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Raphaël Couturier1 ·Hassan N. Noura2,3 ·Ali Chehab2

Received: 15 March 2019 / Revised: 2 October 2019 / Accepted: 2 January 2020 /

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Data Confidentiality (DC) is considered one of the most important security services. Cur-
rently, a set of existing cipher algorithms is being used to ensure DC. However, researchers
constantly investigate the design and implementation of more efficient cipher schemes.
To this end, different versions of AES have been implemented efficiently on GPUs to
increase the efficiency over big data. However, AES implementation on GPU exhibits lim-
itations in terms of latency and hence, it might not be a suitable solution for high data
rates in modern systems and applications. This often leads to a trade-off between system
performance and security level. To address these challenges, we propose “ESSENCE”, a
lightweight stream cipher scheme, which combines two different Pseudo-Random Num-
ber Generators (PRNG), and based on a dynamic key approach. The scheme achieves a
high level of security with minimal latency and required resources when compared to exist-
ing cipher standards such as AES. Moreover, the implementation of the proposed dynamic
key-dependent cipher scheme on GPU is more efficient compared to all existing AES
implementations on GPUs. Experimental results indicate that the proposed cipher is highly
efficient with a throughput more than 115 GB/s on a Titan X GPU, and more than 372
GB/s on a Titan V100 GPU. Thus, ESSENCE can be considered as a promising stream
cipher candidate with high randomness degree (BigCrush of TestU01), periodicity, and key
sensitivity.
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1 Introduction

Security has become the most important armor responsible for protecting all kinds of
resources and data from various types of threats targeting security services such as data
confidentiality, integrity, and source authentication. These security services are typically
ensured by resorting to cryptographic solutions, which are essential to overcome and limit
such threats. Existing attacks can be either active or passive, where passive attacks can
seriously impair the Data Confidentiality (DC) and privacy of the system, while active
attacks can compromise its authentication (source, user, device), integrity, and availability.
Moreover, the nature of passive attacks makes them very difficult to detect compared to
active ones. An active attacker may insert, delete or modify data contents. Encrypting com-
municated or stored data can solve all problems related to passive attacks. However, this
requires a distributed scheme and a robust key exchange mechanism. Typically, symmetric-
key schemes are used for data encryption, especially since they are more efficient in terms
of memory and computational complexity compared to asymmetric-key ones. Further-
more, conventional symmetric key ciphers are either block-based or stream-based. Several
standardized cipher algorithms that ensure DC already exist, including the stream cipher
RC4 [25], and the block cipher AES [17].

In general, a block cipher [23] uses a round function that can either be based on a Feistel
Network (FN) such as DES, or on Substitution-Permutation Networks (SPN) such as AES.
SPN lends itself to parallel implementation and requires a lower number of rounds compared
to FN and hence, SPN exhibits lower latency and requires fewer resources than FN.

1.1 Related work

AES [6] is a block cipher that processes data in blocks of size 128 bits (16 bytes), and it
uses keys of size 128, 192 and 256 bits. The design of AES depends on the SPN principle. It
includes a round function, which consists of diffusion and substitution operations, and it is
iterated r times, depending on the size of the secret key. The number of rounds, r , is equal
to 10, 12, and 14 for a secret key of size 128, 192, and 256 bits, respectively.

Each round, except for the last, includes four operations:

– RoundKeyAddition: it mixes the plain input block with the specific round key.
– ByteSubstitution: the operation employs a substitution table, S-Box, to ensure the

confusion property.
– ShiftRows and MixColumn operations are used to ensure the diffusion property. Note

that the MixColumn operation is eliminated in the last round.

1.2 Problem formulation

The security level of existing symmetric ciphers, against analytic attacks, depends on the
number of rounds r , which leads to a trade-off between the security level and the required
latency and resources. Ciphers that are based on a static structure have proven their resis-
tance against analytic cryptanalysis. However, the static structure of the round function
represents the main security issue. Moreover, since the cipher primitives are static, the
required number of rounds r is high, where different substitution and diffusion operations
are performed within each round [18, 20, 21].

Fixed cipher structures lend themselves to future potential attacks [4, 31], which would
benefit from the fixed structure (substitution and diffusion primitives) to recover the secret
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key [27]. Examples of such attacks include implementation attacks such as side-channel
attacks and fault attacks [27]. Hence, countermeasures against implementation attacks
are required, which would increase the latency and required resources. This, in turn,
reduces their performance and makes them not suitable for some of the future systems and
applications [2].

1.3 Motivation

To overcome these limitations, our approach uses the dynamic key-dependent structure as
in [18, 21] to reduce the required number of rounds and operations. This leads to a good bal-
ance between efficiency and security level, as well as offering a simple solution to prevent
certain implementation attacks.

To reduce the execution time of the existing cryptographic algorithms, GPU (Graphic
Processing Unit) implementations are being adopted. A GPU is useful for cryptographic
algorithms, which can benefit from the hundreds and even thousands of cores in a GPU.
Researchers use GPUs to generate pseudo-random numbers such as in [1, 13]. Also, stan-
dard cryptographic algorithms have been implemented on GPUs such as AES [9, 14, 15],
which resulted in an impressive speed-up [5] compared to the CPU implementation. It is
worth noting that the efficient implementation of an algorithm on a GPU requires the exper-
tise to optimize the use of the GPU architecture in terms of shared memory, registers, and
warp [22].

Recently, an optimized and efficient implementation of AES on GPU was presented
in [15]. It achieved an excellent performance and the authors made various optimization
compared to the previous related works. Accordingly, this implementation is selected as
the reference for comparison against the proposed cipher solution. There is another recent
implementation of AES on GPU, PHAST, which was described in [26]. This implemen-
tation is more generic and it resulted in about 10% decrease in performance as compared
to [15].

1.4 Contributions

The proposed cipher solution follows the recent dynamic key-dependent approach of [7,
20, 21]. In contrast to these related solutions, no integer diffusion operation is used in the
proposed dynamic key-dependent stream cipher. This operation is eliminated without weak-
ening the cipher security level since the cryptographic primitives are updated for each new
input data. Moreover, the proposed solution does not require the avalanche effect, but it is
based on high key sensitivity.

The proposed cipher scheme uses an efficient and simple key-stream generation algo-
rithm that uses dynamic permutation and substitution tables in addition to two different
PRNGs with a large number of seeds. To the best of our knowledge, the proposed solu-
tion is the first dynamic key-dependent stream cipher algorithm with dynamic seeds and
substitution/permutation tables.

Next, we list the technical contribution of this paper as compared to the existing cipher
solutions:

– The proposed cipher is based on a dynamic key-dependent approach, and it is based on
a simple key derivation function that uses a variable session key and a Nonce, which
change for each new input message, making it highly resistant against attacks.

– The permutation table is used as a perturbation technique to modify the internal state,
which increases the periodicity of the employed PRNGs.
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– The proposed solution uses a dynamic substitution process to increase the nonlinear
degree of the generated key-stream and to achieve higher key sensitivity.

– The proposed cipher exhibits a high level of randomness, which was verified using the
“BigCrush” of “TestU01” [12] statistical suite tests on the generated key-stream.

– The proposed cipher scheme uses lightweight PRNGs and simple operations, which
minimizes the latency and required resources, and leads to a simple software imple-
mentation.

In summary, The proposed cipher satisfies the desirable cryptographic characteristics
such as long periodicity, high level of key sensitivity, and high level of randomness and thus,
higher resistance against attacks, with low latency and overhead.

1.5 Organization

The remainder of the paper is organized as follows. Section 2 describes and analyzes exist-
ing GPU cipher implementation. In Section 3, the proposed dynamic key derivation is
presented. While in Section 4, the employed cipher primitives construction techniques are
described. Then, in Section 5, we introduce and describe in details the proposed stream
cipher algorithm, along with the functionality of each operation. In Sections 6 and 7, we
respectively assess the robustness of the proposed cipher scheme and its performance.
Finally, in Section 8, a conclusion and future directions are presented.

2 Existing GPU cipher algorithms and their corresponding
implementations

AGPU (Graphic Processing Unit) is a commonly used architecture to accelerate computations.
GPUs are used in many computing applications and systems ranging from smart-phones,
embedded computing, to supercomputers. The architecture of a GPU is quite different from
that of a CPU. In a GPU, the architecture is optimized to maximize the execution throughput
of many simultaneous threads. The number of computing cores inside a GPU ranges from
hundreds to even thousands. The hardware is designed to execute many threads, even if
the bottleneck is the memory access itself. To benefit from the GPUs computing power,
users need to use a number of threads that exceeds the number of cores. Hence, while some
threads are waiting for their data, other threads are capable of executing. Typically, there are
many kinds of memory in a GPU: global memory which is the slowest one, cache memory,
texture memory, shared memory, local memory, and a limited set of registers having the
fastest access. Consequently, memory management is critical within GPUs.

GPUs are composed of streaming multiprocessors (SMs), and their number varies for
different GPU types. Typically, SMs are composed of 32 cores that can execute only a sin-
gle instruction at a time. So, if two threads are executed on the same SM, one instruction
will be executed, while the second one would have to wait. This is called thread divergence.
Consequently, “IF” instructions and “WHILE” conditions must be avoided, whenever pos-
sible. Threads are scheduled by groups of 32 on an SM, and they are referred to as warps.
In practice, threads are organized into blocks; depending on the GPU architecture, the max-
imum thread number per block is limited to 1024. Hence, it is important to keep in mind
that GPUs technical details are constantly changing with every new generation.
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Fig. 1 The proposed Key derivation function and its corresponding construction of cipher primitives

3 Dynamic key derivation function

In this section, the proposed dynamic key generation function and the corresponding sub-
keys generation schemes are presented and illustrated in Fig. 1. The cipher primitives (seeds
and permutation boxes) are dynamic and they change based on this set of sub-keys. The
specific secret key, SK , is mixed with a NONCE No (unique for each new input) to produce
a dynamic secret, O. Then, the new dynamic key (DK) is obtained by hashing O using a
secure cryptographic hash function. To ensure that a different DK is produced for each dif-
ferent input message or session, the SHA-512 hash function is chosen and it is known for
its high resistance degree against collisions. The dynamicity introduces robustness against
powerful attacks. The dynamic key, DK , is used to generate the required sub-keys as
explained next.

– Master Secret Key K: It is shared between both legal entities to provide enhanced
security. It allows the symmetric secret key to be renewed after each periodic inter-
val, depending on the application itself. For example, Elliptic Curve Diffie Hellman
(ECDH) protocols can be selected for this specific task.

– Nonce No: Each Nonce will be used only once; it is updated for every input image or
session. Two possible Nonce generation techniques can be adopted i) generated by the
sender and transmitted to the receiver in an encrypted form, by either employing a secret
key or by employing the receiver public key; ii) producing the Nonce at the sender and
receiver in a synchronized manner, through the use of a deterministic pseudo-random
generator.

– Dynamic Key DK: The master secret key K is XORed with N0, and the output
is hashed using SHA-512. This generates the dynamic key, DK , which represents
the MAC value with a size of 512 bits. Then, DK is divided into 4 main sub-keys
{KP , KS Kg1, Kg2} each with a size of 16 bytes (128 bits).

Multimedia Tools and Applications (2020) 79: –1357913559 13563



4 Construction of dynamic cipher primitives

The sub-keys are used to generate the required cipher primitives, as described below.

– Permutation sub-key KP : it consists of the most significant 16 bytes of DK , and it is
used to produce a set of permutation tables (32 P − boxes) that can be employed dur-
ing the selection process. In this solution, any key-dependent permutation generation
algorithm can be employed such as the ones in [19, 20]. The selection of the Modi-
fied Key Setup Algorithm (MKSA) of [19] is used to construct the required dynamic
key-dependent permutation tables. In fact, MKSA is selected due to its simple hard-
ware and software implementations. To ensure that a P-box has a good cryptographic
performance, MKSA should be always iterated with a different key in order to pro-
duce different P-boxes. Therefore, KP is used as a seed for the RC4 just to generate
a set of permutation sub-keys, and each sub-key is used as a seed for the MKSA to
produce a different permutation table. On the other hand, the weaknesses of RC4, as
reported in [8, 11, 16] do not affect the proposed solution, which is based on a dynamic
key-dependent structure.

RC4 will be iterated to generate a byte vector of length equals to Np × lp. Then, the
output is reshaped to form a matrix with a size of Np × lp, where each row represents
one of the dynamic permutation keys with a length of Qp = lp × 8 bits, to be used as
a permutation table.

Note that RC4 is iterated with a dynamic sub-key to avoid any weakness and to
achieve a high level of security.

– Substitution sub-key KS : it represents the second set of the 16 most significant bytes,
and it is used to produce a set of substitution sub-keys, where each sub-key is used
to produce a dynamic substitution table (S-box). Any key-dependent algorithm could
be used for the generation of the substitution tables. We adopt the simple technique
used in [19], which is based on the Key Setup Algorithm (KSA) of RC4. The output
of the original KSA, for any input key, is a substitution table that is used as a dynamic
S-box. RC4 is iterated to form a byte vector of length equals to Ns × ls. Then, the
output is reshaped to form a matrix of size Ns × ls; each row represents one of the
dynamic substitution keys, with a size of Qs = ls ×8 bits, and used as a key-dependent
substitution table.

– First PRNG seed Kg1: it represents the third most significant 16 bytes of DK and
it is used to produce a set of seeds of length lg1, one of which is selected for each
thread. Also, in this step, RC4 is selected and it is iterated for lg1×Qg1

8 times to gen-
erate different N seeds, where N represents the possible number of threads, and Qg1
represents the precision of the first generator, which can be equal to 32, 64 or 128.
The output key-stream is reshaped to form a byte matrix of size N × Qg1

8 . Each row
of this matrix represents one of the seeds, and it has a length equals to Qg1 bits. Any
repeated row (seed) is eliminated from this list and RC4 is re-iterated to produce a new
seed.

– Second PRNG seed Kg2: It represents the fourth most significant 16 bytes of DK and
it is used to produce a set of seeds of length N , one of which is selected for each thread.
Similarly, RC4 is selected and it is iterated for N×Qg2

8 times to generate different N

seeds. Besides, Qg2 represents the precision of the second generator. The output key-
stream is reshaped to form a byte matrix of size N × Qg2

8 . Each row has a size of Qg2
bits, and represents one of the seeds. Any repeated row (seed) is also eliminated from
this list, and RC4 is re-iterated to produce a new seed.
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All notations are shown in Table 1. These steps guarantee a high level of sensitiv-
ity, where any tiny change in the dynamic key would result into a completely different
cipher primitive in the generation process; such a change was proven in Section 6.2. The
parameters’ derivation is illustrated in Fig. 1.

5 Proposed stream cipher algorithm

This section describes the proposed stream cipher, “ESSENCE”, which is designed with a
single round to outperform AES. The main properties of the proposed solution are: high-
security level, reduced computational complexity, and simple and parallel hardware and
software implementations.

5.1 Basic Concepts

The proposed scheme is based on 3 main concepts:

– Parallel Computing: This algorithm is designed to run in parallel. All the threads are
independent of each other and they could be all executed in parallel (see Fig. 2), even
if it is not possible to schedule all of them at the same time.

Multi-streaming multiprocessors (SM) contain each 32 syn-chrome threads and
shared memory and hence, the same operation is applied on these syn-chrome threads

Table 1 Table of notations
Notation Definition

K Secret key

No Nonce

DK Dynamic Key

KP Permutation sub-key

KS Substitution sub-key

Kg1 First PRNG sub-key

Kg2 Substitution sub-key

P − box A dynamic produced permutation box

S − box A dynamic produced substitution table

Seed1 A dynamic set of seed for the first generator

Seed2 A dynamic set of seed for the second generator

Seed1,i The ith seed for the first generator

Seed2,i The ith seed for the second generator

N Number of possible threads

Qg1 Precision of the first generator that can be 32, 64 or 128.

Qg2 Precision of the second generator that can be 32, 64 or 128.

l Number of bytes of the input message

nb Number of blocks in an input message.

Mi The ith block of plain message

Ci The ith block of encrypted message
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Fig. 2 Scheme of the proposed lightweight stream cipher algorithm for the ith thread

but with different inputs. In the proposed scheme, every 32 threads are iterated to per-
form the same function. For example, the first PRNG with different seeds is iterated to
produce 32 outputs, each represented by 32 bits.

– Flexible Structure: The structure of the proposed stream cipher allows for any pair of
outputs of the efficient PRNGs to be used [29]. Therefore, any PRNG that exhibits very
good performance and satisfies the randomness properties could be used. For example,
in this paper, we use “xoroshiro128plus” and “xorshift”, which were selected due to
their simplicity and efficiency. The proposed solution uses both PRNGs since TestU01
can detect the link between all the threads, if only one PRNG is used.

– Efficient & Lightweight Combination of both PRNGs The selected pairs of PRNGs
are combined in an efficient manner (diffusion operation) to produce a key-stream with
high periodicity, and a stable randomness degree. The proposed technique benefits from
the shared memory of GPU, whereby the output of the first PRNG is stored in the shared
memory. Then, the output of the second PRNG is mixed with two different outputs of
the first PRNG.

– Dynamic Selection of Shared Memories. These shared memories (O0, and O1) are
selected according to dynamic permutation tables (32 different P-boxes).

In the following, we describe a set of possible pseudo-random generators that can be
used in the proposed stream cipher.

5.2 xoroshiro128+ (XOR/rotate/shift/rotate)

It is a successor to Xorshift (implementation at xorshift128+). It uses a carefully handcrafted
shift/rotate-based linear transformation, as shown in Algorithm 1. This PRNG ensures a sig-
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nificant reduction in latency and the corresponding resources. Also, this PRNG reaches a
high level of randomness. It has a repetition period of (2128-1), which is not long enough
for cryptographic algorithms. Therefore, the proposed stream cipher scheme uses a higher
number of threads and for each thread, a xoroshiro128+ PRNG is used. Also, a diffu-
sion operation is applied to the output of three different xoroshiro128+ PRNGs (different
for each iteration) to increase the periodicity of the proposed key-stream. The xorshift64
algorithm is presented in Algorithm 2.

5.3 Xorshift

Xorshift belongs to a class of PRNGs that is based on linear-feedback shift registers
(LFSRs), which is described in Algorithm-2. Xorshift allows for an efficient implementa-
tion without the need of excessively using sparse polynomials. This makes them extremely
fast on any modern computer architecture. Similar to LFSRs, the available parameters must
be chosen with extreme caution in order to achieve a long period [24]. However, xorshift
generators do not have non-linear steps. This makes them fail some statistical tests [24].
However, Xorshift generators do have numerous advantages including low execution time
as well as a simple implementation.
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5.4 Proposed encryption algorithm

Below, we describe the various steps of the proposed algorithm, as illustrated in
Algorithm 3:

Note that the input data is stored in the d input table, and the encrypted data (output) is
stored in the d output table. As the input is not changed, the keyword restrict allows the
compiler to optimize the variable’s access, which reduces the memory access time. Other
unchanged variables also have this keyword during the execution of the algorithm.

The variable d xoro is used to store the required internal values for the
”xoroshiro128plus” PRNG [3]. Each thread has a different value. To improve the perfor-
mance, in many GPU algorithms, one is advised not to compute more than a single value
per thread. Consequently, in our algorithm, the variable nb represents the number of ele-
ments that each thread is responsible for. The use of the loop is essential to reduce the
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number of threads used in the code to maximize the GPU’s occupancy. Without the loop,
the performance would be diminished.

In the main loop, the xoro variable is used to select 2 permutation tables from the 32
generated ones. Note that we could have chosen bigger permutation tables. However, in
this case, we would need to use the syncthreads() instruction to synchronize threads on
different warps. However, such an instruction reduces the performance significantly. These
permutation tables are obtained using 32 P-boxes generated with the initial key provided to
the proposed ESSENSE PRNG. So, the variable d pbox contains 32 random permutations
tables of size 32. Variable shmem is the shared memory that allows threads to exchange
their values. It should be noted that each thread will have values coming from different
permutation tables. For example, thread 0 will xor its result with threads 2 and 10, while
thread 1 will xor its result with threads 3 and 8, and thread 2 will xor its results with threads
31 and 9, and so on. Moreover, at each iteration of the loop, the values of o0 and o1 change.

Then, the algorithm calls the xoroshiro128plus function, which changes the variable xoro,
and puts the result into the variable res. Then, the shared memory is used to save this variable
before xoring it with 2 other numbers generated by 2 other threads (according to the two
permutation tables, as previously mentioned). The variable res is used as input to the second
PRNG (xorshift64), and the result is saved in res2. Then, res2 is xor-ed with two other
values coming from two other threads (in the same warp). Next, res and res2 are also xor-
ed in order to obtain res3. Finally, a substitution table d sbox is used to substitute 4 or 8
different bytes of res3 for an output of 32 or 64 bits, respectively. Note that the output
is converted to an unsigned char table before applying the substitution operation on each
element of the table. At the end of the loop, the internal value of xoro is saved for the next
call of the function. Finally, it should be noted that nbele is the total number of threads,
which depends on the size of the data to encrypt.

5.5 Proposed decryption algorithm

A legitimate receiver will use the same steps for decryption as the ones for encryption,
and the same secret and Nonce to produce the specific dynamic key. This allows for the
generation of the required cipher primitives. Then, the decryption algorithm proceeds in a
similar manner to the encryption algorithm.

6 Security analysis

An efficient encryption algorithm should be able to resist the most known types of attacks
such as statistical, differential, chosen/known plain-text, and brute-force attacks [19, 20].
Extensive experiments are performed in this section to demonstrate the efficiency and secu-
rity level of the proposed scheme against such attacks. Note that the proposed solution
can be used for any kind of data (structured or unstructured), but the following results are
provided for multimedia image contents.

6.1 Statistical analysis

To guard against statistical attacks, a cipher must exhibit a high degree of randomness and
uniformity [30]. To test the randomness degree, the following statistical security tests were
carried out, (a) Probability Density Function (PDF) analysis, (b) Entropy analysis and (c)
Correlation between plain and encrypted images.
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6.1.1 Uniformity analysis

The most important test is the probability density function(PDF) of the encrypted image,
which must be uniform; every symbol has a probability occurrence close to 1

n
, where n is

the number of symbols. The PDFs of two original plain-images and their corresponding
cipher images are shown in Fig. 3. It can be seen that the PDFs of the encrypted images are
close to a uniform distribution, with a value close to 0.039 that is 1

256 = 3.9 × 10−3.

6.1.2 Information Entropy Analysis

The information entropy, of a given image M , is a parameter that measures the uncertainty
level in a random variable [32], and it is defined by:

H(m) = −
h2∑

i=1

p(mi) log2
1

p(mi)
(1)

The entropy is expressed in bits, and p(mi) indicates the occurrence probability of sym-
bol mi , and NS the total number of symbols. If the entropy of the encrypted data is either
equal to or close to log2(NS), it can be considered as a true random source with a uniform
distribution.

The Entropy analysis of the encrypted Lenna image, at the sub-matrix level with a dimen-
sion of 16×16, and by using a random dynamic key, is shown in Fig. 4. The results indicate
that the encrypted images have an entropy similar to the desired value of 8. As such, the
proposed cipher is sufficiently secure against any given entropy attack.

Fig. 3 a and e show original images; b and f show their corresponding PDF; c and g show their corresponding
encrypted images; d and h show the PDF of encrypyed images. In b, f, d and h, the x-axis and y-axis represent
the symbol values and their corresponding probability values
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Fig. 4 Entropy analysis of encrypted Lenna versus 1,000 random secret keys at the sub-matrix level.
Encrypted image is divided into a set of sub-matrices of size 16 × 16 and NS = 256 bytes (mean equal to
7.175)

6.1.3 Independence

Removing any correlation between the sequence of elements is highly essential to ensure
the robustness of the proposed cipher scheme [19]. Having a correlation coefficient close
to zero means that the cipher scheme exhibits a high randomness degree. The correlation
test is performed by randomly taking adjacent pixels from an original image and its corre-
sponding encrypted image. This correlation can be done in horizontal, vertical and diagonal
directions. The correlation coefficient rxy is calculated using the following equation:

rxy = cov(x, y)√
D(x) × D(y)

(2)

where :

cov(x, y) = 1

N
×

N∑

i=1

(xi − E(x))(yi − E(y))

Ex = 1

N
×

N∑

i=1

xi

Dx = 1

N
×

N∑

i=1

(xi − E(x))2

The correlation results of the original and encrypted images, and for (2,000 pairs of
adjacent pixels), are shown in Figs. 5 and 6, for one random key, and for 1,000 random keys,
respectively. The results clearly show that the adjacent pixels of the plain image have a high
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Fig. 5 Correlation distribution in adjacent pixels (2,000 pairs) in original Lena: a horizontally, b vertically
and c diagonally. Correlation in adjacent pixels in ciphered Lena: d horizontally, e vertically and f diagonally

correlation, close to 1. However, the coefficient correlation of the encrypted images tends is
very low, close to 0, confirming the randomness property of the proposed cipher.

6.1.4 Plain data vs. encrypted data

The encrypted data should be very different from the original one, with a difference of at
least 50%, at the bit level. According to the obtained result in Fig. 7a, the proposed cipher

Fig. 6 The variation of the correlation coefficient for adjacent pixels in ciphered Lenna image versus 1000
random keys: a horizontally, b vertically and c diagonally
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Fig. 7 a The different variation between plain and ciphered Lenna image (percentage of the Hamming
distance) and b key sensitivity against 1,000 random keys

scheme satisfies the desirable difference results, with a percentage of at least 50% between
the plain and the encrypted Lenna images.

6.2 Sensitivity tests

Differential attacks are based on studying the relation between two encrypted messages
resulting from a slight change, such as a one-bit difference, between two original messages.
The sensitivity tests must confirm that a small change in the plain-image or in the key affect
the cipher image and generate a different one. The higher the difference, the better is the
sensitivity of the encryption algorithm.

6.2.1 Key Sensitivity test

This is one of the most important tests, and it quantifies the sensitivity against a slight
change in the secret key. The proposed key derivation function is based on a secret key and
a Nonce. To further study the key sensitivity, two dynamic keys are used, DK1 and DK2,
which differ by a single random bit. The two plain-images are then encrypted separately,
and the Hamming distance of the corresponding encrypted images, C1 and C2, is computed
and illustrated in Fig. 7b against 1,000 random dynamic keys. We can see that the majority
of values are close to the optimal one (50%). This confirms the high key sensitivity of
the proposed cipher algorithm. Additionally, the obtained results of 49.9970 are acceptable
when compared to the reported ones of AES.

6.2.2 Plain-text sensitivity

Since a different dynamic key is being used for each input image, the algorithm produces
a completely different cipher image for the same plain image. Hence, the proposed cipher
successfully satisfies the avalanche criteria.
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6.3 Visual degradation

This test is restricted to image and video contents, and it quantifies the visual degrada-
tion associated with the output of a cipher scheme. Two popular parameters are assessed
to measure the visual quality: the Structural SIMilarity index (SSIM) [28], and the Peak
Signal-to-Noise Ratio (PSNR) [10].

The PSNR is derived from the Mean Squared Error (MSE), which represents the cumula-
tive squared error between the encrypted and original images. A low PSNR value indicates
a high difference between the cipher and original images. On the other hand, SSIM lies in
the [0,1] interval, where 0 means the absence of correlation between original and cipher
images, while a value close to 1 indicates a high correlation between the original and cipher
images. We measured PSNR and SSIM between the original and encrypted Lenna images
for 1,000 random keys. The results are presented in Fig. 8a and b, respectively. It can be seen
that the value of the PSNR is 9.23 dB, which is a low value and confirming the high differ-
ence between the original and encrypted images. Also, the SSIM values are always close
to zero, which confirms that a high and hard visual distortion is achieved by the proposed
cipher algorithm.

6.4 Cryptanalysis: Resistance against well-known types of attacks

In contrast to the majority of existing cipher solutions, our scheme is based on a dynamic key
approach, with dynamic substitution, permutation and diffusion layers for each input data.
Previous statistical tests (entropy analysis, probability density function, correlation tests)
have confirmed the robustness of the proposed cipher scheme and its high resistance against
statistical attacks. Moreover, the key sensitivity analysis demonstrated a high sensitivity
against key-related attacks. These results are sufficient to infer that no useful information
can be inferred from the encrypted data. On the other hand, the resistance against cho-
sen/known plain-text attacks is verified due to the dynamic key approach, which drastically

Fig. 8 Variation of PSNR and SSIM between the original and encrypted Lenna image versus 1, 000 random
keys
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complicates the attacker’s task. As such, the problems of a single message failure and acci-
dental key disclosure are avoided. Furthermore, differential and linear attacks are ineffective
since any change in the dynamic key leads to a significant difference in the produced cipher
primitive and in the encrypted message as well. Also, the key space of the secret key is
of the order of 2128, 2192 or 2256, which is sufficiently large to make brute-force attacks
unfeasible. The same is true for the key space of the dynamic key, which is 2512. Note that
a large secret key and a large dynamic key are being used since the difficulty of cipher-
text-only attack is equivalent to one of the brute force attacks, making it impossible for a
cipher-text-only attack to retrieve useful information from the cipher image.

6.5 Statistical tests with TestU01

As previously explained, ESSENCE has been tested with more than 100 seeds via
TestU01 [12], and it successfully passed all the tests. In practice, a message of size 512*512
is typically used with all elements set to zero, and the key is initialized only once, at
the beginning. All the other variables are also initialized once. Since TestU01 uses many
pseudo-random numbers, the same message is used repeatedly over a very large number of
iterations, with a single difference between iterations, the different numbers generated by
the PRNGs.

7 Performance analysis

In this section, the cipher latency is quantified to assess the performance of the proposed
cipher.

7.1 Experiments

To measure the performance of the proposed cipher, ESSENCE is evaluated on a Titan X
GPU, which has the following characteristics:

– Compute capability: 5.2
– Global memory: 12,207 MB
– GPU frequency: 1.25 GHz
– Memory frequency: 3,505 MHz
– Number of CUDA cores: 3,072

and on a Tesla V100 with the following characteristics:

– Compute capability: 7.0
– Global memory: 16,152 MB
– GPU frequency: 1.53 GHz
– Memory frequency: 877 MHz
– Number of CUDA cores: 5,120

To compare the performance against the best AES implementation, we selected the
implementation of [15], which uses the ECB operation mode, and we shall refer to it as
AES-ECB. The performance tests are based on different 8-bit color images. Note that the
throughput of AES-ECB is very close to the result in [26], 570.72 Gbps, which corresponds
to 71.3 GBps.
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Table 2 Throughput of
ESSENCE and AES-ECB on a
Titan X GPU

Image size ESSENCE AES-ECB

Throughput (in GB/s) Throughput (in GB/s)

512x512x3 35.1 20.3

1024x1024x3 71.5 36.6

2048x2048x3 105.7 52.1

4096x4096x3 115.7 58.3

8192x8192x3 108.6 65.8

16384x16384x3 110.6 70.2

Table 3 Throughput of
ESSENCE and AES-ECB on a
Volta V100 GPU

Image size ESSENCE AES-ECB

Throughput (in GB/s) Throughput (in GB/s)

512x512x3 53.5 22.9

1024x1024x3 150.5 54.1

2048x2048x3 261.1 91.0

4096x4096x3 354.4 120.0

8192x8192x3 358.8 136.9

16384x16384x3 372.8 146.1
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Fig. 9 Speed-up (execution time ratio) of ESSENCE compared to AES-ECB on a Titan X GPU and on Tesla
V100
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The execution time of the encryption algorithm is the same as the one of the decryption
algorithm (stream cipher). Note that our implementation is highly optimized, and the kernel
operations of reading and writing an image take approximately the same time. The speed-up
of ESSENCE compared to AES-ECB is shown in Tables 2 and 3 and in Fig. 9.

The obtained results indicate that the proposed cipher scheme is faster compared to AES-
ECB, and the ratio varies between 1.4 and 2 depending on the message length on the Titan
X, and between 2.4 and 2.9 for the Tesla V100. Therefore, the proposed cipher scheme is
more suitable for real-time applications.

8 Conclusion

In this paper, we presented ESSENCE, a new dynamic, key-dependent, one-round stream
cipher scheme with an efficient, parallel, and dynamic key-dependent structure, and
which was designed targeting a GPU implementation. ESSENCE outperformed the most
optimized implementation of AES on GPU, which makes it preferable for real-time appli-
cations. Moreover, the proposed cipher scheme offers a high degree of randomness, which
was validated by quantifying the produced key-stream, which successfully passed the statis-
tical tests of TestU01. Also, ESSENCE has a high periodicity since it combines the threads’
results of two PRNGs, which are then dynamically xor-ed based on 32 permutation tables,
which are also generated and related to the dynamic key. Moreover, the implementation of
ESSENCE is very simple compared to other existing cipher schemes. Equally important,
the robustness of ESSENCE has been assessed and confirmed via cryptanalysis along with
different benchmark tests. Note that other existing cryptanalysis techniques are designed
to target static structures, which is not the case of the proposed scheme. In future work,
the design of an efficient parallel dynamic key-dependent hash function for GPU will be
investigated.
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26. Peccerillo B, Bartolini S, Koç ÇK (2017) Parallel Bitsliced AES through PHAST: a Single-Source High-

Performance Library for Multi-Cores and GPUs. Journal of Cryptographic Engineering 9:1–13
27. Stallings W (2017) Cryptography and Network Security: Principles and Practice. Pearson, Upper Saddle

River
28. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to

structural similarity. IEEE Trans Image Process 13(4):600–612
29. Wellons C (2017) Finding the Best 64-bit Simulation PRNG << null program. https://nullprogram.com/

blog/21/09/2017
30. Xu S, Wang Y, Wang J, Tian M (2008) Cryptanalysis of Two Chaotic Image Encryption Schemes Based

on Permutation and XOR Operations. In: 2008 CIS’08. International Conference on Computational
Intelligence and Security. IEEE, vol 2, pp 433–437

31. Zhang R, Chen L (2008) A Block Cipher using Key-dependent S-box and Pboxes. In: 2008. ISIE 2008.
IEEE International Symposium on Industrial Electronics. IEEE, pp 1463–1468

32. Zhang G, Liu Q (2011) A novel image encryption method based on total shuffling scheme. Opt Commun
284(12):2775–2780

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Multimedia Tools and Applications (2020) 79: –135791355913578

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://nullprogram.com/blog/21/09/2017
https://nullprogram.com/blog/21/09/2017
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