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Abstract
In this paper, we present a Mixture Linear Prediction based approach for robust
Gammatone Cepstral Coefficients extraction (MLPGCCs). The proposed method pro-
vides performance improvement of Automatic Speaker Verification (ASV) using i-vector
and Gaussian Probabilistic Linear Discriminant Analysis GPLDA modeling under trans-
mission channel noise. The performance of the extracted MLPGCCs was evaluated using
the NIST 2008 database where a single channel microphone recorded conversational
speech. The system is analyzed in the presence of different channel transmission noises
such as Additive White Gaussian (AWGN) and Rayleigh fading at various Signals to
Noise Ratio (SNR) levels. The evaluation results show that the MLPGCCs features are a
promising way for the ASV task. Indeed, the speaker verification performance using the
MLPGCCs proposed features is significantly improved compared to the conventional
Gammatone Frequency Cepstral Coefficients (GFCCs) and Mel Frequency Cepstral
Coefficients (MFCCs) features. For speech signals corrupted with AWGN noise at SNRs
ranging from (-5 dB to 15 dB), we obtain a significant reduction of the Equal Error Rate
(EER) ranging from 9.41% to 6.65% and 3.72% to 1.50%, compared with conventional
MFCCs and GFCCs features respectively. In addition, when the test speech signals are
corrupted with Rayleigh fading channel we achieve an EER reduction ranging from
23.63% to 7.8% and from 10.88% to 6.8% compared with conventional MFCCs and
GFCCs, respectively. We also found that the combination of GFCCs and MLPGCCs
gives the highest performance of speaker verification system. The best performance
combination achieved is around EER from 0.43% to 0.59% and 1.92% to 3.88%.
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1 Introduction

The development of mobile devices such as: smartphones or tablets and the use of the voice
biometrics (e.g. for access control, device personalization, transaction banking) have paved the
way for a large number of new multimedia applications [7, 39]. Automatic Speaker Recog-
nition (ASR) refers to recognizing a person based on his/her voice as a biometric feature. It
consist of two tasks: Speaker Identification (SI) and Speaker Verification (SV). In speaker
identification task, an unknown speaker is compared against a set of known speakers, and the
best matching speaker gives us the identification. Speaker verification is the process of
accepting or rejecting the identity claim of the speaker [16]. Speaker Recognition systems
are broadly classified into two categories: Text Independent (TI-SR) and Text-Dependent (TD-
SR). In TI-SR, the speaker can pronounce any sentence to be recognized, i.e. the system does
not impose any constraint for training and test sessions. However, TD-SR systems use the
same phrases/sentences for training and test sessions [2, 10]. Nowadays, many applications
using speaker recognition have been deployed to improve the authentication procedure such as
banking over wireless digital communication network, security control for confidential infor-
mation, telephone shopping, database access services and voice mail [10]. Feature extraction is
the crucial component in speaker recognition system where the speech signal is represented in
a compact manner, in which the extracted features are capable of separating the speakers from
each other in their space. The effects of additive noise and/or channel distortion have always
been one of the most important problems in speaker recognition research. Various techniques
have been proposed to improve the performance of speaker recognition systems in presence of
noise. Speech enhancement methods include, for example, Spectral Subtraction (SS) or
Nonlinear Spectral Subtraction (NSS), Wiener filtering and Kalman filtering. Moreover, other
processing techniques are proposed to increase the robustness of ASR systems. Some of these
techniques use feature normalization such as Cepstral Mean and Variance Normalization
(CMVN), Relative Spectral (RASTA) processing of speech, or feature warping [24, 27]. In
[22] they used multi-condition model and the missing features to compensate signal. The work
in [31] proposed a soft spectral subtraction method that handles missing features in speaker
verification. A recent work on robust speaker recognition based on the i-vector technique made
a significant progress in reducing the channel effect and the additive noise [4]. Different
channel compensation techniques were used, such as the Within-Class Covariance Normali-
zation (WCCN), the Linear Discriminant Analysis (LDA) and the Nuisance Attribute Projec-
tion (NAP) [32]. In [26], the authors proposed a new variant of robust Mel Frequency Cepstral
Coefficients (MFCC) that are extracted from the estimated spectral magnitude Bispectral-
MFCCs. Score domain techniques such as H-norm, Z-norm, and T-norm have been studied in
[2]. Recently, [40] proposed a new feature based on articulatory movement to characterize the
relative motion trajectory of articulators in short-duration utterances. In [22], a multi-system
fusion approach that uses multiple streams of noise-robust features for i-vector fusion is
developed. The authors in [20] have analyzed the effects of multi-condition training on i-
vector PLDA. In [6], the authors have proposed to use the Gammatone product-spectrum
cepstral coefficients under noisy condition and speech codecs.

The great majority of past studies have addressed the effect of additive noise environment
for speech and speaker recognition. However, only few studies have been reported the impact
of Additive White Gaussian Noise (AWGN) and Rayleigh fading channels for speaker
recognition performance. For instance, the work in [17] shows the effects of speech codecs,
with AWGN and Rayleigh fading noises, on the performance of speaker recognition systems.
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In [36], autoregressive MFCCs and Speech Activity Detection (SAD) algorithms have been
applied for speaker recognition system over AWGN channel. In [13] a combination of
modified LPC with Wavelet Transform (WT) in AWGN and real noise environments has
been proposed. In [5], the authors proposed an approach that consists of using acoustic
features, that are extracted directly from encoded bitstream, called ISF (Immittance Spectral
Frequency), through a noisy channel (AWGN and Rayleigh).

MFCC coefficients are the most commonly used features in speaker and speech recognition
systems. However, the MFCC features, which are computed by using a mel-scaled filter-bank
are known to be very sensitive to additive noise. The auditory model based on mel scale in
standard MFCC may not be optimal for speaker recognition [34] and the logarithmic nonlin-
earity used in MFCC to compress the dynamic range of filter bank energies does not possess
noise immunity. In [42], the authors proposed a new front-end speech feature based on
cochlear filter referred to as Gammatone Frequency Coefficient Cepstral (GFCCs). The work
in [41] showed that the GFCCs features give superior performance of speaker recognition
compared with other features such as MFCCs in noisy environments. Despite their relative
robustness, it is important to mention that the GFCCs features are usually obtained by using
the Fast Fourier Transform (FFT) [19]. Since the FFT requires the use of stationary signals
within a given short-term frame; this may not analyze the non-stationary segments in transient
state, which is not suitable in speaker recognition. Another popular feature extraction tech-
nique consists of the linear prediction (LP) filtering which is a well-known all-pole method for
modeling the vocal tract by using a small number of parameters. The main drawback of
conventional LP method is that the resulting spectral envelope may contain very sharp peaks
for speakers with high pitch frequency.

Several modifications of LP method with an improved robustness against noise have been
developed. One can cite the Weighted Linear Prediction (WLP), Stabilized Weighted Linear
Prediction (SWLP), and regularization of linear prediction of spectrum analysis methods.
Temporally weighted linear predictive [37] were studied in speaker verification under
additive-noise condition. Extended Weighted Linear Prediction (XLP) [29] were evaluated
for both channel distortion and additive noise. The study in [28] introduced a new algorithm
based on linear predictive analysis utilizing an autoregressive (AR) Gaussian mixture model.
In [30], the authors used an algorithm providing MFCCs features for speaker verification
under vocal effort mismatch.

The use of a new approach of linear predictive modeling in this work is motivated by the
ability of the linear predictive methods to capture relevant information from two major parts of
the voice production mechanism that are the glottal excitation and the vocal tract. The LP
signal analysis of this work uses a Gaussian mixture autoregressive model to compress the
spectrum parameters. Besides this, it is showed in [11] that, even at low SNRs of environ-
mental noise, the Gammatone filter bank and cubic root rectification provide more robustness
to the features than the Mel-filter bank and log nonlinear.

In this paper, we propose a new feature extraction approach providing a Mixture of Linear
Prediction Gammatone Cepstral Coefficients (MLPGCCs). The Mixture Linear Prediction
MLP method is based on an autoregressive (AR) mixture model processed by Gammatone
filter banks. This combination (i.e., MLP and Gammatone) is expected to take advantage of
both MLP properties and Gammatone filtering to improve the robustness of speaker verifica-
tion system under channel transmission noise [18]. The performance of speaker verification
system is evaluated using i-vector and Gaussian Probabilistic Linear Discriminant Analysis
GPLDA modeling.
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The remainder of this paper is organized as follows. A brief introduction to the channel
transmission noise is presented in Section.2. In Section.3, we describe the proposed
MLPGCCs feature extraction algorithm. Block diagram of a MLPGCCs-based text-indepen-
dent speaker verification system is presented in Section.4. Section.5 reports the performance
evaluation carried out by comparing the proposed method with conventional extracted fea-
tures. Finally, conclusions are summarized in Section 6.

2 Channel transmission noise

A communication system, as illustrated in Fig. 1, can be divided into two parts. The first part is
digital and consists of the source encoder/decoder, the channel encoder/decoder and the digital
modulator/demodulator. The second part is analog and is made of the transmitter, the receiver
and the channel models. The modulation process involves the change of some parameters of a
carrier wave, thus obtaining a set of signals suitable for a transmission channel. There are two
main types of signal degradation introduced by the transmission channels: the first is attenu-
ation and random variation of signal amplitude, and the second is distortion of the signal
spectrum. Signal attenuation results from the degradation of the signal power level over
distance while random variation of signal amplitude results from channel noise and multipath
Rayleigh fading effects.

In order to implement the communication system, we used the standard speech codec,
Adaptive Multi-Rate Wide Band (AMR-WB), codec, introduced by the European Telecom-
munication Standards Institute (ETSI). AMR provides better speech quality and more robust-
ness for background noise. Binary Phase Shift Keying (BPSK) modulation and demodulation
are simulated. We want to transmit symbols from an alphabet {mi; i = 1, ......,M} and a signal
xi(t), suitable for transmission and assigned to each symbol mi. After transmission, we obtain a
distorted version of the original xi(t) defined by yi(t). On the other hand, the distortion due to
quantization and channel errors may make the received symbol m̂i different from the trans-
mitted one mi. We define the Additive White Gaussian Noise (AWGN) channel, which
modifies the transmitted signal as

y tð Þ ¼ xi tð Þ þ n tð Þ ð1Þ
where n(t) is a white Gaussian-distributed noise of zero mean and variance σn2 =N0/2. In the
AWGN channel, the noise is added to the transmitted signal by specifying the signal to noise
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Fig. 1 General diagram of basic communication system [25]
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ratio (SNR) value. To simulate the Fading channel, we apply a random signal envelope a and a
random phase θ to the transmitted signal.

y tð Þ ¼ ae−jθxi tð Þ þ n tð Þ ð2Þ
when there is no dominant received component, the envelope is Rayleigh-distributed and it is,
defined by:

p að Þ ¼ a
σ2

exp
−a2

2σ2

� �
ð3Þ

where 2σ2 = E[a2] is the mean power of the fading and the phase is uniformly distributed. In
our investigation, we use the Rayleigh fading channel that has been shown realistic to simulate
fading channels. In mobile environments, the speech is compressed by a conventional speech
codec, then it is transmitted to the server where the recognition is performed using the features
extracted from the decoded signal. The Rayleigh fading channel is simulated based on the
modified sum-of-sinusoids method. The quadrature components of Rayleigh fading process
are given by:

u tð Þ ¼
ffiffiffiffi
2

E

r
∑
E

i¼1
cos ϖdtcosαi þ ϕið Þ þ j

ffiffiffiffi
2

E

r
∑
E

i¼1
cos ϖdtsinαi þ ϕið Þ ð4Þ

where αi = ((2πi − π − θi)/4π), i = 1, 2.......E,ϖd is the maximum angular Doppler frequency, ϕi

and θs are statistically independent and uniformly distributed on [−π, π], [1].

3 Mixture linear prediction Gammatone features

Feature extraction is a crucial component in the Automatic Speaker Verification (ASV) system.
Generally speaking, the speech features extraction methods aim at extracting relevant infor-
mation about the speaker. In this work, we have implemented different feature extraction
techniques that have in common the modeling of peripheral auditory system, namely MFCCs,
GFCCs and the new feature MLPGCCs. The block diagram of feature extraction is depicted in
Fig. 2.

3.1 Mixture linear prediction

The linear prediction (LP) analysis is used to estimate the parameters of an autoregressive
(AR) model by minimizing the prediction error. In speech processing LP model, each sample
is predicted as a linear weighted sum of the past p samples, where p is the order of prediction.
The predicted signal bs nð Þ is defined as:

bs nð Þ ¼ − ∑
p

k¼1
aks n−kð Þ ð5Þ

In the mixture autoregressive model, the signal sn, n ≥ 0can be modeled as a mixture of
Jautoregressive processes with conditional density function defined by [30].

f sn=sn−1; :::; s0;λð Þ ¼ ∑
J

i¼1
πn;i

1

σi
φ

un;i
σi

� �
ð6Þ
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where λ is the model parameter set and φ(.) is the standard normal density function. The
distribution of a hidden state variable is given by:

πn;i ¼ P qn ¼ i=sn−1; ::::::; s0;λð Þ; 1≤ i≤ J ð7Þ
where qn ∈ {1, ........, J} determines the J of AR processes.

sn ¼ a0;i þ ∑
J

i¼i
ak;isn−k þ un;i1≤ i≤ J ð8Þ

where a0, i are the intercept (constant) terms. The mixture linear prediction is inspired by the
principle of Gaussian Mixture Model (GMM), defined by the set of parameters:

λGMM ¼ P1; ::::::;PJ ;μ1; ::::::::::;μ j;σ
2
1; ::::::::::σ

2
J

� �
ð9Þ

where Pi, μi and σ2
i , 1 ≤ i ≤ J, are the component weights, Gaussian mean values and Gaussian

variances, respectively. The mixture linear prediction (MLP) model is defined in as follows
[28]:

λMLP ¼ P1; ::::::;PJ ; a0;1; a1;1::::; ap;1; a0;2; ::::; ap; J ;σ2
1; :::σ

2
J

� � ð10Þ
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The parameters of this model are estimated by the Expectation - Maximization (EM) algorithm
according to the following steps:

& In the E (expectation) step, estimate the excitations un, i as a prediction residual

en;i ¼ sn−a0;i−∑p
k¼1ak;isn−k ð11Þ

The hidden state posterior probabilities defined by

γn;i ¼ P qn ¼ i=sn; ::::::; sn−p;λGMLP
� � ¼ max 0:01;

Pi 1=
ffiffiffiffiffiffiffiffiffiffi
2πσ2i

p� �
exp

�
−e2n;i= 2σ2

i

� �

∑
J

j
p j 1=

ffiffiffiffiffiffiffiffiffiffi
2πσ2j

q� �
exp

�
−e2n; j= 2σ2

j

� �

0
BBB@

1
CCCA ð12Þ

& In the M (maximization) step, the component weights are re-estimated as Pi ¼ ∑nγn;i
∑n1

and

the noise variances as σ2
i ¼

∑nγn;ie
2
n;i

∑nγn;i
. To determine the AR parameters ak, i define xn, 0 = 1

(for the intercept) and xn, k = sn − k, k ≥ 1 and then solve the following normal equations:

∑
p

k¼0
ak;i∑nγn;ixn;kxn; j ¼ ∑nγn;isnxn; j;0≤ j≤p ð13Þ

3.2 Gammatone auditory filter bank

Gammatone filters are a popular way of modeling the auditory processing at the cochlea. The
Gammatone function was first introduced in [12], characterizes physiological impulse-
response data gathered from primary auditory fibers. The Gammatone filters were used for
characterizing data obtained by reverse correlation from measurements of auditory nerve
responses of the cat’s cochlea. The impulse response of a Gammatone filter centered at
frequency fc is defined as:

g tð Þ ¼ Kt n−1ð Þe−2πBtcos 2π f ct þ ϕð Þ ð14Þ
where K is the amplitude factor; n is the filter order; fc is the central frequency in Hertz (Hz); ϕ
is the phase shift; and B represents the duration of the impulse response. The Equivalent
Rectangular Bandwidth (ERB) is a psychoacoustic measure of the auditory filter bandwidth at
each point along the cochlea. The filterbank center frequencies are uniformly spaced on an
equivalent rectangular bandwidth (ERB) scale between 200 and 3400 Hz (assuming a
telephone bandwidth at a sampling rate of Fs = 8 kHz). The formula for calculating ERB (in
Hz) at any frequency f (in Hz) is expressed by:

ERB ¼ f
Qear

þ Bmin ð15Þ

where Qear = 9.26449 and Bmin = 24.7 are known as Glasberg and Moore parameters [8,
9]. The frequency response of the 64-channel Gammatone filter bank is illustrated in
Fig. 3.
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Herein, we used a bank of 64 filters whose center frequencies range from 50 Hz to
8000 Hz, relatively to the sampling frequency of the speech signal. The magnitudes of
the down-sampled outputs are then loudness-compressed by a cubic root operation [42]
such that:

Gm i½ � ¼ jjg decimate

h
i;m

i			 			1=3

i ¼ 0::::::N−1;m ¼ 0::::::M−1;

ð16Þ

Here, N = 64 refers to the number of frequency (filter) channels. m is the frame index;M is the
number of time frames obtained after decimation. The resulting responses Gm[i]form a matrix
representing the time-frequency (T-F) decomposition of the input signal. This T-F representa-
tion is a variant of cochleagram.

4 Speaker verification using mixture linear prediction Gammatone
features

The investigated systems use the post feature extraction processing (MFCCs, GFCCs, and
MLPGCCs) with i-vector extraction and channel compensation. The GPLDA technique is
used to build the speaker model. The block diagram of the proposed speaker verification
system is shown in Fig. 4.

4.1 Total variability i-vector modeling

Speaker verification based on i-vector approach involves different stages: i-vector feature
extraction, GPLDA modeling and scoring using the batch likelihood ratio.

4.1.1 I-vector extraction

The i-vector approach [4] is inspired from the Joint Factor Analysis (JFA). In JFA, speaker and
channel effects are independently modeled using Eigen-voice (speaker subspace) and Eigen-
channel (channel subspace) models:

Fig.3 A Gammatone filter bank with 64filters
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M ¼ mþ Vyþ Ux ð17Þ
whereM is the speaker super-vector,m represents the speaker- and channel-independent super-
vector, which can be taken to be the universal background model (UBM) super-vector. Both V
and U are low rank transformation matrices. The variables x and y are assumed to be
independent and have a standard normal distributions. In the i-vector extraction, the speaker
and channel super-vector M is represented as:

M ¼ mþ Tw ð18Þ
where m is a speaker and channel independent super-vector, T is a low rank matrix
representing the primary directions of variation across a large collection of development data,
and w is a normally distribution with parameters N(0, 1).

4.1.2 GPLDA modeling and scoring

The PLDA technique was originally proposed by [31] for face recognition, and later adapted to
i-vectors for speaker verification by [15, 21]. This technique called Gaussian Probabilistic
LDA (GPLDA), which divides the i-vector space into speaker and session variability sub-
spaces, which has shown significant performance for intersession compensation for i-vector
speaker verification [14]. In the GLPDAmodeling approach, a speaker and channel dependent
i-vector, ws, r can be defined as
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ws;r ¼ ηþ Hzs þ εs;r ð19Þ
where η is the i-vectors’mean,Η is the eigenvoice matrix, zs is the speaker factor and εs, r is the
residual for each session.

The scoring in GPLDA is conducted using the batch likelihood ratio between a target and
test i-vector [33]. Given two i-vectors, w1 and w2, the batch likelihood ratio can be calculated
as follows:

Score w1;w2ð Þ ¼ log
P w1;w2=φ1ð Þ
P w1;w2=φ0ð Þ ð20Þ

where φ1 denotes the hypothesis that the i-vectors represent the same speakers and φ0 denotes
the hypothesis that they do not.

5 Evaluation experiments

The proposed features have been analyzed and evaluated by carrying out various experiments
on the ASV. We use the NIST-2008 Speaker Recognition Evaluation (SRE) corpora containing
a single channel microphone recorded conversational segments of 8 min or longer duration of
the target speaker and an interviewer [23]. The speaker models were obtained from clean
training speech data. The clean waveforms are transcoded by passing them through a coding
and decoding AMRWB codec [35]. The mobile channel was simulated using two noise
channels: AWGN and Rayleigh fading with different variances to make SNR within (−5, 0,
5, 10, 15 dB). In all experiments, the feature vectors contain 20 cepstral coefficients and log-
energy/C0, appended with the first and second order time derivatives, thus providing 63
dimensional feature vectors, followed by cepstral mean and variance normalization (CMVN).
The self-adaptive VAD (VQ-VAD) is employed to remove silence and low energy speech
segments. We utilized three different acoustic features: (a) Mel frequency Cepstral coefficients
(MFCCs), (b) Gammatone Frequency Cepstral Coefficients (GFCCs) as our baseline and (c)
Mixture linear prediction Gammatone Cepstral Coefficients (MLPGCCs). The feature vector
was extracted every 10 ms, using a Hamming window of 25 ms and the magnitude spectrum
by FFT and MLP with (p: 8, 14, 20). After feature extraction, each speaker model is adapted
from a 512-component in which the UBMs are trained using the entire database. For the total
variability matrix training, the UBM training dataset is used. The EM training is performed
throughout five iterations. We use 400 total factors (i.e., the i-vector size is 400) then LDA is
applied to reduce the dimension of the i-vector to 200, and length normalization is then
applied. In the process of variability compensation and scoring, a GPLDA model with adding
noise is used.. In practice, the MSR Identity Toolbox [38] was used to implement the i-vector-
GPLDA processing. We evaluate the speaker verification accuracy using the equal error rate
(EER).

5.1 ASV performance in additive white Gaussian noise (AWGN) channel

In this subsection, we investigate the effect of channel AWGN with different feature extrac-
tions (MFCC, GFCCs and MLPGCCs) on overall system performance. The first experiment
aims to find the optimal number of MLP iterations to estimate the model of prediction.
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Figure 6 shows EER as a function number of MLP iterations. We can see an
improvement of the accuracy when the iteration number is set to a specified values
(5, 7).We found that the optimal number of MLP iterations is 5 compared to 7 as
found in [30].

The goal of the next experiments is to evaluate the verification performance using
MFCCs, GFCCs, MLPGCCs features and the combination of MLPGCCs-GFCCs fea-
tures. Here, we consider the context of mismatched conditions where the test data is
distorted with AWGN noise having a 5 dB of SNR level. The results obtained by using
a development set and i vector GPLDA are displayed in Tables 1, 2 and Fig. 5. It can
be observed from Table 1 that the proposed features perform better than GFCCs and
MFCCs at almost all SNR levels and clean condition. We also note that the MLPGCCs
with p = 20 slightly outperform the method presented in [29]. This can be explained by
the fact that for the LP orders ranged in 8–20, the LP residual contains mostly the
information about the excitation source.

From Fig. 5, it is clear that EER decreases with respect to signal to noise ratio for all the
features. From the results it can be shown that MLPGCCs with (5-iterations) gives better
correct recognition rate compared to other features at all SNR levels.

Results in Table 1 and Fig. 6 indicate that the proposed feature extraction method achieves a
reduction in average equal error rate (EER) ranging from 9.41% to 6.65% and 3.72% to 1.50%
compared with MFCCs and GFCCs features, when the test speech signals are corrupted
withAdditive White Gaussian Noise (AWGN) channel, at SNRs ranging from (-5 dB to
15 dB) respectively.

Furthermore, we combined two methods for estimating the short-term spectrum,
namely FFT and mixture LP to improve the (EER). This combination is performed
by the logistic regression technique where weights are trained using the BOSARIS
Toolkit [3]. The effect of this combination of GFCCs and MLPGCCs is investigated
under AWGN noise channel. The results are summarized in Table 2. In comparison

Table. 1 ASV performance in terms of EER (%) under AWGN channel using different SNR for the
features(MFCCs, GFCCs) and proposed MLPGCCs with differents number of prediction (p = 8,14,20)

SNR (dB) EER(%)

-5 0 5 10 15

MFCCs 18.8 14.62 10.5 7.55 5.45
GFCCs 13.31 10.14 7.19 4.9 2.85
MLPGCCs(p = 8) 15.10 13.29 9.14 5.51 3.89
MLPGCCs(p = 14) 11.30 9.03 5.54 4.28 2.96
MLPGCCs(p = 20) 9.59 7.58 4.12 3.15 2.35

Table. 2 ASV performance in terms of EER (%) under AWGN channel using different SNRs for the features
(GFCCs, MLPGCCs) and combined features

Noise Features -5 dB 0 dB 5 dB 10 dB 15 dB

Awgn channel GFCCs 13.31 10.14 7.19 4.9 3.85
MLPGCCs 9.59 7.58 4.12 3.15 2.35
Fusion 9.16 6.68 3.45 2.34 1.76
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with the results obtained by MLPGCCs based system as shown in Table 1 and Fig. 6,
we observe significant EER reduction in all SNR levels between 0.43% to 0.59%.

5.2 ASV performance in Rayeligh fading channel

In the case of Rayleigh fading channel, we have carried out the same processing as in the case
of AWGN channel distortion. The results obtained on the development set for different
features using i-vector GPLDA are shown in Fig. 7. It can be seen that there is a drop in the
accuracy of the verification system as the SNR increases. It can also be noticed that there is an
accuracy improvement for MLPGCCs features compared to MFCCs and GFCCs features.
Moreover, it can be shown that MLPGCCs with (7-iterations) gives better recognition rate
compared with the (5-iteration) MLPGGCs.

As result, when the test speech signals are corrupted with Rayleigh fading channel indicate
that the proposed feature extraction method achieves a reduction in the average equal error rate
(EER) ranging from 23.63% to 7.8% and from 10.88% to 6.8% over conventional MFCCs and
GFCCs features, at SNRs ranging from (-5 dB to 15 dB), respectively. In addition, Table 3
summarizes the results of GFCCs andMLPGCCs combination under Rayleigh fading channel.
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Fig. 5 The effect of varying the number of MLP iterations on the performance of speaker verification
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Fig. 6 Performance comparison of alternative noise-robust features considered in this study against MFCCs on
the ASV task under AWGN noise channel at different SNR

Multimedia Tools and Applications (2020) 79:18679–1869318690



These results have shown a significant EER(%) reduction at all SNR levels between
1.92% to 3.88%.

6 Conclusion

In this paper, a new feature extraction method based on the mixture linear prediction
Gammatone is proposed. The MLPGCCs features are evaluated on aspeaker verification
system using i-vector GPLDA modeling in mobile communications with considering
the impact of transmission channel distorsion. The key point of our idea is to take
advantage of the characteristics of the linear prediction approach by using the iterative
parameter re-estimation of a mixture autoregressive (AR) model, instead of using
standard spectrum estimation performed by FFT. The new features are evaluated on
NIST 2008 dataset by considering the effects of noisy transmission channel (AWGN
and Rayleigh fading). Experimental results show that the proposed MLPGCCs outper-
form the conventional MFCCs and GFCCs features in speaker verification task. The
best perfromance is obtained in the context of AWGN channel (vs. Rayleigh fading
channel). The combination of the proposed and conventional features achieves better
performance when compared with each system alone and data corrupted by transmis-
sion channel noise. The results have shown that the proposed MLPGCCs considerably
imporved the robustness in all types of channel distorsions. We have also demonstated
that the algorithm that uses Gammatone filter bank and mixture linear prediction is
suitable in the context of transmssion channel noise compared to the FFT and the Mel-
filterbank. Future research includes the study of MLPGCCs system performance under
other types of noise and degradations such as: convolutive noise and reverberation.

0
5

10
15
20
25
30
35
40
45
50

-5 0 5 10 15

EE
R(
%
)

SNR(dB)

MLPGCCs (5ite)
MLPGCCs (7ite)
GFCCs
MFCCs

Fig. 7 Performance comparison of alternative noise-robust features considered in this study against MFCCs on
the ASV task under Rayleigh fading channel using different SNR

Table. 3 ASV performance in terms of EER (%) under Rayleigh fading channel using different SNRs and
features (GFCCs, MLPGCCs) and combined features

Noise Features -5 dB 0 dB 5 dB 10 dB 15 dB

Rayleigh fading channel GFCCs 34.25 27.03 18.55 15.86 14.00
MLPGCCs 23.37 16.02 12.91 9.12 7.2
Fusion 21.45 12.56 10.64 7.34 3.32

Multimedia Tools and Applications (2020) 79:18679–18693 18691



References

1. Al-Momani O, Gharaibeh KM (2014) Effect of wireless channels on detection and classification of asthma
attacks in wireless remote health monitoring systems. Int J Telemed Appl:1–8

2. Apsingekar VR, De Leon PL (2011) Speaker verification score normalization using speaker model clusters.
Speech Communication, Elsevier Science vol 53, pp 110–118

3. Brummer N, Villiers ED (2011) The BOSARIS toolkit: theory, algorithms and code for surviving the new
DCF. In: NIST SRE11 Analysis Workshop, Atlanta (USA), Dec. 2011, pp:1–23 [Online]. Available :
https://sites.google.com/site/nikobrummer/bosaris\toolkit\full\paper.pdf

4. Dehak N et al (2011) Frontend factor analysis for speaker verification. IEEE Transactions on Audio,
Speech, and Language Processing 19(4):788–798

5. Fedila M, Amrouche A (2012) Automatic speaker recognition for mobile communications using AMR-WB
speech coding. IEEE, information science, signal processing and their applications , ISSPA, pp 1034–1038

6. Fedila M, Bengherabi M, Amrouche A (2017) Gammatone filterbank and symbiotic combination of
amplitude and phase-based spectra for robust speaker verification under noisy conditions and compression
artifacts. Multimedia Tools Appl:1–19

7. Gallardo LF (2016) Human and automatic speaker recognition over telecommunication channels. Springer
Science + Business Media, Singapore

8. Glasberg BR, Moore BCJ (1986) Auditory filter shapes in subjects with unilateral and bilateral cochlear
impair- ments. J Acoust Sot Am 79:1020–1033

9. Glasberg, Moore (1990) Derivation of auditory filter shapes from notched-noise data. Journal of Hering
Elsevier, vol 47, issues 1–2, pp 103–138

10. Hansen JHL, Hasan T (2015) Speaker recognition by machines and humans: a tutorial review. IEEE Signal
Process Mag 32(6):74–99. https://doi.org/10.1109/MSP.2015.2462851

11. Jeevan M, Dhingra A, Hanmandlu M, Panigrahi BK (2017) Robust speaker verification using GFCC based
i-vectors. In: Proceedings of the international conference on signal, networks, computing, and systems.
Springer, New Delhi, pp 85–91

12. Johannesma PIM (1972) The pre-response stimulus ensemble of neurons in the cochlear nucleus. In:
Symposium on hearing theory (IPO, Eindhoven, The Netherlands), pp 58–69

13. Kaled Dagrouq A, Alkhateeb (2013) Wavelet LPC with neural network for speaker identification system.
Wseas Transactions on Signal Processing 9:216–226

14. Kanagasundaram A (2018) Improving the performance of GPLDA speaker verification using unsupervised
inter-dataset variability compensation approaches. Int J Speech Technol 21:533–544

15. Kenny P, Stafylakis T, Ouellet P, Alam J, Dumouchel P (2013) PLDA for speaker verification utterances of
arbitrary duration. In: Proceedings of IEEE international conference on acoustics, speech signal processing,
pp 7649–7653

16. Kinnunen T, Li H (2010) An overview of text-independent speaker recognition: From features to
supervectors. Speech Commun 52:12–40

17. Krobba A, Debyeche M, Amrouche A (2010) Evaluation of speaker identification system using GSM-EFR
speech data. In: proc. of int. conf. on design and technology of integrated systems (nanoscale era),
Hammamet, DTIS, Tuins, IEEE, pp 1-5

18. Krobba A, DebyecheM, Selouani SA (2018) Feature extraction using mixture linear prediction Gammatone
filter for robust speaker verification over AWGN Channel. 4th International Conference on Signal, Image,
Vision and their Applications, Guelma – Algeria, 26–27 November

19. Li Z, Gao Y (2015) Acoustic feature extraction method for robust speaker identification. Multimed Tools
Appl 75(12):7391–7406

20. Li X, Wang L, Zhu J (2017) SNR-multiconditon approaches of robust speaker model compensation based
on PLDA in practical environment. In Proceedings on the international conference on artificial intelligence
(ICAI) (pp. 146-150). The Steering Committee of the World Congress in Computer Science, Computer
Engineering and Applied Computing (WorldComp)

21. Mak M-W, Pang X, Chien J-T (2016) Mixture of PLDA for noise robust I-vector speaker verification. IEEE/
ACM Transactions on Audio, Speech, and Language Processing 24(1):130–142

22. Ming J, Hazen TJ, Glass JR, Reynolds DA (2007) Robust speaker recognition in noisy conditions. IEEE
Transactions on Audio, Speech, and Language Processing 15(5):1711–1172

23. NIST Year (2008) Speaker recognition evaluation plan, Technical report, NIST. http:www.itl.nist.
gov/iad/mig/yest/ser/2008

24. Padilla M, Quatieri T, Reynolds D (2006) Missing feature theory with soft spectral subtraction for speaker.
Verification. CSLP, ninth international conference on spoken language processing, Pittsburgh, PA, USA

25. Pahlavan K, Krishnamurthy P (2011) Principles of wireless networks: a unified approach. Prentice Hall PTR

Multimedia Tools and Applications (2020) 79:18679–1869318692

https://sites.google.com/site/nikobrummer/bosaris/toolkit/full/paper.pdf
https://doi.org/10.1109/MSP.2015.2462851
http://www.itl.nist.gov/iad/mig/yest/ser/2008
http://www.itl.nist.gov/iad/mig/yest/ser/2008


26. Pawan K. A, Navnath S. Nehe · Dattatray V. Jadhav · Raghunath S. H, (2012). Robust feature extraction
from: spectrum estimated using bispectrum for speaker recognition. Int J Speech Technol 15, pp:433–440.

27. Pelecanos J, Sridharan S (2001) Feature warping for robust speaker verification. In: Proc. ISCA speaker
recognition workshop Odyssey, Chania, Crete, pp 213–218

28. Pohjalainen J, Alku P (2014) Gaussian mixture linear prediction. IEEE international conference on on
acoustics, speech and signal processing (ICASSP), pp 6285-6289

29. Pohjalainen J, Saeidi R, Kinnunen T, Alku P (2010) Extended weighted linear prediction (XLP) analysis of
speech and its application to speaker verification in adverse conditions. In: Proc Interspeech, Japan

30. Pohjalainen J, Cemal H, Kinnunen T, Alku P (2014) Mixture linear prediction in speaker verification under
vocal effort mismatch. IEEE Signal Process Lett 21(12):1516–1520

31. Prince Simon JD, Elder JH (2007) Probabilistic linear discriminant analysis for inferences about identity.
IEEE 11th international conference on computer vision. ICCV’07, pp 1–8

32. Rahman MH, Kanagasundaram A, Himawan I, Dean D, Sridharan S (2018) Improving PLDA speaker
verification performance using domain mismatch compensation techniques. Comput Speech Lang 47:240–
258

33. Rao W, Mak MW (2013) Boosting the performance of i-vector based speaker verification via utterance
partitioning. IEEE Trans Audio Speech Lang Process 21(5):1012–1022

34. Ravindran S, Anderson DV, Slaney M (2006) Improving the noise robustness of mel-frequency cepstral
coefficients for speech processing. In: Proc. ISCA SAPA. Pittsburgh, PA, pp 48–52

35. Recommendation G (2003) 722.2: wideband coding of speech at around 16 kbit/s using adaptive MultiRate
wideband (AMR-WB)

36. Riadh A, Salim S, Said G, Ali CA, Taleb-A (2014) An efficient approach for MFCC feature extraction for
text Independant speaker identification system. Int J Commun 9:114–122

37. Saeidi R, Pohjalainen J, Kinnunen T, Alku P (2010) Temporally weighted linear prediction features for
tackling additive noise in speaker verification. IEEE Signal Process Lett 17(6):599–602

38. Seyed OS, Malcolm S, Heck L (2013) MSR identity toolbox v.1.0.A MATLAB toolbox for speaker
recognition research In: Proc, IEEE Signal Process, Speech and Language Processing Technical
Committee Newsletter

39. Sreenivasa R K, Vuppala AK (2014) Speech processing in mobile environments. Springer, ISBN: 978–319–
03116-3

40. Y. Zhang, Y. Long· X. Shen, H. Wei, M. Yang, H. Ye, H. Mao, (2017). Articulatory movement features for
short-duration text dependent speaker verification. Int J Speech Technol 20, 753–759.

41. Zhao X, Wang D (2013) Analyzing noise robustness of MFCC and GFCC features in speaker identification.
ICASSP’13, pp 7204–7208

42. Zhao X, Shao Y, Wang DL (2012) CASA-based robust speaker identification. IEEE Transactions on Audio,
Speech, and Language Processing 20(5):1608–1616

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Affiliations

Ahmed Krobba1 & Mohamed Debyeche1 & Sid-Ahmed Selouani2

1 Université des Sciences et de la Technologie Houari Boumediene (USTHB), LCPTS, Algiers, Algeria
2 LARIHS Laboratory, Campus Shappaing, University of Moncton, Moncton, Canada

Multimedia Tools and Applications (2020) 79:18679–18693 18693


	Mixture linear prediction Gammatone Cepstral features for robust speaker verification under transmission channel noise
	Abstract
	Introduction
	Channel transmission noise
	Mixture linear prediction Gammatone features
	Mixture linear prediction
	Gammatone auditory filter bank

	Speaker verification using mixture linear prediction Gammatone features
	Total variability i-vector modeling
	I-vector extraction
	GPLDA modeling and scoring


	Evaluation experiments
	ASV performance in additive white Gaussian noise (AWGN) channel
	ASV performance in Rayeligh fading channel

	Conclusion
	References




