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Abstract
Supervised hashing has achieved better accuracy than unsupervised hashing in many prac-
tical applications owing to its use of semantic label information. However, the mutual
relationship between semantic labels is always ignored when leveraging label information.
In addition, the major challenge in learning hash is of handling the discrete constraints
imposed on the hash codes, which typically transform the hash optimization into NP-hard
problems. To address these issues, a form of supervised discrete hashing through learn-
ing mutual similarities is proposed. Different from the existing supervised hashing methods
that learn hash codes from least-squares classification by regressing the hash codes to their
corresponding labels, we leverage the mutual relation between different semantic labels to
learn more stable hash codes. In addition, the proposed method can simultaneously learn the
discrete hash codes for training samples and the projections between the original features
and their corresponding hash codes for the out-of-sample cases. Experiments have beeen
performed on two public datasets. The experimental results demonstrate the superiority of
the proposed method.

Keywords Supervised hashing · Discrete hashing · Similarity learning ·
Mutual relationship

1 Introduction

With the explosive growth in data usage, the approximate nearest neighbor (ANN) search in
large databases is becoming increasingly key and is attracting considerable research atten-
tion in lots of fields, including information retrieval, computer vision and data mining. The
ANN attempts to find an approximate nearest neighbor for a query point in a large database;
hashing is one of the primary technologies in the ANN, as it can achieve better performance
than other methods in the ANN search applications [3, 17, 22, 31, 33].
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Hashing consists of attempting to convert medias, such as images and videos, to a set
of short binary codes, and the binary code, which can be called hash code, should preserve
the semantic similarity among the data in the original space. With these binary hash codes,
users can readily conduct the task of the ANN on a large-scale dataset because of the high
efficiency of the pairwise or triplet-wise comparison with binary codes in the Hamming
distance [36]. There are two primary categories in the existing hashing techniques, which
are data-independent methods [4, 12, 13] and data-dependent [32, 34, 55, 59] methods. In
the first category, the hashing methods use no data for training. Data-independent hashing
methods use random projections to extract the feature representation. Locality sensitive
hashing (LSH) [12] and the variants of LSH [4, 13] are the best-known data-independent
algorithms. The main idea behind the LSH family of methods is to return the same bit for
the neighborhoods in the original space with a high probability based on a hashing function.
LSH has exhibited interesting theoretical properties and a performance guarantee. However,
LSH-based methods have a major limitation, as they typically require longer hash codes
to achieve a better retrieval precision performance, thus reducing retrieval recall. Multiple
hashing table-based methods can alleviate this problem partially, but they inevitably lead to
increased storage cost and retrieval time.

The second category, called data-dependent hashing, uses data to train the model. Data-
dependent hashing, also known as learning-to-hash or learned-based hashing, attempts to
learn the hash functions so that the nearest neighbors in the Hamming space approximate
those in the original space [48, 58]. The analysis of the underlying characteristics of data can
lead to better retrieval performance. As a result, data-dependent hashing has become more
and more popular, as the learned compact hash codes can effectively and efficiently search
massive amounts of data. Generally, there are two main types of data-dependent hashing
methods: unsupervised and supervised.

Unsupervised hashing methods employ unlabeled data in the training process, and the
hash functions are learned mainly from the original data structure, and does not make any
use of the label information. This type of hashing includes spectral hashing [47], principal
component hashing [30], principal component analysis [11], iterative quantization (PCA-
ITQ) [6], scalable graph hashing with feature transformation [14], and inductive manifold
hashing (IMH) [38]. However, as the label information of the input data does not be con-
sidered in unsupervised hashing methods, certain useful information, critical to pattern
classification, may be lost. Therefore, various supervised hashing methods have been pro-
posed based on their enhanced discriminative recognition abilities. The K-means hashing
(KMH) [9] was proposed to generate hash codes through K-means clustering and quanti-
zation simultaneously. Anchor graph hashing (AGH) [26] was proposed to estimate data
similarity through anchors. Recently, with the rapid advances in deep learning, a CNN has
achieved a significant breakthrough in the visual area. Deep Hashing (DH) in [28] is a
deep unsupervised framework, and aims to learn hierarchical non-linear transformations
and minimize the loss between a compact real-valued vector and the learned binary code.
Similarity-Adaptive Discrete Hashing (SADH) [39] proposed an unsupervised architecture
as an alternative approach to deep model training, similarity updating and code optimization.

In contrast with unsupervised methods, supervised hashing methods fully utilize class
labels [27]. For example, in [44], Wang et al. proposed a semi-supervised hashing (SSH)
framework, and in this framework they minimize empirical errors over the labeled set. Liu
et al. [25] proposed kernel-based supervised hashing (KSH), and Lin et al. [19] proposed
fast supervised hashing using graph cuts and decision trees. In [6], ITQ was extended to
CCA-ITQ, which uses label information to perform CCA and maximize the correlation of
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samples from the same class first, and then performs ITQ to minimize the quantization loss.
LDA Hashing [41] was proposed to minimize the variation of data within the same classes
and maximize the variation of data across different classes. Supervised discrete hashing
(SDH) [36] was introduced to learn hash codes using a regularization algorithm and yield
an analytic solution for the regularization sub-problem. As for deep hashing models, in
[23], a novel supervised deep hashing model (DSH) was proposed to perform simultaneous
feature representation learning and hash code learning using pairwise labels. In [16] and
[35], asymmetric deep supervised hashing (ADSH) and deep asymmetric pairwise hashing
(DAPH) were proposed to learn hash mappings in an asymmetric deep architecture during
the training process. Certain ranking-based methods, such as the ones described in [46] and
[45], are also considered supervised methods [7].

As is known, hash codes are binary, and discrete constraints always lead to the mixed-
integer optimization problem which is NP-hard [24]. To address this issue, the hashing
methods first relax the discrete optimization problem by discarding the discrete constraints.
A quantization step can then be performed, turning the real numbers into the approximate
hash code using thresholding, and we call this process relaxation, which can simplify the
original discrete optimization considerably. However, this type of approximation is subop-
timal, leading to a low quality, and often producing a less effective hash code as a result of
accumulated quantization errors. To overcome this issue, Lin et al. [20] tried to solve the
discrete optimization problem directly. However, their method is typically time-consuming
and unscalable. Shen et al. [37] proposed a discrete hashing method using a cyclic coor-
dinate descent. Kang et al. [17] proposed a column sampling-based discrete supervised
hashing method(COSDISH) which first learns the binary code and then trains binary clas-
sifiers, with each bit corresponding to one classifier. Generally, in these approaches, the
learning of the hash is formulated in terms of least squares classification regressing each
hash code to its corresponding label. This strategy does not fully leverage the mutual rela-
tions between labels. In addition, despite considering this relation in some methods, such as
COSDISH, they are still prone to dividing the hash learning into two steps. To address the
issues mentioned above, we propose in this study a supervised discrete hashing method with
similarity learning (SDHSL). SDHSL not only fully leverages the mutual relations across
semantic labels, but also directly learns the discrete hash code and projection for out-of-
sample extensions simultaneously. The main contributions of this study are summarized as
follows:

– Learning hash codes from the relative similarity between semantic labels. The pri-
mary purpose of hashing is the search of a close neighbor. Hence the relative similarity
between semantic labels is quite evidently crucial for learning. In contrast with the
existing supervised methods that always consider hash codes as features of samples and
then regress them to labels, the proposed method learns hash codes from label similar-
ity. The objective function can then be solved by a 2-approximation algorithm. Existing
works have proven that the 2-approximation algorithm is more stable as the category
label is provided [17, 29, 52].

– Directly learning discrete hash codes and the projection for out-of-samples simulta-
neously. In the proposed SDHSL, we jointly learn the discrete hash codes for training
samples and the projection that transforms the original sample into a hash code, thus
leading the proposed method to be more efficient.

– Experimental results on some large-scale datasets illustrate that SDHSL can outperform
the existing methods in the task of image retrieval.
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The remainder of this paper is organized as follows. In Section 2, we describe the pro-
posed SDHSL method in detail, and in Section 3, we evaluate it through experiments.
Section 4 consists of the conclusion of our study.

2 ProposedMethod

This section describes the proposed SDHSL method in detail. We first present the SDHSL
formulation and then describe the process of optimization.

2.1 Problem Formulation

Assume that we have a training set X consisting of n instances (i.e., X = (xi )
n
i=1), where

xi ∈ Rf is the feature vector. The semantic label matrix Y = {yi}ni=1 is also available, with
yi = {yij } ∈ Rc being the label vector of the ith instance and c the number of categories in
the training set. If the ith instance belongs to the jth category, we have yij = 1; otherwise,
0. In addition, the hash matrix is defined as H = {hi}ni=1. Some notations and definitions
are shown in Table 1.

Learning a binary code matrix H ∈ {−1, 1}n×L using semantic labels is the purpose
of supervised hashing, with L being the length of the hash code. Most supervised hashing

methods effectively utilize the label information by minimizing the term
∥
∥Y − WT H

∥
∥
2
,

which is accomplished through the methods in [36, 42, 50]. However, this strategy leads
to additional time spent updating the auxiliary variable W during training, and the linear
projectionW is a weak metric in terms of bridging the gap between hash codes and semantic

labels. In addition, the linear regression used in
∥
∥Y − WT H

∥
∥
2
is less stable for generating

discrete hash codes [8, 10].
By contrast, semantic similarity based on labels is also used for learning hash codes in

some supervised hashing methods. We assume that {S = Sij |Sij ∈ {−1, 1}n×n} is a fully
observed semantic similarity matrix with no missing entries, where Sij = 1 indicates that
the i − th and jth samples are semantically similar (i.e., they share the same label), and
Sij = −1 means that the i − th and jth samples are semantically dissimilar (i.e., they
have different labels). The hash codes in the Hamming space should preserve the similarity

Table 1 Notations
Notation Description

X Training set

S Pairwise-based similarity matrix

P Projection matrix from feature to hash code

W Projection matrix from hash code matrix to label matrix

Y Label matrix

H Hash code matrix

xi The ith sample

hi Hash code of the ith sample

n Number of training samples

L Length of hash code
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between the samples in the original space. Therefore, we can formulate this as the following
minimization problem:

min
H

∥
∥
∥HT H − L · S

∥
∥
∥

2
s.t. H ∈ {−1, 1}L×n , (1)

where L is the length of the hash codes and ‖·‖ is the �2 norm.
In general, Sij is an element of the similarity matrix and is usually 0 or 1 in traditional

methods, based on the similarity or dissimilarity of the labels for samples xi and xj , respec-
tively. However, in the proposed method, we adopt {−1, 1} rather than {0, 1} for Sij during
hash learning. The reason as follows.

We are given two samples xi and xj , with hash codes hi and hj , respectively. The
equation for learning hash codes can be formulated as follows:

min
hi ,hj

∥
∥
∥hT

i hj − L · Si,j

∥
∥
∥

2
s.t. hi ,hj ∈ {−1, 1}L×1 . (2)

If xi and xj are dissimilar, and Si,j = 0, the optimal solution for hi and hj is that
[

L
2

]

bits
of the hash codes are identical (i.e., L − [

L
2

]

bits of the hash codes are different). Thus, the
Hamming distance for hi and hj is L−[

L
2

]

, which seems to be a waste of hash length. Even
worse, if the optimal solution for hi and hj is difficult to obtain, there are two equivalent

suboptimal solutions. Specifically, it is equivalent for problem
∥
∥hT

i hj − L · Si,j

∥
∥
2
if hi has

[
L
2

] + k or
[

L
2

] − k (k as an integer in (0, L − [
L
2

]

)) bits of hash codes which are the same
as hj . The two equivalent suboptimal solutions destabilize the process for generating hash
codes.

If xi and xj are dissimilar and Si,j = −1, the optimal solution for hi and hj implies that
L bits of hash codes are different. Thus, the Hamming distance for hi and hj is L, which
makes full use of the hash length.

The problem defined in (1) means that the semantic similarity should be preserved by the
binary codes in the Hamming space. This term has been used in certain supervised hashing
methods, namely, [18, 20, 21, 49, 56], and [17]. However, most of these methods use a
two-step learning strategy, which first learns the hash code and then trains a classifier for
the out-of-sample generalization. In this study, we learn the hash codes and the projection
between the samples and their hash codes together.

Learning-based hashing is known to typically involve learning a projection from the
original samples to generate hash codes. In this study, we adopt a linear projection P to
bridge the gap between the Hamming and original feature space. To learn robust hash
codes, the �2,p-norm (0 < p ≤ 2) is adopted as its ability to alleviate sample noise has
been proven [51, 53, 54]. Given a matrix X = {xi} ∈ Rf ×n, the �2,p-norm is defined as

||X||2,p =
n∑

i=1
||xi ||p2 . Compared with the �2-norm, the �2,p-norm can suppress the influ-

ence of potential noise and expand the applicable range. Furthermore, the �2,p-norm can
also flexibly adapt to different levels of hash code noise.

To avoid a trivial solution for P, we use an additional constraint by setting the diagonal
entries PT P to 1. The projection learning term can be formulated as:

min
H,P

∥
∥
∥H − PT X

∥
∥
∥
2,p

s.t. H ∈ {−1, 1}L×n , diag(PT P) = 1, 0 < p ≤ 2, (3)

where 1 is a constant vector whose elements are 1.
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In addition, based on the property of the hash codes, each hash bit has a 50% chance
of being −1 or 1 in the hash vector, which is called the balance [15, 35]. In this study, the
property balance can be formulated as:

min
H

‖H1‖2 s.t. H ∈ {−1, 1}L×n , (4)

Finally, the objective function for SDHSL can be defined as:

min
H,P

∥
∥
∥HT H − L · S

∥
∥
∥

2 + α

∥
∥
∥H − PT X

∥
∥
∥
2,p

+ β ‖H1‖2

s.t. H ∈ {−1, 1}L×n , diag(PT P) = 1, 0 < p ≤ 2, (5)

where α and β are penalty parameters.

2.2 Optimization

Directly optimizing (5) is a challenge as it is both non-convex and non-smooth. However,
obtaining a solution becomes easier when one considers one variable while keeping another
fixed.

First, we rewrite (5) as follows:

min
H,P

∥
∥
∥HT H − L · S

∥
∥
∥

2 + α · T r((H − PT X)D(H − PT X)T ) + β ‖H1‖2

s.t. H ∈ {−1, 1}L×n , diag(PT P) = 1, 0 < p ≤ 2, (6)

where T r(·) is the trace of “·”, and D is a diagonal matrix, and the ith diagonal element of
D is defined as:

Di,i = 1
2
p

‖ri‖2−p

2

, (7)

where ri is the ith column of matrix (H − PT X).
In other words, (6) can be solved using an iterative framework comprising the following

two steps until convergence. We can directly obtain a discrete solution for the hash codes
without relaxation:

Step 1: Learn H with P fixed. The problem in (6) is then reduced to:

min
H

∥
∥
∥HT H − L · S

∥
∥
∥

2 + α · T r((H − PT X)D(H − PT X)T ) + β ‖H1‖2

s.t. H ∈ {−1, 1}L×n , 0 < p ≤ 2. (8)

Inspired by the recent advance in non-convex and non-smooth optimization [1, 2] and
discrete proximal linearized minimization (DPLM) [40], the discrete solution for H can be
solved through an iterative process as follows. The convergence about DPLM can also been
seen in [40].

We first define the objective function in (8) as L(H). Thus, (8) can be transformed into
an unconstrained problem as follows:

min
H

δ(H) + L(H) (9)

where δ(H) is defined as:

δ (H) =
{

0, H ∈ {−1, 1} .
∞, H /∈ {−1, 1} . (10)
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Using the proximal and forward-split algorithms [1] as inspiration, (9) can be formulated as:

Hj+1 = arg min
H

δ (H) + λ

2

∥
∥
∥
∥
H − Hj + 1

λ
� L(Hj )

∥
∥
∥
∥

(11)

Equation (11) can then be transformed into a constraint problem as follows:

min
H

∥
∥
∥
∥
H − Hj + 1

λ
� L(Hj )

∥
∥
∥
∥

s.t. H ∈ {−1, 1}L×n , 0 < p ≤ 2. (12)

Now, determining that H has an optimal discrete solution is straightforward:

Hj+1 = sgn(Hj − 1

λ
� L(Hj )), (13)

where Hj is the solution of H obtained after the jth iteration, λ is a parameter, and �L(H)

is defined as:

� L(H) = 4HHT H − 4LHS + 2(H − PT X)D + 2βH11T . (14)

Step 2: Learn P with H fixed. The problem in (6) is reduced to:

min
P

T r((H − PT X)T D(H − PT X))

s.t. diag(PT P) = 1, 0 < p ≤ 2. (15)

Setting the derivative of the objective function in (15) with P to zero:

XXT PD − XHT D = 0, (16)

the closed-form solution for P can be calculated as:

P = (XXT )−1XHT . (17)

To satisfy the constraint diag(PT P) = 1, we project each row of P onto the unit norm ball
after each update:

Pj ← Pj
∥
∥Pj

∥
∥
, (18)

where Pj is the jth row of P.
In general, the proposed discrete problem is solved based on DPLM [40]. In fact, the pro-

posed discrete problem is reformulated as minimizing the sum of a smooth loss term with
a non-smooth indicator function, and then it can be efficiently solved by an iterative pro-
cedure with each iteration admitting an analytical discrete solution, which can be converge
very fast. The convergence can be achieved within a few iterations.

2.3 Time complexity

Let the symbols n, f and L represent the total number of training samples, the dimension
of the sample feature and the length of the hash code, respectively. The time complexity for
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learning the hash codeH is O(nL2 +n2L+nf L), and the time complexity for learning the
projection P is O(nf 2 + nf L + nL). As L is much smaller than n and f , the total training
time complexity of the proposed method can be reduced to O(n2L + nf 2 + nf L).

3 Experiments

In this section, the datasets and evaluation metrics used in our experiments are described
and additional implementation details are provided. Two image datasets CIFAR-10 NUS-
WIDE were used for performance evaluation of the proposed SDHSL, and the performance
comparison with several state-of-the-art methods was also presented. Our experiments
were conducted on an Intel(R) Core(TM) i7-4790 CPU with 16 GB of RAM. The
hyperparameters we set are listed in the section on implementation details.

3.1 Experimental Settings

3.1.1 Datasets

We used the two datasets of CIFAR-10 NUS-WIDE, which are widely used for image
retrieval.

CIFAR-10: There are 60,000 images in this database, 50,000 for training and 10,000 for
testing. Ten classes are included in the image dataset with 6,000 images in every class.

NUS-WIDE: There are 269648 images with 81 classes in this database. We chose the 10
classes that contained the most images. Hence, the total number of images used in the
experiment is 67994. The bag-of-visual-words SIFT feature with 500-dimension is used
for each image as the input feature vector. In addition, 20000 images are chosen as the
training set and 500 images as the test set.

3.1.2 Evaluation Metric

To evaluate the proposed hashing method, we used an evaluation metric commonly used in
image retrieval, viz. the mean average precision (MAP). MAP is the average of the average
precision (AP) values of the top retrieved samples.

MAP = 1

Q

Q
∑

r=1

AP(i), (19)

where Q is the number of query images, and AP(i) is the AP of the ith instance. AP is
defined as:

AP = 1

R

G
∑

r=1

precision(r)σ (r), (20)

where R is the number of relevant samples in the G samples retrieved. Here, σ(r) = 1 if the
rth sample is relevant to the query; otherwise, σ(r) = 0.
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3.1.3 Implementation Details.

We compared our method with the following: SPLH [43], KSH [25], LFH [57], FastH
[20], ITQ [5], SDH [36], and COSDISH [17]. The hyperparameters were all initialized
based on the authors’ suggestions. For each method, we conducted five experiments and
provided the average result of these five experiments. During training, four hyperparameters
were used with our proposed SDHSL method:, α, β, p and λ. We empirically set α to 0.01,
β to 10, p to 1.2 and λ to 0.1.

3.2 Experimental Results and Analysis

3.2.1 Performance Evaluation

Table 2 shows the MAP of the proposed SDHSL method and baselines. Compared with the
baseline methods, we can see that our method outperforms the baselines on both CIFAR-10
and NUS-WIDE datasets in most cases.

From Table 2, it appears that SRDML achieves the best results on the under most of
cases. In particular, the proposed SDHSL method achieves an improvement of over 20% in
some cases over the other methods. As the length of the hash code increases, our method
performs even better. On the CIFAR-10 dataset, the MAP performance is better than most
of the baseline methods, although our performance trails that of COSDISH when the hash
code length is 8 and 64. The COSDISH also considers label similarity during hash learning.
However, it divides the generation of the hash code of the training samples and the hash
function learning into two steps; these are learned simultaneously in the proposed method,
and the strategy used in SDHSL is more efficient.

3.2.2 Parameter analysis

In this study, we learn the hash codes for the training samples and the projection between the
original features and their corresponding hash codes for out-of-sample extensions simulta-
neously. Therefore, the parameter α balancing these two terms in the objective function is
important. In addition, the �2,p-norm is adopted in the proposed method, potentially leading

Table 2 Performance in terms of MAP

Method CIFAR-10 NUS-WIDE

8 bits 16 bits 32 bits 64 bits 8 bits 16 bits 32 bits 64 bits

SPLH 0.1588 0.1635 0.1701 0.1730 0.3769 0.4077 0.4147 0.4071

KSH 0.2334 0.2662 0.2923 0.3128 0.4275 0.4546 0.4645 0.4688

TSH 0.2365 0.3080 0.3455 0.3663 0.4593 0.4784 0.4857 0.4955

LFH 0.2908 0.4098 0.5446 0.6182 0.5437 0.5929 0.6025 0.6136

SDH 0.2642 0.3994 0.4145 0.4346 0.4739 0.4674 0.4908 0.4944

FastH 0.4230 0.5216 0.5970 0.6446 0.5014 0.5296 0.5541 0.5736

COSDISH 0.4986 0.5768 0.6191 0.6371 0.5454 0.5940 0.6218 0.6329

SDHSL 0.4126 0.6243 0.6242 0.6237 0.7039 0.7226 0.7296 0.7237

The best results are shown in bold
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Fig. 1 Performance influence of parameter α

to a more stable learned hash code. Hence, α and p are the two most important parameters
in the proposed method. In order to gauge their sensitivity, we conduct experiments to eval-
uate the influence on performance of parameters α and p. We draw the MAP curves with
different values of α and p in Figs. 1 and 2, respectively, with α ranging from 10−4 to 104

and p ranging from 0.2 to 2.0. During the experiments, we set the code length to 64. We
repeat the experiments five times for each value of α and p and extract the average MAP
performance.

In Fig. 1, we can see that the MAP performance has low sensitivity regarding the param-
eter α. In addition, when the value of α is 0, the performance is the lowest, which means
that learning the hash codes for the training samples and the projection for out-of-samples
simultaneously is beneficial to the aggregate MAP performance.

Figure 2 shows the influence of the parameter p. It is apparent that the MAP performance
is satisfactory when the values of p are lower than 2. In particular, when the value of p

is 2 (i.e., the �2,p-norm is �2-norm), the MAP performance deteriorates. This phenomenon
also proves that the �2,p-norm ((0 < p ≤ 2)) adopted in the proposed method leads to
potentially more stable hash codes.

Fig. 2 Performance influence of parameter p
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4 Conclusion

In this study, a novel discrete hashing method called SDHSL is proposed, which learns
hash codes based on semantic label similarity. The proposed SDHSL jointly learns the hash
codes of the training samples and the hash functions to obtain hash codes for samples out-
side the training set. The experiments performed on two benchmark datasets confirmed the
superiority of our method under various retrieval scenarios.
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