fast R-CNN because it provides fewer
false positives on background. However, YOLO can generate localization errors of bounding
boxes. It has relatively low recall compared to region proposal-based methods. In addition,
YOLO has a difficulty in processing small objects in groups due to strong spatial constraints
imposed on bounding box predictions.

& Single Shot Multibox Detector (SSD): Liu et al. [172] introduced the SSD model,
which is a single-shot detector for multiple categories. The SSD is a simple model
compared to methods that require object proposals because it completely elimi-
nates proposal generation and subsequent pixel or feature resampling stages and
encapsulates all computation in a single network. Indeed, the core of SSD helps
predict category scores and box offsets for a fixed ensemble of default bounding
boxes by using small convolutional filters applied to feature maps. To achieve high detection
accuracy, predictions of different scales from feature maps of different scales are generated and
explicitly separated by aspect ratio. Even on low resolution input images, these design features
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lead to simple end-to-end training and high accuracy, further improving the speed vs accuracy
trade-off. It should be mentioned that the SSDmodel is faster than the previous state-of-the-art
for single shot detectors (YOLO) and significantly more accurate than the slower techniques
that perform explicit region proposals and pooling (including Faster R-CNN). However, the
main drawback of SSD that is not able to deal with small objects.

& YOLOv2: Proposed by Redmon et al. [234], YOLOv2 constitutes the second version of
the YOLO with the objective of improving significantly the accuracy while making it
faster. In fact, by adding batch normalization on all of the convolutional layers in YOLO,
more than 2% improvement in mAP is achieved. In addition, a high resolution classifica-
tion network was proposed. This has given an increase of almost 4% mAP. YOLOv2 also
tries to use the idea of anchor boxes by finding the best anchor boxes shapes to make it
easier for the network to learn detection.

To make YOLOv2 robust to running on images of different sizes, the model was trained for
different input sizes. Since the model adopts only convolutional and pooling layers, the input
can be resized on the fly. Indeed, instead of fixing the input image size, authors proposed to
change the network every few iterations. After every 10 batches, the network chooses a new
image dimension size from a dimension set, randomly. Then, the network is resized to that
dimension and continue training. Thus, the same network can predict detections at different
resolutions (input shapes).

Despite all of its advantages versus the state-of-the art networks, such as Faster R-CNN and
YOLOv1, YOLOv2 has a very complex architecture. In addition, YOLOv2 is not skilled at
dealing with small objects.

& Deconvolutional Single Shot Detector (DSSD): In the original SSD architecture, preset
anchor boxes are used to replace regional proposal generation. In addition, SSD uses more
than one feature map for the detection in order to account for different object sizes. Despite
its astonishing performance, SSD suffers from unsuccessful detection for small objects,
which are typically defined as less than 36x36 within an image and then tremendously
reduced being passed via multiple pooling layers. Therefore, the detection model in SSD
does not have enough spatial information in order to discern the small objects.

To achieve greater performance, Fu et al. [72] proposed to improve both feature extraction and
detection parts of the SSD model. At the first, they proposed to use the ResNet-101 feature
extractor instead of the VGGNet-19 extractor used in the original paper. Indeed, empirical
evidences have shown that the residual networks are easier to optimize and can gain accuracy
from considerably increased depth.

Given that in the SSD network the feature maps are lightly processed before a loss function
is applied to it, the feature extractor should learn to provide feature maps that not only
represent the semantic and spatial information from the precedent layers, but also the trans-
formation set that leads to good classification. However, different branches in SSD correspond
to different scales. Therefore, it can be necessary to avoid previous transformations before
applying the one that works best for its scale. In this regard, prediction modules (PMs) were
used in the DSSD architecture to perform the necessary processing of feature maps and
achieve a good classification. Experimental studies have demonstrated that (PMs) have
increased the performance of the DSSD network.
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Furthermore, deconvolutional layers are used in the detection part in order to increase the
resolution of the feature maps generated by the feature extractor. Thus, a better detection of
small objects by providing additional large-scale context has been achieved.

Although the DSSD has led to significant results in detecting small objects, the architecture
of the model is complex and its speed is slow.

& Deeply Supervised Object Detector (DSOD): State-of-the-art object recognition archi-
tectures rely deeply on the off-the-shelf networks pre-trained on large-scale classification
databases, such as ImageNet. Because of the difference on both the loss functions and the
category distributions between classification and detection tasks, learning bias is induced.
A model fine-tuning for the task of detection can mitigated this bias to some extent but not
so much. In addition, transferring pre-trained models from classification to detection
between divergent domains is even more complicated. To tackle these two critical issues,
a best solution consists in training object detectors from scratch.

In this context, Shen et al. [252] proposed the DSOD framework that can learn object detectors
from scratch. Indeed, previous efforts in this direction mainly failed because of the complexity
of the loss functions and the limited training data in object detection. In DSOD, the authors
contributed a set of design policies for training object detectors from scratch. It uses implicit
Deep Supervision (DS), namely DenseNet, in order to mitigate vanishing gradients. Indeed,
the idea of DS consists in bringing the loss function that is generally attached to the top part of
the network, closer to different layers of the said network. This helps each layer to adopt a less
diluted gradient to learn. Indeed, DenseNet consists of four dense blocks that maintain the
same scale of outputs. To increase network depth, a solution consists in adding layers inside
each block for the original DenseNet. The transition without pooling layer circumvents this
restriction, enabling hence to use more dense blocks.

A stem block is also adopted to modify the original architecture of DenseNet. Indeed, in
DSOD architecture a stack of 3x3 convolution layers followed by a 2x2 MaxPooling is used
instead of using a 7x7 convolution layer with stride 2 followed by a 3x3 MaxPooling operation
with stride 2. The first convolution layer has stride 2 while the others use stride 1. This can
minimize information loss from the raw input image because the smaller filter sizes and strides
tend to preserve information.

In order to improve the detection accuracy in DSOD, the feature maps processed from
previous layers are concatenated with down-sampled, which are high-resolution feature maps
in a one-to-one ratio for detection. In fact, processed feature maps from previous layers have
information useful for classification while the high-resolution feature maps preserves spatial
information. For comparing, the SSD adopts only feature maps processed from previous layers
in order to make multi-scale detection.

DSOD is a simple and efficient framework for training object detector from scratch. It has
great potential on different domains, such as medical images, etc. Its lightweight structure
helps achieve a 77.7% mAP on the VOC 2007 test set without pre-training. However, DSOD
does not promote the performance when using pre-trained network. Table 6

4.3.5 Image captioning

Image captioning consists in recognizing the important objects depicted in any one
image, their attributes, and their relationships, as shows in Fig. 22. The different
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information that reflect the visual and semantic content of images contribute to their
annotation. However, image captioning requires generating semantically and syntactical-
ly correct sentences. The different approaches of image captioning can be divided into
three categories: template-based image captioning [67, 148, 163], retrieval-based image
captioning [85, 104, 213, 268] and deep-learning-based image captioning [66, 126, 300,
318]. Indeed, image captioning challenges have been successfully processed by using
deep-learning-based techniques.

Deep-learning-based image captioning methods can use visual space [43, 66] or multi-
modal space [143, 144] for mapping image features. They can also be categorized according to
the learning techniques: supervised learning [135, 188], reinforcement learning [237, 238],
and unsupervised learning [55, 253]. Captions can be generated for a whole scene [122, 134]
or for different regions of an image (dense captioning) [130, 324]. Image captioning methods
can be based on a simple encoder-decoder architecture [143, 144] or a compositional
architecture [66, 293]. There are methods that adopt attention mechanisms [126, 318],
semantic concepts [280, 328], stylized [73, 192] and novel object captioning [293, 325]. Some
image captioning methods use CNN as a language model [9, 88, 300]. Nevertheless, other
language models have been used, such as TSLM [180, 267], RNN [189, 341], LBL [143],
DTR [135] and MELM [43, 283]. Fig. 23 illustrates the taxonomies of the different deep-
learning-based image captioning methods.

For more details on the different deep-learning-based image captioning methods readers
can refer to [108].

For image captioning purposes, Aneja et al. [9] proposed a convolutional architecture,
which consists of four components: an input embedding layer, an image embedding layer, a
convolutional module, and an output embedding layer. Spatial soft attention mechanism has
been also employed. The experimental results have demonstrated that the proposed architec-
ture provides comparable performance versus a LSTM-based method by using standard
metrics on the challenging MSCOCO dataset. Wang et al. [300] proposed a CNN+CNN-based
image captioning method, which consists of the similar architecture proposed by Aneja et al.
[9]. To improve the performance of the image captioning method, authors use a hierarchical
attention module for connecting the vision CNN with the language CNN. They also study the
influence of the hyper-parameters, namely: the number of layers and the kernel width of the
language CNN. The experimental results demonstrated that the hyper-parameters help improve
the performance of the image captioning method. Gu et al. [88] proposed an image captioning
method, where they combine the RNNs model with the CNN language to highlight the
temporal dependencies.

4.3.6 Differences between machine-learning and deep learning

Deep-learning (DL) is a special type of Machine-learning (ML), which is also a subfield of
Artificial-intelligence (AI).A subset representation of the learning algorithms is illustrated in
Fig. 24.

Table 7 summary the main differences that exist between machine learning and deep
learning.
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5 Discussions and conclusions

In this paper, we have focused on identifying the parameters of the image annotation systems
based on which we have provided an overview on the visual content-based and users' tags-based
image annotation methods. Then, we have studied the visual content-based images annotation
techniques, in particular image segmentation, features extraction and machine/deep learning.
Comparisons between the different algorithms that have been illustrated are provided as well.

Overall, the main challenge facing image annotation techniques is the ‘semantic gap’
between the low-level visual information captured by the imaging devices and the high-level
semantic information perceived by humans [44]. In this regard, many research studies were
focused on mining the keyword-keyword and image-keyword relationships. Besides, image
annotation process requires a very considerable human intervention when it consists of vast
amounts of images. Thereafter, many Machine-Learning algorithms were introduced to

Table 6 Contrast of regression/classification based frameworks

Frameworks Pros Cons
MultiBox 1. Capacity to capture multiple instances of objects of

the same class,
2. Scalable,
3. Lower computational cost.

1. Supplementary parameters are
introduced to the final layer,

2. Not very good accuracy.

YOLO 1. Real time object detection,
2. Finding objects in image grids at parallel.

1. Localization error of bounding boxes,
2. Limited success for detecting small

objects,
3. Low recall.

SSD 1. Better balance between rapidity and precision,
2. Very significant in object proposals in their

corresponding scales.

1. Limited success for detecting small
objects.

YOLOv2 1. Real time object detection,
2. Running significantly faster,
3. High resolution classifier,
4. Multi-scale training.

1. Very complex architecture,
2. Limited success for detecting small

objects.

DSSD 1. Significant in detecting small object or context
specific objects.

1. Complexity of the model,
2. Slow speed.

DSOD 1. Training object detection networks from scratch with
state-of-the-art performance,

2, Great potential on domain different scenarios,
Real time object detection,
More compact models.

1. Not very good performance.

Fig. 22 Image captioning based on the CNN model (example)
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automate the annotation process and reduce human efforts. However, the main issue in ML is
that a bad data representation often degrades the quality of the produced results and leads to
lower performance compared with a good data representation. Thus, feature engineering has

Fig. 24 Subset representation of learning algorithms

Fig. 23 Image captioning (example)
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been considered an important research direction in ML for a long time. It focuses on extracting
deeper features from raw data. This has led to multiple research studies.

In essence, Deep-Learning algorithms (DL) provide the opportunity to perform automatic
feature extraction. This helps researchers extract discriminative features even with minimal
domain information and reduce human efforts. In addition, recent progress in this area show
that DL algorithms, in particular CNN, can address the ‘semantic gap’ problem. However,
there are still numerous open issues for future works related to object detection and image
captioning.

Effective Proposal Generation Strategies: To train region detectors, previous ap-
proaches needed to manually design anchor boxes, which is a hard way in matching
multi-scale objects. As an alternative, recent approaches suggest to use anchor-free
methods [155, 279, 339]. However, these methods are costly with the need to be improved.
Therefore, designing efficient proposal generation strategies is a very interesting research
direction in the future.

Scalable Small Object Detection Strategies: Previous research studies focused on the
detection of small objects. In order to improve the localization accuracy of small objects, it
becomes interesting to evolve the network architectures. This constitutes in the future a very
hot topic in object detection.

Combining the benefits of both one and two-stage detectors: The two-stage detectors,
such as R-CNN, Fast R-CNN, Faster R-CNN and Mask R-CNN, follow a densely process in
order to achieve as much as reference boxes, which is chronophage and inefficient. To tackle
this problem, researchers should avoid redundancy as much as possible while preserving a
high accuracy. The one-stage detectors, such as YOLO, YOLOv2, SSD and DSSD, are
successfully applied in real-time applications thanks to their fast processing speed that they
can achieve. However, the lower accuracy is ever a bottleneck for top precision requirements.
Therefore, combining the benefits of both one and two-stage detectors remains an interesting
challenge for researchers.

Table 7 Differences between ML and DL

Subject Machine-learning Deep-learning
Operating mode Uses types of automated algorithms that learn

to model functions and predict future
decisions using the data fed to it.

Interprets data features and their relationships
by using neural networks that transmit the
relevant information through several data
processing steps.

Management The different algorithms are directed by
analysts to examine the different variables
in the datasets.

Once they are implemented, the algorithms
are generally self-directed for relevant data
analysis.

Volume of data Requires a few thousand of data points used
for the analysis.

Requires millions data points used for the
analysis.

Output The output is often a numerical value, such as
a score or a classification.

The output may be a score, a free text, an
element, or sound, etc.

Feature
extraction

Cannot perform automatic feature extraction
and needs accurately identified features by
human intervention.

Performs automatic feature extraction
without the need for human intervention.

Training time Takes less time to train. Takes longer to train.
Hardware

dependency
Train on CPU. Requires GPU to train properly.

Hyper-parameter
tuning

Limited tuning capabilities. Can be tuned in various different ways.

Accuracy Gives lesser accuracy. Provides high accuracy.
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Weakly Supervised Object Detection Methods: Weakly Supervised Object Detection
(WSOD) helps use some fully annotated images in order to detect a large amount of no fully
annotated ones. Thus, the development of WSOD methods is a significant issue for
researchers.

Universal-object Detectors: Explicit domain detectors ever obtain top detection perfor-
mance on specific domain datasets. Thus, it will be great to have a universal detector that is
able to operate on images from different sectors. Indeed, a multi-domain detector can work
without prior knowledge on novel domains. Universal-object detector is then a challenging
mission.

Unsupervised Object Detection Strategies: Supervised object detection methods are time-
consuming and inefficient in training process, hence the need for well-annotated datasets
employed as supervision data. However, the annotation of each object's bounding box in big
databases is costly, hard and impractical. Therefore, the development of automatic annotation
strategies to lighten the human annotation intervention is a promising solution for an unsu-
pervised object detection. Unsupervised object detection is a very interesting research direction
in the future.

Multi-source Information Assistance Strategies: Thanks to the popularity of social media
and the progress of big data processing technologies, multi-source information have become
easy to be accessed. Numerous social networks help host both images and descriptions
associated with them in textual form. This type of information can facilitate the detection
task. Therefore, multi-source information assistance is an emerging research direction for objet
detection in the future.

3D datasets and Object Detection Strategies: With the emergence of 3D sensors appli-
cations, deeper additional information can be used for a better understanding of the content of
the 2D and real-world images. Therefore, there is a great need for large-scale 3D image datasets
as well as techniques that aim at correctly detecting 3D bounding boxes around objects.

Effective Image Captioning Strategies: Object detection has achieved in important
success in recent years. However, the detection of the attributes of the objects as well as the
relationships between them is a still open topic that requires lot efforts to achieve high-quality
image captions. Besides, designing sophisticated language generation models is an interesting
research direction in the future seeing that the accuracy of the generated captions mainly
depends on the quality of their syntax. Finally, supervised learning requires a vast amount of
tagged data for training. Thus, it will be interesting to rely on unsupervised and reinforcement
learning in the future.
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