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Abstract
In this paper, a parallel Sliding-Window Belief Propagation algorithm to decode Q-ary
Low-Density-Parity-Codes is proposed. This algorithm is accelerated by taking advan-
tage of high parallel features of GPU, and applied to video compression under distributed
video coding framework. The experiment results show that our parallel algorithm
achieves 2.3× to 30.3× speedup ratio under 256 to 2048 codeword length and 69.21×
to 78.31× speedup ratio under 16,384 codeword length than sequential algorithm.

Keywords SWBP. LDPC . GPU . DVC

1 Introduction

Distributed Video Coding (DVC) [7] is an advanced asymmetric coding scheme which
encodes individual frame independently while decodes them conditionally. This feature makes
DVC widely applied in mobile device environment. As a capacity-approaching channel codes,
Low-Density-Parity-Codes (LDPC) codes [6, 9] have been used to compress video under
DVC framework [15]. LDPC codes were first invented by Gallager [6] in 1962, and
rediscovered by MacKay and Neal [9] in 1996. Thereafter, it has become one of the hottest
topic for both research and industrial community.

In 1998, MacKay et al. [3] generalized the binary LDPC to finite fields GF(Q = 2q) and
proposed a Q-ary LDPC (QLDPC). QLDPC provides a better choice for practical multimedia
problems, e. g., video and image compression, as one pixel is normally represented by 8 bits at
least. Most decoders of LDPC codes are implemented by Belief Propagation (BP) algorithm [8]
(also known as “sum-product” algorithm). The Q-ary BP (QBP) algorithm was used to decode
QLDPC. TheQBP has a computing complexityO(NtQ2), whereN is the codeword length, and t is
the mean column weight of sparse parity check matrix H. To reduce its computing burden,
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Declercq et al. [1] proposed a fastQ-ary BP algorithm, whose idea is to replace the convolutional
operations by Fast Fourier Transform (FFT) and reduces the complexity to O NtQlog2 Qð Þð Þ.

To improve the performance of BP algorithm, Fang [4] presented a Sliding-Window Belief
Propagation (SWBP) algorithm, whose idea is to adaptively select optimal local bias proba-
bilities to seed the variable nodes of BP. A lot of experiments [4, 5] showed that SWBP could
achieve better performance with less iteration times. In addition, it is very easy to implement
and insensitive to the initial settings. Recently,Q-ary SWBP (QSWBP) [14] has been proposed
to deal with the QLDPC codes and achieved better performance and robustness, while it still
suffers from heavy computing complexity.

Graphics Processing Unit (GPU) [10] invented by NVIDIA, by means of highly parallel
structure, has demonstrated powerful ability for high performance computing. Inspired by GPU’s
amazing ability, we propose a parallel version of QSWBP and accelerate it by GPU. In 2016, the
joint-bitplane BP has been accelerated by GPU [2]. In 2019, A parallel binary SWBP algorithm has
been accelerated by GPU and obtained remarkable speedup ratio [12]. To our best knowledge,
parallel QSWBP algorithm has still not been presented. Instead of C/C++, wewill useMATLAB as
our programming platform in this paper. As a high-level language for scientific computing and rapid
prototyping engineering problems, MATLAB has many advantages, e. g.eliminating pointer to
avoid memory access error; powerful manipulation of vector and matrix; and concise and efficient
vectorization instructions. Since 2010, MATLAB has introduced supports to GPU [11]. We use our
parallel QSWBP algorithm to decode a small fractue of video under DVC framework. The
numertical experiments are performed to investigate the accelerating effects between parellel and
sequence algorithm. A brief version of this paper has been published in IoTaaS 2019 conference
[13], and we hereby present the detaild discussions and the application of this algorithm.

2 QSWBP algorithm

2.1 Correlation model

Let A = [0 : Q) denote the alphabet. Let x, y ∈ A denote the realization of X and Y, which are
two random variables. Let Xn be the source to be compressed at the encoder. Let Yn be the Side
Information (SI) that resides only at the decoder. Let Xn = Yn + Zn. We model the correlation
between input Xn and output Yn as a virtual channel with following properties: Yn and Zn are
independent with each other; pZn znð Þ ¼ ∏n

i¼1pZi
zið Þ, where pX(x) denotes the Probability Mass

Function (pmf) of discrete random variable X; pmfs of Zi’s may be different, where i ∈ [0 : n].
We use Truncated Discrete Laplace(TDL) distribution to model Zi:

pX ijY i
xjyð Þ∝ 1

2bi
exp −

jx−yj
bi

� �
ð1Þ

where bi is the local scale parameter. Since ∑Q−1
x¼0pX ijY i

xjyð Þ ¼ 1, we can obtain

pX ijY i
xjyð Þ ¼ exp −

jx−yj
bi

� �
LQ bi; yð Þ ð2Þ



Fig. 1. (2,4)-regular QLDPC code of length 10. (a) The bipartite graph, where circles represent source nodes and
squares represent syndrome nodes; (b) parity check matrix.
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where LQ b; yð Þ ¼ ∑Q−1
x¼0exp −jx−yjbið Þ . To reduce the computing complexity, we use integra-

tion to approximate the summation. When b and Q are reasonably big, this approximation is
precise enough by

LQ b; yð Þ≈∫Q−10 exp −
jx−yj
b

� �
dx

¼ 2b 1−
1

2
exp

y− Q−1ð Þ
b

� �
−
1

2
exp −

y
b

� �� � ð3Þ

2.2 Encoding

The encoder uses QLDPC codes to compress source x ∈ [0 : Q)n to get syndrome s ∈ [0 : Q)n.
This process is performed by matrix-vector multiplication over the finite field GF(Q):

s ¼ Hx ð4Þ
where H ∈ [0 : Q)m × n is the sparse parity-check matrix. In H, i-th column corresponds to
source node xi, and j-th row corresponds to syndrome node si. If the elementary of H hj, i ≠ 0,
an edge connects si and xi in the bipartite graph of H, as illustrated in Fig. 1. We define the
indices of all source nodes that are connected to syndrome node sj as

N j ¼Δ ≤ ftfi : hj;i≠0⊂ 1 : n½ �, and indices of all syndrome nodes that are connected to source

node xi as Mi ¼Δ j : hj;i≠0
� �

⊂ 1 : m½ �.

2.3 Decoding

The decoder seeds source nodes x according to SI y, and runs QBP algorithm to recover x. For
the belief propagation between source nodes and syndrome nodes, we give following defini-
tions: ξi(x) is intrinsic pmf of source node xi; ζi(x) is overall pmf of source node xi; ri, j(x) is the
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pmf passed from source node xi to syndrome nodes sj; and qj, i(x) is the pmf passed from
syndrome nodes sj to source node xi, where j ∈ Mi and i ∈ Nj.

BP includes 5 steps:

1. Initializing BP:

ξi xð Þ ¼ ζi xð Þ ¼ pX ijY i
xjyð Þ ð5Þ

qj;i xð Þ ¼ 1=Q ð6Þ
where pX ijY i

xjyð Þ is calculated by (3)

2. Source-to-Syndrome BP:

ri; j xð Þ∝ ζi xð Þ
qj;i xð Þ ð7Þ

3. Syndrome-to-Source BP:

qj;i h j;ix
� 	 ¼ F−1 ψ j wð Þ

F ri; j h j;ix
� 	� �( )

ð8Þ

where ψ j wð Þ ¼ ∏
i∈I j

F ri; j h j;ix
� 	� �

for j ∈ [1 : m] and w ∈ [0 : Q), F{·} denotes the Fourier

Transform, and F−1{·} denotes the inverse Fourier Transform.

4. Overall pmf of Source Nodes:

ζi xð Þ ¼ ξi xð Þ ∏
i∈ J i

q j;i xð Þ ð9Þ

5. Hard Decision and Convergence Test:

bxi ¼ arg max ζi
x∈ 0:Q½ Þ

xð Þ ð10Þ
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If s ¼ Hbx, the decoding process finished successfully; otherwise, more iterations need be
performed until either s ¼ Hbx or the iteration times exceed a prespecified threshold.

2.4 SWBP algorithm

In QBP, the source nodes need be seeded with local scale parameter b of virtual correlation
channel. In [1, 8], the parameter of virtual correlation channel is estimated by SWBP
algorithm. In this paper, we will use expected L1 distance between each source symbol and
its corresponding SI symbol defined as

μi ¼Δ ∑
Q

x¼1
ζi xð Þ � jx−yijð Þ ð11Þ

Then, the estimated local scale parameter bb is calculated by averaging the expected L1
distances of its neighbors in a window with size-(2η + 1)

bbi ηð Þ ¼ ti ηð Þ−μi

min iþ η; nð Þ−max 1; i−ηð Þ ð12Þ

where

ti ηð Þ¼Δ ∑
min iþη;nð Þ

i0 ¼max 1;i−ηð Þ
μi0 ð13Þ

To calculate (13), we first calculate t1 ηð Þ ¼ ∑
1þη

i0 ¼1

ui0 . Then for i ∈ [2 : n],

ti ηð Þ ¼
ti−1 ηð Þ þ μiþη; i∈ 2 : ηþ 1ð Þ½ �
ti−1 ηð Þ þ μiþη−μi−1−η; i∈ ηþ 2ð Þ : n−ηð Þ½ �
ti−1 ηð Þ þ μi−1−η; i∈ n−ηþ 1ð Þ : n½ �

8<: ð14Þ

Same as [1, 8], the main purpose of QSWBP is to find a best half window size bη. We define an
expected rate:

γ ηð Þ¼Δ − ∑
n

i¼1
∑
Q−1

x¼0
ζi xð Þ � ln

exp −jx−yijbbi ηð Þ
� �

LQ bbi ηð Þ; yi
� �

¼ ∑
n

i¼1
ln LQ

�bbi ηð Þ; yi
�
þ μibbi ηð Þ

 ! ð15Þ

where LQ bbi ηð Þ; yi
� �

is defined by (3). The best half window size bη is chosen by

bη ¼ arg min γ
η

ηð Þ; ð16Þ

It is a natural idea that best half window size should minimize the expected rate. The flowchart
of QSWBP algorithm is illustrated in Fig. 2.



3 Parallel QSWBP algorithm

3.1 Complexity analysis

In Fig. 2, the decoding process includes 4 parts.

– The Source-to-Syndrome BP step needs n times iterations to calculate ri, j(x) Since there
are n source nodes.

– The Syndrome-to-Source BP step needs m times iterations to calculate qj, i(x) since there
are m syndrome nodes. Let rwj denotes the j-th row weight, in each iteration, the Fourier
Transform needs be calculated for rwj times and inverse Fourier Transform also needs be
calculated for rwj times. We use Fast Fourier Transform(FFT) to implement Fourier
Transform and inverse Fourier Transform. If the codeword length is n, each FFT needs
nlog2(n) real multiplies and real adds.

– The Computing Overall pmf step needs n times iterations to calculate ζi(x).
– In SWBP step, to find the best half window size, a search strategy [5] was proposed that

only searches half window size from η∈ 12;…;
ffiffiffiffiffiffi
n−1
2

qj k2� �
. Although this strategy could

remarkably reduce the searching iterations, we found that the best half window size might
be omitted according to our experiment results. Therefore, we will evaluate all expected
rates from η∈ 1; 2;…; n−1

2


 �� �
which needs n−1

2


 �
iterations. In practice, since γ(1) is

Fig. 2 Flowchart of QSWBP
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Fig. 3 Time consuming details of sequantial Q-ary SWBP
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always big enough, it is obviously unnecessary to calculate it while η = 1. In each SWBP
iteration, getting ti(η) needs n iterations in (14) and getting γ(n) also needs n iterations in
(15) in which the ln functions is very time consuming.

Based on above analysis, we conclude that syndrome-to-source BP step and SWBP step are
two major time consuming parts in the entire algorithm. To verify our conclusion, we use the
profile function in MATLAB to investigate the details of time consuming. Profile function [10]
could record the executive time of each function in MATLAB code. The time consuming result
is shown in Fig. 3, where qldpc _ test is the main function which costs 5.548 s, ntt is the FFT
function which is called for 8192 times and totally cost 3.912 s, and swbp _ lap is the SWBP
function which is called for 7 times and totally cost 1.607 s. Profile analysis means FFT and
SWBP are two major bottlenecks which agrees well with ours analysis. Since one GPU has
large amount of cores, which can run many threads simultaneously, we take advangtage of this
feature of GPU to accelerate above bottlenecks. In the our parallel algorithm, the bottleneck is
divided into many pieces, which has no corelation with each others, and each piece can run on
one core of GPU. The details of parallel algorithm are introduced in next two subsections.

3.2 Parallel syndrome-to-source BP algorithm

The sequential Syndrome-to-Source BP algorithm needs m iterations to calculate qj, i(x) as
there arem syndrome nodes. Since thesem iterations are independent with each other, they can
be calculated in parallel. We take Fig. 1(b) as an example. Figure 4 depicts our parallel
algorithm, where the number in square means the row position of non-zero elements in parity-



check-matrixH of Fig. 1(b). 5 threads run simultaneously on GPU to calculate each qj, i(x) and
each thread calculates FFT in sequence.

3.3 Parallel SWBP algorithm

In sequential SWBP algorithm, each window size setup iteration could generate an expected
rate γ(η), which is calculated by (15). Any two expected rate γ(η1) and γ(η2) (η1 ≠ η2) are
uncorrelated, and can be computed in parallel. In our parallel algorithm, all γ(η), η∈
1; 2;…; n−1

2


 �� �
would be calculated simultaneously by thousands of threads on GPU. Once

γ(η), η∈ 1; 2;…; n−1
2


 �� �
was obtained, we could use min() function in MATLAB to get the

smallest γ and corresponding best η from array γ(η). The sequential and parallel algorithm are
illustrated in Fig. 5.

3.4 Vectorization

Thanks to the features of MATLAB language, we could manipulate matrix and vector by
vectorizing code instead of loop-based code. We take calcualting (11) for example. Listing 1 is
our MATLAB implementation of (11) by loop-based code and vectorizing code, repectively.
From these codes, we could find vectorization has three advantages: less code means less error;
it’s easier to understand since vectorizing code appears like the mathematical expressions in
equations; and it runs much faster than loop-based code since MATLAB is optimized for
vectorization. By using vectorization, the code appears more concise and elegents. Our
vectorized source code has reduced 10% length than loop-based code.

Fig. 4 Parallel Syndrome-to-Source BP algorithm
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Listing 1 MATLAB code of (11)

4 Video compression by QLDPC

Fig. 5. (a) sequential SWBP algorithm, (b) parallel SWBP algorithm.
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Under DVC framework, the encoder is implemented by Pixel-Domain and Transform-
Domain (PDTD) scheme. PDTD divides video frames into Key Frame, which is
encoded and decoded using a conventional intraframe codec, and Wyner-Ziv Frames.
A block-wise DCT is performed for Wyner-Ziv frames to obtain the transform
coefficients XDCT, which are independently quantized and grouped into coefficient
bands. These bands are compressed by LDPC encoder. At the decoder, the correlation
between XDCT and side information SDCT is modeled as a Laplacian distribution. LDPC
decoder reconstructs the coefficient bands with the corrsponding side information and
performs a inverse DCT to generate the reconstructed Wyner-Ziv frames.



One frame in the video is normally represented by an n × n 2D source. Let xn, n and yn, n be
two n × n 2D sources, where

xn;n≜
x0;0 ⋯ x0;n−1
⋮ ⋱ ⋮

xn−1;0 ⋯ xn−1;n−1

0@ 1A ð17Þ

where xi, j ∈ [0 : Q). The correlation between them follows the setup in Section 2.1.
At the encoder, xn, n is first vectorized into an Q-ary temporary vector vn, n. Then vn, n is

performed a matrix-vector multiplication over the finite field GF(Q) to compress source to
syndrome sm:

sm ¼ Hvn;n: ð18Þ
where H is an m × (n × n) sparse parity-check matrix.

At the decoder, the QSWBP is performed with the help of syndrome and side information
to recover the source.

5 Experiment results

In our experiments, we use Intel Core i7 with 3.60Ghz as our CPU and NVIDIA GTX 1080Ti
as our GPU. The detailed parameters of this GPU are listed in Table 1. We used MATLAB
2014b as our development platform, since this version provides fully support to
GPU acceleration.

5.1 Performance of parallel QSWBP

To evaluate the performance of our parallel algorithm, we perform two experiments with
different Q.

In first experiment, we set Q = 256, and use 4 different regular LDPC codes as our input.
The parameters of these LPDC codes are listed in Table 2. To eliminate the random errors, we
perform 100 tests and average these outputs as our final results. The experiment result is
illustrated in Fig. 6, which shows that parallel QSWBP algorithm achieves 2.9× to 30.3×

Table 1 Parameters of GPU platform

Item Property

Name NVIDIA GTX 1080Ti
Core Name Pascal
Frequency 1.58 GHz
Technology 16 nm
CUDA capability version: 6.1
CUDA cores: 3584
SMs: 28
Threads per block: 1024
Each dimension of a block: 1024×1024×64
Warp size: 32
Constant memory: 64 KB
Shared memory per block: 48 KB
Memory: 11GB GDDR5
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accelerating ratio than sequential QSWBP algorithm. The longer the codeword length, the
higher the accelerating ratio.

The second experiment uses first experiment’s LDPC codes as input, while we set Q =
2048. The experiment result is illustrated in Fig. 7, which shows that parallel QSWBP
algorithm achieves 2.3× to 11.4× accelerating ratio than sequential QSWBP algorithm. The
trend of accelerating ratio is same with the first one.

Normally, successful decoding needs 11 rounds BP iterations under Q = 256, but only 3
rounds BP iterations under Q = 2048. As a result, the totally running time of second
experiment is shorter than that of first experiment. Because of the accumulating effects, first
experiment achevieves higher accelerating performance than second experiment does.

5.2 Performance of video decoding

We borrow a YUV video sequence named Foreman from [16], and choose first 4 frames from
Foreman as the source. Each frame is cropped to the size of 128×128 pixels. We construct a
regular LDPC code with condeword length 16,384, and information bit number 8192. Then
the rate is 1/2. The alphabet cardinality Q is fixed to 28 = 256.

Table 2 Different LDPC code parameters(N is codeword length, K is information bit number)

Test 1 2 3 4

N 256 512 1024 2048
K 128 256 512 1024
Maximum degree 4 4 4 4
Code Type regular regular regular regular

Fig. 6 Running time and speedup ratio under Q = 256
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6 Conclusion

A parallel Q-ary SWBP algorithm to decode regular LDPC codes with different codelength
and Q value has been proposed. We accelerate this algorithm with GPU and MATLAB

Fig. 7 Running time and speedup ratio under Q = 2048

Table 3 Performance Comparision Between Parallel and Sequential QSWBP Algorithms

#Frame Running Time (s) Speedup Ration

Sequential QSWBP Parallel QSWBP

1 156,852.39 78.31 2002.76
2 149,725.45 69.21 2163.19
3 150,328.21 70.12 2143.74
4 151,236.12 71.25 2122.37
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Our early experiments have demonstrated that QSWBP outperforms QBP in video
decoding [14]. In this paper, only the parallel and sequential QSWBP are evaluated by
decoding the Foreman video. The running time is used as the metric to evaluate the perfor-
mance of two algorithms. To eliminate the random errors, we perform 100 decoding processes
and average these running times as our final results. The experimental results are listed in
Table 3. Both parallel and sequental QSWBP obtain the same recovered frames which are
displayed in Fig. 8.

From Table 3, we can find that, under different frames, parallel QSWBP achieved 69.21× to
78.31× speedup ratio. It is because that a very long LDPC code length (16384) need more
iterations to search a best window size in the sequential QSWBP.



vectorization technique. Experiment results show that parallel algorithm achieves 2.9× to
30.3× speedup ratio under Q = 256 and 2.3× to 11.4× speedup ratio under Q = 2048. The
video decoding experiment shows that parallel algorithm achieves 69.21× to 78.31× speedup
ratio under Q = 256. In our future work, we will implement the parallel algorithm on the FPGA
platform to extend its applications.
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