
https://doi.org/10.1007/s11042-019-7735-9

RECODE: revision control for digital images

Fabio Calefato1 ·Giovanna Castellano1 ·Veronica Rossano1

Received: 4 December 2018 / Revised: 15 March 2019 / Accepted: 6 May 2019 /

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Revision control is a vital component in the collaborative development of artifacts such as
software code and multimedia. While revision control has been widely deployed for text
files, very few attempts to control the versioning of binary files can be found in the literature.
This can be inconvenient for multimedia applications that use a significant amount of binary
data, such as images, videos, meshes, and animations. Existing strategies such as storing
whole files for individual revisions or simple binary deltas, respectively consume significant
storage and complex semantic information. To overcome these limitations, in this paper we
present RECODE, a revision control system for digital images. It stores revisions in the
form of a DAG (directed acyclic graph) where nodes represent editing operations, and edges
describe the spatial and temporal relationships between operations. Being integrated with
GitHub, the largest project hosting platform, RECODE also facilitates the artistic creation
process of distributed teams with different workflows that include image editing and digital
painting. A preliminary user study was performed to assess the perceived usability of the
proposed system.

Keywords Multimedia design · Image editing · Revision control · Collaborative design ·
Digital painting

1 Introduction

In multimedia design and development, there is a wide range of contents such as text,
images, video, and audio that need to be created and edited. Recently, collaborative forms
of multimedia development have proved to be useful for authoring, editing, collecting, and
producing digital content [7, 8, 20].

� Giovanna Castellano
giovanna.castellano@uniba.it

Fabio Calefato
fabio.calefato@uniba.it

Veronica Rossano
veronica.rossano@uniba.it

1 Computer Science Department, University of Bari, Via Orabona 4, 70125, Bari, Italy

Multimedia Tools and Applications (2019) 78:33169–33188

Published online: 16 2019May

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-019-7735-9&domain=pdf
http://orcid.org/0000-0002-6489-8628
mailto: giovanna.castellano@uniba.it
mailto: fabio.calefato@uniba.it
mailto: veronica.rossano@uniba.it


When the development of multimedia is carried out in collaborative and integrated design
environments, revision control (or version control) becomes essential to calculate, represent,
and store differences between successive versions of the developed digital objects. Indeed,
the development process can involve many authors with potentially different skills. The
current paradigm of collaborative editing relies on sharing files between stakeholders upon
each revision. This requires maintaining consistency of the versions and dealing with con-
current edits in the same part of a multimedia artifact. Hence, the need for revision control
in digital artifacts comes in two different forms: 1 maintain a versioned history of changes
applied to artifacts and 2 enable the creation of several concurrent variants of the same
artifact as well as their consolidation.

However, so far revision control has been widely deployed for text files, while visual
media such as diagrams and pictures have received considerably less attention [17]. Even
popular, commercial tools for image editing such as Adobe Photoshop offer little or no
support for managing variation in the produced artifacts, forcing users to employ basic tech-
niques to track multiple versions of their work, such as merely creating multiple copies of
the picture file. Also, very few methods are available for the efficient storage of modifi-
cations of visual artifacts and in general of any binary content. Existing strategies such as
storing whole files for individual revisions or simple binary deltas could consume signif-
icant storage and obscure semantic information. This can be inconvenient for multimedia
applications that use a significant amount of binary data, such as images, videos, and
animations.

In this work, we present RECODE (REvision COntrol of Digital imagEs), a tool aimed
to support image version control and collaborative creativity in digital multimedia projects.
Inspired by version control systems for source code, such as Git and Subversion, where
branching (i.e., creating a different version of a stored artifact) is a natural operation, we
adopt the concept of paths and nodes in a graph to store persistent states over time owned by
a particular image file. The core idea of the RECODE system is to store the history of editing
operations applied to an image using a Directed Acyclic Graph (DAG) [1, 21], where each
vertex contains the result of a performed editing operation. This representation is suitable
for nonlinear revision control since the model has intrinsic support for collaborative editing,
including branching and merging paths edited by multiple contributors. Also, the model
does not require storing the whole modified image.

The remainder of the paper is organized as follows. In Section 2 we introduce the prob-
lem of revision control in visual artifacts as a background of our work. Section 3 overviews
recent state-of-art works related to the proposed tool. In Section 4 we describe the pro-
posed tool. Section 5 provides experimental results on usability tests. Concluding remarks
are given in Section 6.

2 Background

Revision control systems are widely used tools in software development primarily aimed
at managing versions of software source code during implementation [18]. In general, revi-
sion control tools assist the management of evolving digital artifacts, providing features
that allow users to track intermediate revisions of artifacts and their relations. Revision con-
trol systems also facilitate distributed and simultaneous content creation through four basic
operations: diff, patch, branch, and merge. The diff operation is used to extract the dif-
ferences, or deltas, between any two versions of a given artifact. The patch operation is
used to generate a specific version of an artifact based on a delta. The branch operation is

Multimedia Tools and Applications (2019) 78:33169–3318833170



Fig. 1 An example of revision control with two parallel branches (A and B) created from a common ancestor
and then merged

used to duplicate an artifact under revision so that modifications can happen in parallel and
independently along two branches (Fig. 1). Finally, a merge is used to reconcile into one
artifact two branches (i.e., parallel modifications) with a common ancestor (Fig. 1).

Depending on the adopted history model, that is, how the history of versions and changes
to artifacts is stored, revision control systems can be classified as state-based or change-
based systems [15]. Change-based revision control systems (also known as operation-based)
store the operations actually performed between two succeeding versions in the revision
control system. Instead, state-based systems store the history of changes as revisions of the
versioned artifacts as they existed at various points in time. Most existing general-purpose
revision systems such as Git1 and Subversion (SVN)2 employ a state-based model. These
modern revision control tools save storage space by computing and persisting only the dif-
ference (i.e., delta) between succeeding revisions while preserving the full state of a few
special versions – like initial or final (head) revisions [14].

Moreover, version control systems used for software development, such as Git and SVN
are generally readily applicable to textual artifacts since source code is written in plain
text format. However, these systems cannot handle the version control of binary files or
offer limited built-in support for binary content [10]. When dealing with image data, in
fact, they store separate images for each revision, thus wasting storage space. This issue
alone hampers the adoption of revision control systems in managing digital images. Some
extensions have been proposed (e.g., Git LFS),3 but they are meant to add support for storing
large binary files rather than for versioning.

Besides, commonly used image-editing software tools offer minimal control for image
versions. For example, Adobe Photoshop provides a version history that retains the undone
operations on a stack. Hence, the user can quickly jump to any recent state of the image
created during the current working session. However, high-level operations such as com-
parison (diff), branching, and merging of different versions are not available in Photoshop,
nor other current drawing tools. A few other tools, such as Adobe Drive and AutoDesk
Vault, offer version control for digital images, but they are proprietary and do not describe
their specific model. Some more general version control tools, including Perforce and Git,

1https://git-scm.com
2http://subversion.tigris.org
3https://git-lfs.github.com

Multimedia Tools and Applications (2019) 78:33169–33188 33171

https://git-scm.com
http://subversion.tigris.org
https://git-lfs.github.com


offer support for image diff operations via services such as GitHub.4 However, even when
image deltas or low-level image information such as pixel-wise differences are used, they
still lack sufficient high-level semantic information for reviewing, branching, merging, or
visualization.

3 Related work

Version control systems manage content change in a digital artifact and maintain a history of
its evolution due to successive editing operations. Recovering editing operations for binary
data is more difficult than for text, posing a big challenge for collaborative editing of digital
visual artifacts. To address this, different revision control systems for visual artifacts have
been recently proposed in the literature. The common idea is to implement a nonlinear con-
trol of versions using a DAG. Using a directed acyclic graph, the focus is on paths of editing
operations rather than on pixels or image objects, and challenges such as differencing (or
diff in short) and merge are solved with graph operations. They also offer support for selec-
tive undo and ”nonlinear exploration”, in which the user can adjust parameters to operations
that have already been performed.

The first example of using a DAG for storing the history of operations (i.e., changes)
and provide nonlinear revision control for binary image files is the seminal work by Chen
et al. [6], who implemented a plug-in of the image editor GIMP,5 which tracks user editing
actions in form of graphs to visualize revisions and support branching and merging.

A similar work is the one by Zhao et al. [23], who developed skWiki, a wiki-based frame-
work for collaborative creativity in digital multimedia projects, including different types of
media (text, hand-drawn sketches, and photographs). The framework uses the concept of
paths as trajectories of persistent state over time. A document or file is represented as a path
hence it is stored as the ordered (and timestamped) sequence of document-specific oper-
ations that created and modified it. Paths are implemented using a database management
system (DBMS) that stores individual paths as tuples in one table, and all of the operations
in another using the path identifier as a primary key and including the revision serial number.

The process of image differencing and merging concerns not only 2D images, but also
3D digital assets. Albeit not directly comparable to RECODE, a couple of studies are worth
mentioning because of the use of DAGs. Doboš and Steed [10, 11] proposed a general
approach to serialize DAG structures representing 3D assets and store them in MongoDB,
arguing that NoSQL databases are better suited for storing spatial information. Our imple-
mentation is similar in that we also serialize DAGs into a database, albeit we opted for
MySQL since we deal with 2D (i.e., non-spatial) assets only. Wang et al. [22] proposed a 3D
scene editor that builds upon the approach proposed by Doboš and Steed. Similarly to our
work, they also extended an open source web-based editor (three.js),6 store DAG structures
into a database, and implement the typical features of a revision control system, including
commit, branch, diff, and merge.

Instead of relying on DAG structures, da Silva et al. [9] implemented IMUFF, an image
version control system that works at bit level – i.e., the delta between two images is com-
puted as the set of bits that are changed across the two versions. Unlike DAG-based tools

4https://github.com
5http://gimp.org
6https://threejs.org

Multimedia Tools and Applications (2019) 78:33169–3318833172

https://github.com
http://gimp.org
https://threejs.org


such as RECODE and skWiki, IMUFF has the advantage of being independent of the image
editing tool. This, however, causes limitations too: 1 a color image with a somewhat low
resolution of 1024x1024 pixels requires over 4 million bitwise comparisons; hence, IMUFF
has been designed to work only on architectures with high-end NVIDIA GPUs to take
advantage of their massive parallel computational power; 2 since there is no tracking of
operations, as in RECODE and other DAG-based tools, IMUFF only supports the tracking
of rigid transformations – i.e., differencing and merging works only for rotations, transla-
tions, and reflections – whereas tracking of filter effects such as blur and solarize is not
supported.

Finally, besides academic prototypes, a few commercial solutions for image differenc-
ing and merging are also available. While primarily intended for source code revision,
GitHub provides an image comparison tool that allows visualizing differences between
stored images through a split pane view; the tool, however, does not support merging. Araxis
Merge7 is a commercial tool that supports both text and image differencing and merge. Sev-
eral image formats are supported and differences are shown at a pixel level, as in the case of
the IMUFF prototype by da Silva et al. [9]. Abstract8 is a commercial tool that offers ver-
sion control for files edited with Sketch,9 a proprietary vector graphics editor for macOS.
With respect to the collaboration workflow, Abstract is very similar to RECODE. Both tools
allow creating projects in a repository (proprietary in their case, GitHub in ours), add images
assets (plus any type of files in RECODE), storing only important revisions as entire binary
files (instead of deltas), and branching/merging alternative versions of images, even those
created by other team members who have access to the same project repository.

Inspired by the work proposed in [6], in [5] we introduced the first prototype of a revi-
sion control system for digital images that implements a hybrid approach combining the use
of graphs with both state-based and change-based revision control. Like in Chen et al. [6]
and other change-based systems [15], we also expose the history as a DAG to represent
spatial, temporal, and semantic dependencies between successive recorded image-editing
operations that are stored as graph nodes. However, like state-based revision control sys-
tems, we also allow users to store select, important revisions as binary files, thanks to the
integration with Git, so that users do not need to constantly reconstruct them by reapplying
the entire sequence of operations that ultimately lead to their creation. The prototype pre-
sented in [5] was intended as a proof of concept for our hybrid model, hence it offered only
a minimal set of graphical operations. In order to make our solution more robust, we devel-
oped a new version of our system that was obtained by integrating our hybrid model within
a more sophisticated open-source image editor. As a result of this integration, in this paper,
we present RECODE,10 a tool for nonlinear versioning control to be used in collaborative
works involving digital image editing.

Although inspired by the work proposed in [6], RECODE differs from it in the following
aspects:

– Chen et al. [6] developed their prototype on the GIMP image editing software, which,
however, does not provide an API to access the history of operations; therefore, they
had to fork the code and develop a custom version that is now obsolete – i.e., it has
never been updated to be on par with the official version. To avoid a similar issue, we

7https://www.araxis.com/merge
8https://www.goabstract.com
9https://www.sketchapp.com
10https://github.com/RECODE2/recode

Multimedia Tools and Applications (2019) 78:33169–33188 33173

https://www.araxis.com/merge
https://www.goabstract.com
https://www.sketchapp.com
https://github.com/RECODE2/recode


developed RECODE by extending miniPaint,11 an open-source, online image editor
that, while being not as sophisticated as GIMP and Photoshop, provides native sup-
port for extensions as well as access to the entire history of edit operations. As such,
RECODE promises to be more future-proof.

– RECODE is integrated with Git and GitHub, thus it enables teams to collaborate in
the creation of both visual and text artifacts. Besides, our system works well with the
Git LFS extension, thus allowing users to check out only the entire image files needed
for the current task at hand, and just symbolic references for other images that are not
needed.

– RECODE can be seamlessly used online and offline. In fact, despite being a web appli-
cation developed in JavaScript, we provide a Docker image that allows to execute the
tool locally and to synchronize the local Git clone with the remote origin repository as
soon as an Internet connection is again available.

– Instead of using custom formats as in [6], RECODE stores meta-data and project-
related information using files in standard JSON objects, which are serialized into a
MySQL database.

Finally, the RECODE tool satisfies the following fundamental properties required to
software tools supporting collaboration around digital artifacts [23]:

1. Mobility – platforms should be accessible from everywhere; RECODE leverages a
responsive user interface that adapts to the screen size of mobile devices such as tablets.

2. Collaboration – platforms should allow collaboration between geographically and
temporally distributed participants; RECODE workflow can support collaboration
between teams of distributed people who can work remotely and also online/offline by
running the tool locally via a Docker container.

3. Revision history – platforms should enable the tracking and versioning of digital assets;
RECODE supports the most important features available in revision control systems
thanks to its tight integration with Git and GitHub.

4. Transparency – platforms should hide revision systems complexity from users;
RECODE keeps complexity to a minimum by providing an intuitive UI to execute
revision system commands such as commit, branch, and merge.

5. Rich media – platforms should allow for the presence of different media types;
RECODE allows teammates with different interests (e.g., developers, illustrators, writ-
ers) to collaborate using the same Git repository, which can archive all types of artifact,
whether textual or binary.

6. Divergent creativity – platforms should enable the creation and tracking of differ-
ent versions of the same artifacts; RECODE supports divergent creativity by enabling
branching in non-linear revision – i.e., representing alternative versions of an image as
alternative paths in a DAG – as well as the differencing and merging of such ‘divergent’
artifacts.

4 The revision control system

The core data structure of RECODE is a Direct Acyclic Graph (DAG) that is used to
store the revisions as deltas (Fig. 2). DAG nodes represent image editing operations with

11https://github.com/viliusle/miniPaint

Multimedia Tools and Applications (2019) 78:33169–3318833174

https://github.com/viliusle/miniPaint


Fig. 2 An example of recorded editing operations stored as a DAG

relevant information such as the type of operation and its parameters, the author who applied
the operation, the time of the application and eventual notes. DAG edges represent the
relationships between the operations.

A (directed) sequential path between two nodes implies a spatial and/or semantic depen-
dency between operations and the path direction gives information about their temporal
order. Spatial dependency considers the spatial relationships between operations. Two oper-
ations are spatially independent if they are applied to non-overlapping regions. For example,
drawing a shape and coloring it are spatially dependent operations. Conversely, draw-
ing a shape and coloring another existing shape are independent operations. Semantically
independent operations are rigid transformations (e.g., translation, rotation), deformation
(e.g., scale, shear, perspective), color adjustment (e.g., hue, saturation, brightness, contrast,
gamma) and filter (e.g., blur, sharpen).

Multiple parallel paths between two nodes imply independent operation sequences,
namely those that apply on disjoint regions of the image. The DAG records the user edit-
ing operations and dynamically grows as more revisions are committed. Each revision in
our system is a sub-graph of the DAG originating from the first node which represents the
act of initialization – i.e., opening an empty canvas or loading an existing image. The state
of the revision is always equivalent to the result generated by traversing its corresponding
sub-graph. It should be noted that in our system, the DAG encodes only actions, not whole
images. Table 1 lists the editing operations that lead to the creation of a new node in the
DAG.

In the following, we briefly describe the main revision control commands implemented
in RECODE.

4.1 Revision control commands

Based on the DAG data structure, RECODE provides the primary mechanisms for auto-
matic resolving and merging multiple revisions with potential conflicts, as well as a user

Multimedia Tools and Applications (2019) 78:33169–33188 33175



Table 1 Some of the most
common image-edition
operations leading to the creation
of a new node in the DAG

Type Operation

Rigid transformation Mirror, Flip, Transpose

Deformation Scale

Color and filter Histogram, Brightness, B&W,

Sepia, Invert, Solarize, Posterize

Edit Crop, Text, Reset

Brush Brush

Load image New, Import

interface that allows manual change and intervention on automatically merged images (see
Section 4.2).

The implemented revision control commands include review, addition, branch, merge,
difference, and conflict resolution. All these commands are offered through a friendly user
interface.

4.1.1 Diff

While the classic line-based diff command [14] is commonly used to extract differences
between text files, there is no such well-defined difference tool for images. Among general
image comparison visualization approaches, popular ones include side-by-side comparison
(e.g., Adobe Bridge, Perforce), layer-based difference (e.g. PixelNovel), per-pixel differ-
ence, image overlay (e.g., Wet Paint [3]), and flickering difference regions (e.g., the compare
utility of ImageMagick). These approaches are designed to handle only low-level bitmap
differences, with little information about the editing semantics.

In contrast, following the idea of Chen et al. [6], RECODE realizes an informative diff
by leveraging all the relevant high-level information recorded in a DAG. As further illus-
trated in Section 4.2.1, all data structures are stored as JSON objects, including DAGs and
image metadata. Therefore, to implement the diff operation between two image revisions,
RECODE relies on the fast-deep-equal package12 of Node.js to identify changes in
all the fields of a couple of JSON files and stores the differences (i.e., the delta) in a new
JSON file. This delta is designed not only to reduce storage space but also to allow for the
fast identification of changes and conflict resolution during the integration of changes – i.e.,
the merge operation described next.

4.1.2 Merge

The merge operation is performed in version control systems to consolidate two artifact
revisions created in parallel branches. Unlike text, merging two image versions (Fig. 3)
requires complex procedures in order to identify the difference between them. In text files,
changes are identified through line-by-line comparison. Instead, with binary files, it is
difficult to define which parts of an image have been changed.

To implement the merge operation in RECODE, we relied on the merge-json pack-
age13 for Node.js. The package is used to merge the editing history of two different images

12https://www.npmjs.com/package/fast-deep-equal
13https://www.npmjs.com/package/merge-json

Multimedia Tools and Applications (2019) 78:33169–3318833176

https://www.npmjs.com/package/fast-deep-equal
https://www.npmjs.com/package/merge-json


Fig. 3 An example of merging two versions of the same image

recorded into their corresponding JSON metadata (Fig. 4). Thus, in the resulting merged
JSON file, all the operations are sequentially ordered in one branch. This is possible because
all operations applied to an image are recorded using a growing integer as unique id and
an attribute order to define the priority when changes involve an overlapping area of the
image. Further information on the structure of JSON files are given in Section 4.2.1.

4.1.3 Git commands

The RECODE tool is developed to use Git repositories shared online on GitHub. When a
new project is started, the URL of the associated GitHub repository must be provided, along
with the path of a local folder where the content of the remote repository will be cloned
locally. Then, it is possible to execute all the Git commands to control the image revisions as
binary files both locally and remotely. The Git commands reviewed next are made available
from the UI (see Section 4.2 for more).

Fig. 4 RECODE: An example of a merge between image A and B (before), with operations and resulting
revisions ordered sequentially in a single branch (after)

Multimedia Tools and Applications (2019) 78:33169–33188 33177



Since Git is a distributed revision system, the storing and sharing of artifacts are per-
formed in separate steps; specifically, the git commit command is used to store files
locally, whereas the git push command is used to send local changes to the shared
remote repository, so that collaborators can retrieve them. Because this distinction may
increase the cognitive load for the non-developer users, RECODE has been designed to sim-
plify the workflow and hide away such complexity. Initially, when the repository is empty,
the user adds the initial image and commits it as revision 0. To this end, RECODE pro-
vides a high-level ‘Add revision’ command from the revision control window, which locally
stores the first image revision (i.e., the initial node of the DAG) as a binary file; the file is
committed to the local Git repository by issuing under the hood a git commit command.

Committing revisions is one of the most frequently used revision control commands. To
save the current work progress as further binary revisions, users can select the high-level
command ‘Commit’ from the revision control window, which will save changes as a binary
file both locally and remotely – i.e., by issuing first a git commit command, followed
by a git push. Although users can save revisions whenever they like, it is generally
unnecessary for them to do so in an action-wise fine-grained fashion, since RECODE can
record all the actions and flexibly visualize them as a DAG. As a general guideline, users
proceed to commit revisions when one of the following two conditions is met: 1) some
milestone of the work is achieved or 2) users would like to try out different variations. In
the latter case, the committed revision can be used as a branch point for future reference or
revision rollback.

Furthermore, our system is compatible with the Git LFS (Large File Storage) extension
that allows, when enabled, the storage of large files to a separate repository. The original
repository will only contain pointers to the actual large files. Thus, a user can decide to
download these files only if need be. As such, the use of Git LFS is recommended for
speeding up the access to project repositories that host many very large files as in the case
of images.

4.2 Architecture

RECODE is based on a client/server architecture that includes the following components
(Fig. 5):

• the Web server, which executes the Node.js JavaScript runtime environment, where the
miniPaint image editor is executed.

• the Image Editor, which extends miniPaint adding the components that enable the
revision control workflow, and in particular:

– the Logger, which silently records user-editing actions in the background in
the form of JSON log files.

– the Replayer, which replays actions in the image editor starting from the deltas
stored in the log files;

• the Database, which stores all the information needed to create the revision graph and
implement the revision control functions;

• the Git and Git LFS Servers, which physically store images files as binary artifacts and
enable a distributed revision control.

• Client browser, which renders the tool UI and triggers the revision control commands.

In the following, we describe the custom components of RECODE in further details.

Multimedia Tools and Applications (2019) 78:33169–3318833178



Fig. 5 Deployment diagram showing RECODE architecture and the distribution of its component to
deployment targets

4.2.1 Image editor

To develop the image editor, we chose to extend an existing open source tool, miniPaint,
which provides for an easy GUI and a wide set of editing tools, filters, and rigid transforma-
tions, which can be applied to images. Image editing is also based on layers and images can
be saved in several common formats, including PNG, JPEG, BMP, and TIFF. miniPaint is a
single page application that runs in Node.js, which is an I/O event-driven framework based
on the Chrome JavaScript V8 engine. Despite Node.js is a server-side framework, miniPaint
uses a specific module to compile the code in JavaScript and use it in a Web browser.

A distinguishing feature of miniPaint is that it can natively export all the sequence of
actions made on an image into a JSON file structured as follows (Fig. 6):

1. info contains information such as the file name, the software release version, and the
id of the last active layer.

2. layers is a list of all the layers existing in an image; for each layer the following
setting info are recorded: id, the type of applied operation, the order (priority) of
the layer with respect to other layers, a data field containing all points where the
editing operation was applied, and the type field, which can be image when a new
image is loaded or the type of the specific editing operation applied (e.g., brush).

3. data contains the numeric id of the image, as well as its MIME type and encoding in
the data field (in the example, the image is in PNG format with a base64 encoding).

4.2.2 Logger and replayer

Two of the main components of RECODE developed to extend miniPaint are the logger,
which records in text mode in the background all the actions that the user performed by a

Multimedia Tools and Applications (2019) 78:33169–33188 33179



Fig. 6 An excerpt of the JSON file generated by miniPaint

user while editing an image, and the replayer, which allows the ‘replay’ of the actions
stored in the DAG to visualize the final image in the editor. miniPaint easily support these
two features since it can natively export into JSON format the sequence of actions applied
to an image and is also able to portray an image in the editor by reading from its JSON file
the actions performed by the user.

4.2.3 Database

A relational MySQL database (Fig. 7) has been adopted to ensure the persistence of meta-
data, thus maintaining the semantic, spatial, and temporal mutual dependencies between
artifacts, namely to store all the information needed to create the revision graph and to
implement the revision control functions. Using the database, we track information about
the logged users (via GitHub), the list of repositories created by them, the commits made by
different users sharing the same repository, and the branches generated from each revision.
As described earlier, RECODE stores meta-data and project-related information using files
in standard JSON objects, which are then are serialized into the database.

Multimedia Tools and Applications (2019) 78:33169–3318833180



Fig. 7 A portion of RECODE conceptual schema to store the revision graph in the database

4.2.4 Git server

RECODE implements a hybrid approach combining the use of graphs with both state-
based and change-based revision control. The DAG is used to represent spatial, temporal,
and semantic dependencies between successive recorded image-editing operations that are
stored as graph nodes. However, like state-based revision control systems, RECODE also
allows users to store important revisions as binary files, thanks to the integration with Git,
so that users do not need to continually reconstruct them by reapplying the entire sequence
of operations that ultimately lead to their creation. This has been achieved by integrat-
ing RECODE with GitHub, a Git hosting provider, which allows sharing Git repositories.
Thanks to the git clone operation, each user can download a copy of the repository
from GitHub (via its API v3) and work locally and then commit back the changes.

4.3 Graphical user interface

The GUI of RECODE is based on the GUI of miniPaint. Position and layout of the menus
are the same, with a few changes applied to accommodate the implementation of the extra
features. Since miniPaint is not integrated with GitHub, we added support for user login and
repository management. After authentication, users can access the revision control functions
using the ‘Git’ item in the menu bar. The submenu includes ‘VCS’ and ‘Repository’ items.

The ‘VCS’ (Version Control System) item groups the following commands:

– Revision Graph, to visualize the DAG of a specific image (Fig. 8). The browser sends
the JSON to the server for processing JSON in order to reduce the impact in terms
of memory on the client side. As explained earlier, only the differences between two
consecutive revisions are stored in a JSON file. Accordingly, when the Revision Graph
of an image is loaded, all the differences along the path to the initial revision (i.e., the
yellow node in Fig. 8) are concatenated to create the resulting JSON representation
of the image to be displayed. The DAG viewer is a key feature of RECODE, which
offers a visual management interface for navigating the evolving graph structure, with
alternative paths generated during the editing of different image revisions.

– Add Revision, to commit an initial image revision and start a new workflow (Fig. 9);
– Commit, to store the binary version of an image and share it with the other members

of the team via GitHub. Each commit requires a mandatory textual description to allow
collaborators to understand what changes has been made to the image.

Multimedia Tools and Applications (2019) 78:33169–33188 33181



Fig. 8 GUI for the DAG viewer opened after a Revision Graph command

– Merge, to combine different image revisions. This function is used to combine changes
from either the same user or other teammates who have modified the same image. This
is graphically represented as merging two branches of the same graph by creating a new
node that contains the sum of all contributions, as depicted in Fig. 10). Conflicts are
solved by assigning a priority to each node in the DAG.

The ‘Repository’ menu item groups the commands related to the management of the
GitHub repository in which all the images will be stored. The available functionalities are:

– Create, adds a new repository in GitHub;
– List/Choose, shows the list of user’s repositories to choose which to work on;
– Clone Git repo, creates a local copy of the working Git repository;
– Participating users, lists the users that can contribute to the image editing process;
– Invite user, allows the owner of the working Git repository to invite other collaborators;
– Delete user, allows the owner of the repository to delete one or more participants.

Fig. 9 GUI for the Add Revision command

Multimedia Tools and Applications (2019) 78:33169–3318833182



Fig. 10 Visualization of the DAG after the Merge command

5 User test

In order to evaluate the system, a usability test has been conducted. The adopted procedure is
compliant with the eGLU usability protocol used by the Italian Public Administration [13].
This protocol, which is one of the most used for simplified usability tests, has been enriched
by the eGLU-M for mobile systems and by the Usability Glossary of WikiPA project [13].
The protocol has been defined in order to be adaptable to different kinds of software. In this
case, the following documents related to eGLU 2.1 protocol have been used:

– data of participants;
– description of the task;
– questionnaire for computing the Net Promoter Score (NPS);
– questionnaire for computing the System Usability Scale (SUS);
– table of results.

5.1 Study participants

The participants involved in the study were 15 subjects interested in image editing. In par-
ticular, the participants were 3 graphic designers who usually use professionals tools for
image editing, 9 computer scientists who are familiar with revision control systems, and 3
users interested in using image editors but without any specific background. As argued by
Nielsen [16], 5 users are expected to find 85% of the usability problems of a system, hence
a sample of 15 users can be considered a safe choice to collect significant results.

5.2 Assigned tasks

Each user was asked to complete the following tasks:

1. Create an account, create a project and a repository;
2. Open an image and commit the first Add Revision.
3. Apply three changes to the image and commit the result;
4. Starting from an image revision (a node in the DAG) create a new branch, apply some

changes, and commit the result;

Multimedia Tools and Applications (2019) 78:33169–33188 33183



5. Visualize the information about a commit and load an image in the editor;
6. Apply the merge operator to unify the changes between two branches;
7. Invite a new participant to the repository;
8. Load an image, apply a change, and create a new revision.

We observed that the interaction with the system was not easy for all users. Some of them
encountered difficulties using both the image editor and the version control commands.
This aspect was detected through both the conductor’s observation, who supported the users
during the test, and quantitative measures, such as the time spent (in seconds) by users to
perform each task. Figure 11 shows the min, max, and mean execution times, aggregated
per task.

The most time-consuming tasks were Task#1 and Task#4. Task#1 required the creation
of a GitHub account, which involved several steps, from filling out the registration form to
activating the account via email address verification. Users who happened to have a GitHub
account already took considerably less time since they only had to log in. Task#4 required
the users to create a revision and then add a new branch. We noticed that this actions required
users to have specific knowledge in how a revision system works therefore subjects without
a computer science background struggled to complete this task. In other cases, such as
Task#3 and Task#8, some users lingered before applying the requested changes to the image
since they chose to fiddle with the tool trying to create a nicer image.

Overall, the analysis of the results highlights that those users who were not already
familiar with version control systems spent more time than expected.

5.3 Net promoter score

After carrying out the tasks, the Net Promoter Score (NPS) was used to measure the
users’ overall usefulness perception of the system. The NPS is calculated by collecting the
answers to the question: “How likely is it that you would recommend RECODE system to

Fig. 11 Average time spent by participants on each task

Multimedia Tools and Applications (2019) 78:33169–3318833184



Fig. 12 SUS score obtained from the usability test on the 15 participants (P1,P2,...,P15). The line indicates
the average SUS score

a friend or colleague?” The answers were calculated using a 0-10 scale. Respondents can
be promoters (score 9-10), i.e., enthusiasts of the system, passives (score 7-8), i.e., satisfied
but unenthusiastic users, detractors (score 0-6), i.e., unhappy users.

The results show that 33.33% of the participants belong to promoters, 53.33% are pas-
sives and the 13.33% are detractors. Subtracting the percentage of detractors from the
percentage of promoters yields the NPS, which can range from a low of -100 (if every cus-
tomer is a detractor) to a high of 100 (if every customer is a promoter). In our case, the
resulting NPS is 20, which is rated good according to existing literature [12].

5.4 System usability scale

The System Usability Scale (SUS) is a quick and reliable questionnaire for measuring the
usability of an artifact (software code or multimedia) [4] and is currently used to evaluate
the usability of different kinds of products and services. The questionnaire consists of 10
standard items,14 using a 5-point Likert scale.

Scores given by the participants are processed in order to derive a single value using the
following procedure. Let x and y denote the score given by the user for odd items (1, 3, 5,
7, 9) and even items (2, 4, 6, 8, 10) respectively. The SUS score z is computed using the
following formula:

z = 2.5 · [(x − 1) + (5 − y)]
The resulting value z ranges in [0, 100] and represents the average satisfaction level of the
user.

Based on existing literature [2], a SUS score above 68 can be considered above the
average. In our case, an average SUS score of 68.9 was achieved (Fig. 12). This indicates
that the RECODE tool has a quite good usability level even though some improvement

14https://www.measuringux.com/SUS.pdf

Multimedia Tools and Applications (2019) 78:33169–33188 33185

https://www.measuringux.com/SUS.pdf


would be welcome. Actually, low scores were mainly obtained for the question“I needed
to learn a lot of things before I could get going with this system.”. As a matter of fact,
some users encountered difficulties in understanding terms related to collaborative tools
(commit, repository, and so on), others have difficulties with terms related to the DAG (add
a branch). Moreover, during the test some users were confused by similar terms used in the
interface, for example layers and levels, and merge and merge down. Changes in the naming
of RECODE functions, could fix these problems and improve the usability level of the tool.

6 Conclusions

In this work, we have presented RECODE, a tool for the revision control of digital
images. Unlike other existing systems for image revision control, RECODE adopts a hybrid
approach that saves user editing actions as direct acyclic graphs (to save storage space) but
also allows users to save important milestones revisions as binary files. Thanks to the inte-
gration with the popular revision control system Git, our system is capable of supporting
both collaboration and revision control. Hence, we argue that the tool can be adopted in
distributed collaborative team works by virtually any audience involved in digital content
creation, from web designers to engineers, researchers, and creative artists. The usability
study conducted with a few subjects provided initial evidence that our revision system has
some usability problems. A possible cause can be found in the composition of the sample,
since all the participants were not expert in collaborative activities. Moreover, we underline
that the aim of this work was to develop a novel revision control system for multimedia, to
fill a gap in the state of the practice. Hence, our work has focused so far more on the develop-
ment of the tool that fulfilled its purpose, devoting less attention to other aspects such as the
usability. Further work is currently in progress to improve the usability of the system, and in
particular to adapt the interface terminology, which was one of the main difficulties reported
by the users during the test session. To address this issue, we intend to apply the Participa-
tory Design Approach [19], so as to involve the final users, namely graphic designers and
multimedia developers. In this way, we expect to make more intuitive the usage of the tool,
thus increasing the user satisfaction. Moreover, further tests have been planned to evaluate
our system by involving users in real collaborative scenarios of multimedia development.

Acknowledgements This work is partially funded by the project “Creative Cultural Collaboration” (C3)
under the Apulian INNONETWORK programme, Italy.

References

1. Bang-Jensen J, Gutin GZ (2008) Digraphs: Theory, Algorithms and Applications. Springer Science &
Business Media, Berlin

2. Bangor A, Kortum PT, Miller JT (2008) An empirical evaluation of the system usability scale. Int J Hum
Comput Interact 24(6):574–594

3. Bonanni L, Xiao X, Hockenberry M, Subramani P, Ishii H, Seracini M, Schulze J (2009) Wetpaint:
scraping through multi-layered images. In: Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, ACM, pp 571–574

4. Brooke J et al (1996) Sus-a quick and dirty usability scale. Usability Evaluation in Industry 189(194):4–7
5. Calefato F, Castellano G, Rossano V (2018) A revision control system for image editing in collaborative

multimedia design. In: Proceedings of the 22nd International Conference on Information Visualisation
(IV 2018), pp 512–517

Multimedia Tools and Applications (2019) 78:33169–3318833186



6. Chen HT, Wei LY, Chang CF (2011) Nonlinear revision control for images. In: ACM Transactions on
Graphics (TOG), vol 30:4. ACM, p 105

7. Chen CW, Peng JW, Kuo CM, Hu MC, Tseng YC (2018) Ontlus: 3d content collaborative creation via
virtual reality. In: International Conference on Multimedia Modeling, Springer, pp 386–389

8. Claman TH, Coniglio SJ, Daigle S, Gonsalves RA, Wallace RC (2018) Methods and systems for
collaborative media creation, us patent no 9864973

9. da Silva Junior JR, Clua E, Murta L (2016) Efficient image-aware version control systems using gpu.
Software: Practice and Experience 46(8):1011–1033

10. Doboš J, Steed A (2012) 3d revision control framework. In: Proceedings of the 17th International
Conference on 3D Web Technology, ACM, pp 121–129

11. Doboš J, Steed A (2012) Revision control framework for 3d assets. Eurographics
12. Grisaffe DB (2007) Questions about the ultimate question: conceptual considerations in evaluating reich-

held’s net promoter score (nps). Journal of Consumer Satisfaction, Dissatisfaction and Complaining
Behavior 20:36

13. Gruppo di lavoro per l’usabilitá (glu), linee guida di design per i servizi web della pa (2018). http://www.
funzionepubblica.gov.it/glu

14. Hunt JJ, Tichy WF (1998) Addendum to delta algorithms: an empirical analysis. ACM Trans Softw Eng
Methodol (TOSEM) 7(4):449

15. Kleine M, Hirschfeld R, Bracha G (2012) An abstraction for version control systems. Universitätsverlag
Potsdam

16. Nielsen J (2012) How many test users in a usability study. Nielsen Norman Group 4(06)
17. O’Sullivan B (2009) Making sense of revision-control systems. Queue 7(7):30
18. Ruparelia NB (2010) The history of version control. ACM SIGSOFT Software Engineering Notes

35(1):5–9
19. Schuler D, Namioka A (1993) Participatory Design: Principles and Practices. CRC Press, Boca Raton
20. Slaughter DS, Murtaugh MC (2018) Collaborative management of the elearning design and development

process. In: Leading and Managing e-learning, Springer, pp 253–269
21. Thulasiraman K, Swamy M (1992) Acyclic directed graphs. Graphs: Theory and Algorithms 118
22. Wang Z, Cai H, Bu F (2014) Nonlinear revision control for web-based 3d scene editor. In: 2014

International Conference on Virtual Reality and Visualization (ICVRV), IEEE, pp 73–80
23. Zhao Z, Badam SK, Chandrasegaran S, Park DG, Elmqvist NL, Kisselburgh L, Ramani K (2014) skwiki:

a multimedia sketching system for collaborative creativity. In: Proceedings of the 32nd Annual ACM
Conference on Human Factors in Computing Systems, ACM, pp 1235–1244

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Fabio Calefato is an assistant professor of computer science at the University of Bari, Italy, holding the
national scientific qualification as an associate professor. He is the General Chair of ICGSE 2019. He has
been the co-organizer of the “Trust in Virtual Teams” workshop co-located with CSCW’13 and SSE’16
(Social Software Engineering) workshop co-located with FSE’16. He has served on the PCs of many software
engineering conferences, including ICSE, XP, and ESEM. He also serves as a reviewer for the most important
journals in the field of software engineering, such as TSE, EMSE, JSS, IST, and JSEP.

Multimedia Tools and Applications (2019) 78:33169–33188 33187

http://www.funzionepubblica.gov.it/glu
http://www.funzionepubblica.gov.it/glu


Giovanna Castellano is Associate Professor in Computer Science. She is the coordinator of the CILAB
(Computational Intelligence Lab) at the Computer Science Department of the University of Bari. Her research
interests are in the area of Computational Intelligence and include Fuzzy systems, Fuzzy Image Processing,
Fuzzy clustering, Image processing and retrieval. She is the coauthor of the book “Fuzzy Logic for Image
Processing: a Gentle Introduction using Java” (Springer, ISBN 978-3-319-44130-6) and co-editor of the book
‘Web Personalization in Intelligent Environments’ (Springer, ISBN 978-3-642-02793-2). She is Associate
Editor of the journals: Information Science and International Journal of Systems, Control and Communica-
tions. She is on the editorial board of Journal of Knowledge-Based and Intelligent Engineering Systems and
International Journal of Knowledge and Web Intelligence. She has served as a PC member for several ref-
ereed conferences or workshops in the field of Computational Intelligence, such as FUZZ-IEEE, ICANN,
IJCCI, WILF, FCTA.

Veronica Rossano is Assistant Professor at Department of Computer Science at the University of Bari. Her
research activities are focused on Educational Technology, in particular, the main aim of her research is to
advance the state-of-the-art and practical use of computation and communication technologies for learning
and teaching defining and validating new methods and techniques for the design and implementation of inno-
vative learning environments. She is part of editorial staff of Journal of e-Learning and Knowledge Society
and co-organizer of the International Symposium on “Multimedia & E-Learning” 2019 of IV2019. She has
been program chair of different international and national conferences and workshops in the Educational
Technology field. She has served as PC member of many conferences, including ICALT, ICEIT, and T4E .
He also serves as a reviewer for the most important journals in the field of Educational Technology, such as
Computers and Education, the Journal of Distance Education Technologies, the Journal of Visual Languages
and Computing, and IEEE Multimedia.

Multimedia Tools and Applications (2019) 78:33169–3318833188


	RECODE: revision control for digital images
	Abstract
	Introduction
	Background
	Related work
	The revision control system
	Revision control commands
	Diff
	Merge
	Git commands

	Architecture
	Image editor
	Logger and replayer
	Database
	Git server

	Graphical user interface

	User test
	Study participants
	Assigned tasks
	Net promoter score
	System usability scale

	Conclusions
	References


