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Abstract
Physiological studies have revealed that the center–surround mechanism widely exists in the
primary stages of the human visual system, such as the retina, lateral geniculate nucleus
(LGN), and primary visual cortex (V1). In retina ganglion cells (RGC) and the LGN, the
mechanism is well known to have two types: center Bon^ and center Boff.^ However, this
mechanism in V1 is shown as classical receptive field (CRF) stimulation and surrounding non-
CRF suppression. Although these two manifestations differ in function and appear in different
areas of the visual pathway, from the perspective of computational simulation, they simply
compute the differences between the center and its surrounding information. In the past
decade, many bio-inspired computational models have demonstrated that the center–
surround mechanism is good at extracting salient contours while suppressing textures. Based
on this mechanism, we propose a method for extracting local center–surround contrast
information from nature images by using a normalized difference of Gaussian (DoG) function
and a sigmoid activated function. Compared with previous contour detection models (espe-
cially bio-motivated ones), the proposed method can efficiently suppress textures more quickly
and accurately. More importantly, the proposed algorithm yields even better contour detection,
yet the computational complexity is similar to the classical Canny operator.

Keywords Center-surroundmechanism . Surround suppression . Contrast information . Contour
detection

1 Introduction

Contour extraction is a fundamental task in the field of computer vision and image processing
[30]. A contour represents a change of pixel ownership from one object to another; in
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comparison, edges focus on abrupt changes in low-level image features, such as brightness or
color [28]. One approach for increasing the performance of contour detection involves
integrating the local texture information into the coherence features and extracting efficient
features for texture inhibition. Many researchers are involved in extensive efforts to combine a
wider range of visual cues, such as brightness, color, and texture information, in pursuit of a
contour detection model that provides human-level performance.

Numerous visual physiological studies have shown that the primary visual cortex (V1)
plays an important role in the perception of target contour information from visual scenes [1, 7,
12, 15–17, 20]. The pioneering work of Hubel and Wiesel [14, 15] revealed that the majority
of neurons in V1 prioritize a small excitation area known as the classical receptive field (CRF),
which is exquisitely sensitive to oriented bars or edges. Subsequently, more physiological
findings have clearly indicated that a peripheral region known as the non-classical receptive
field (non-CRF) exists around the CRF in most V1 neurons [20]. Although the separate stimuli
of the non-CRF do not affect overall neuron responses, they can significantly modulate,
sometimes suppress, the response of V1 in the CRF [1]. This CRF stimulation and non-
CRF suppression mechanism is known as the center–surround interaction in V1.

Based on the insight of the non-CRF inhibition mechanism, several non-CRF inhibition–
based contour detection models have recently been proposed. Grigorescu et al. [13] used the
Gabor function to simulate the response of the CRF, and utilized a larger ring-shaped function
to capture information about the surrounding non-CRF. More specifically, their model uses the
non-negative difference of Gaussians (DoG) function to take the distance weight between the
center and surrounding non-CRF by convolution with CRF responses. Compared to traditional
edge detection, this model can effectively enhance the detection accuracy of target contours in
front of complex visual backgrounds. Virtually all bio-inspired methods have subsequently
used it to suppress texture [4, 21–23, 31, 34–37, 40, 43, 44]. These methods only consider the
CRF responses as inhibition cues and ignore the local luminance information. Thus, subse-
quent methods, such as multiple-cue inhibition (MCI)[40], exploit some new inhibition cues
by using luminance contrast to compute the center–surround difference. These methods
construct a local sliding window, taking the gray image as input, and compute the local
center–surround difference to obtain the probability of textures.

However, the above luminance-contrast–based models have the following drawbacks: (1)
they are not effective when luminance contrast is used as an independent inhibitor, because this
inhibitor cannot capture contrast differences over a larger range, and (2) the non-convolutional
computation process has a less efficient calcula tion speed. MCI [40] used the root-mean-
square (RMS) to compute the difference between the center and its surrounding pixels in a
small sliding window. Compared to the convolution operations optimized by most image
processing toolboxes, separate sliding window calculations result in additional computational
overhead.

In this paper, we propose a novel center–surround-based luminance contrast model
(CSLCM) for contour detection that uses two simple yet effective methods to solve the two
aforementioned problems. Our main contributions are as follows. (1) We use a normalized
DoG function, which can capture the local center–surround difference of the brightness while
being accelerated by a conventional convolution toolbox, to simulate the spatial characteristics
of the retinal ganglion cells (RGCs) and the lateral geniculate nucleus (LGN). (2) We use a
sigmoid activation function to make the difference more prominent in texture suppression.
These two methods can greatly reduce the computation time compared to RMS while
improving the texture suppression effect.
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The remainder of this paper is organized as follows. After a short review of previous work
in edge detection (Section 2), we describe CSLCM (Section 3). In Section 4, we evaluate the
performance of CSLCM for the RuG40 dataset and two Berkley segmentation datasets
(BSDSs). Finally, Section 5 presents concluding remarks.

2 Works related to contour detection

In this section, we present a brief overview of the field of contour detection. We first describe
the existing algorithms, which are divided into differential, local energy, machine learning, and
bio-inspired methods. Then, we discuss the role of the DoG function in the previous contour
detection models and the proposed model.

Differential methods Early edge detection methods usually made use of spatial differential
operators through convolutions between filters and images. These methods computed spatial
gradients along different orientations, making them easy to implement and fast to compute.
One of the most well-known methods—the Canny edge-detection operator [6]—is a multi-
level edge detection algorithm that sequentially (1) uses finite-difference estimates of first-
order partial derivatives to calculate the magnitude and direction of the gradient, (2) thins the
gradient amplitude through non-maximum suppression, and (3) connects edges with hysteresis
thresholding. However, these methods did not consider contextual information or middle
−/high-level information, which might promote suppression of useless textures.

Local energy methods Inspired by strong responses to highly ordered phase information,
some contour detection methods focus on the analysis of local phase information [29] and
phase congruency [19] by using advanced techniques such as inferential statistics [18, 28].
Local energy approaches perform, for practical applications, similarly to the faster and
conceptually simpler differential methods, although they only partially achieve their ability.

Machine learning methods More recent approaches use machine learning techniques for
cue combinations. Martin et al. [28] proposed the Pb method, which considers multiple
cues (including color, brightness, and texture) as the input of the logical regression
classifier to extract and localize boundaries. Dollar et al. [11] proposed a supervised
learning algorithm, called boosted edge learning (BEL), that attempts to learn edge
classifiers in the form of a probabilistic boosting trees from thousands of simple image
features. An advantage of this approach is that it may be possible to handle cues such as
parallelism and completion in the initial classification stage. Mairal et al. [26] created both
generic and class-specific edge detectors by learning from discriminative sparse represen-
tations of local image patches and further proposed a multi-scale method to extend sparse
signal models to feature selection. Other Pb-based algorithms improve the capability of
boundary detection by adopting multi-scale mechanisms or global information [3, 33]. For
example, mPb considers local boundary cues, including contrast, localization, and relative
contrast, and trains a classifier to integrate them across scales [33], and gPb integrates
multiple local cues into a global framework based on spectral clustering [3]. Such
algorithms usually integrate multi-scale information with a supervised learning method.
Some other pattern recognition or image segmentation methods based on machine learning
include mean shift [9], which provides a clustering framework, and the normalized cut (N-
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cut) algorithm [10], which is a multi-scale spectral algorithm that uses the normalized-cut
graph-partitioning framework for image segmentation. In addition, Aràndiga et al. [2]
proposed a neural-network-based edge detection algorithm that is insensitive to changes in
illumination. The machine learning methods are dataset dependent. Their performance,
which is reliant on training images and corresponding annotation labels, surpasses that of
most non-learning methods in almost all public datasets. However, it decreases when the
well-trained machine learning models are tested on a new dataset.

Bio-inspired methods Following another line of inquiry, there is a long history of
employing early visual mechanisms for image analysis. Some researchers focused on
local statistics patterns [8], involving contrast dependence, orientation tuning, and spatial
asymmetry, and additionally employed other concepts used in visual applications, such as
contour detection [39, 41]. In recent decades, many biologically motivated contour
detection models have been proposed, and they show good performance for gray-scale
natural images [4, 13, 21–23, 31, 34–37, 40, 43, 44]. Grigorescu et al. [13] exploited a
novel framework of center–surround interactions, in which simple and complex cells were
stimulated by Gabor filters to mimic the center region response. Furthermore, a linear
surround-inhibition approach was used to model the responses of the surrounding region,
creating texture suppression with a distance cue. Following this framework, several
improved models have been proposed. Tang et al. [35] proposed a suppression model
based on the side inhibition region according to the cyclic inhibition characteristics of V1,
which eliminates the local directed edges generated by a large number of complex textures
in the background. In order to balance the side inhibition mechanism and weak contour
regions, Zeng et al. [43, 44] introduced a butterfly-shaped inhibition model and added
scale information into the calculation of inhibition weight, thereby preserving the weaker
contour regions and further strengthening the integrity of the extracted contours. Accord-
ing to the horizontal interactions in V1, Xiao and Cai [38] introduced contextual influ-
ences into the contour detection, specifically without separating regions of excitatory and
inhibitory lateral connections. Yang et al. [40] modulated the final neuronal inhibition
responses through the integration of contextual information and cues in the visual system,
thereby enriching the inhibition term. Tang et al. [36] proposed a surround inhibition
model that uses contrast to modulate the inhibition term and finally achieved good
performance. Wei et al. [37] simulated the early biological neural visual mechanism and
used the DoG and 3-G models to adaptively express the image. Although bio-inspired
methods have made huge progress in recent years, their performance is below that of
machine learning methods and their computational complexity is greater than that of
differential methods. This paper proposes an efficient bio-inspired contour detection
algorithm.

Role of the DoG function As a differential operator, the DoG is able to capture local
center-surround differences. Early DoG functions were treated as mathematical approxi-
mations of Laplace and Gaussian (LOG). Unlike derivatives of the Gaussian function,
which can directly detect edges from an image (Fig. 1a), DoG is used to extract the
responses near the edges, as shown in Figs. 1b–c. Grigorescu et al. [13] proposed a novel
method that uses non-negative DoG to suppress texture by convolution with an edge map,
as shown in Fig. 1d. Virtually all bio-inspired methods have subsequently used it to
suppress texture [4, 21–23, 31, 34–37, 40, 43, 44]. According to the differential structure,
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we use the DoG function, followed by absolute value response and sigmoid activation, to
obtain luminance contrast features, as illustrated in Fig. 1e. Compared to previous bio-
inspired models, which treat local density edges as texture, we argue that the difference of
center-surround luminance contrast can better distinguish contours and textures.

3 Contour detection model

In this section, we propose a new contour detection model based on the center–surround
interaction mechanism in V1. First, we simulate responses in the CRF of V1 neurons.
Then, we describe the detailed procedure for extracting the new inhibition term. Finally,
we calculate the final response of the target contour by subtracting the surround suppres-
sion from the CRF response. The general framework of CSLCM is shown in Fig. 2.

3.1 CRF response of V1 neurons

For the orientation-selective V1 neurons modeled in this study, we use the derivative of the
two-dimensional (2-D) Gaussian function to describe their properties when responding to
the stimuli within the CRF. The derivative of 2-D Gaussian function can be expressed as
follows:

CRF x; y; θ;σð Þ ¼
∂g ~x;~y; θ;σ

� �

∂~x
; ð1Þ

g ~x;~y; θ;σ
� �

¼ 1ffiffiffiffiffiffi
2π

p
σ
exp −

~x
2
þ γ2~y

2

2σ2

0
@

1
A; ð2Þ

Fig. 1 Differential operators and their response maps on a synthetic image and a nature image. From top to
bottom, (a-c) the functions and corresponding responses with two images; (d) the non-negative DoG function,
the convolutional responses with edge map; (e) DoG function and proposed inhibition term
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where ~x ¼ xcos θð Þ þ ysin θð Þ, ~y ¼ −xsin θð Þ þ ycos θð Þ.(x, y) and ~x;~yð Þ are the original and
rotated spatial coordinates, respectively. θ is the rotation angle (called the preferred orientation)
of a neuron. The spatial aspect ratio, γ, and the standard deviation, σ, respectively determine
the ellipticity and the size of CRF. In this paper, we set γ to 0.5 on the basis of physiological
finding [32].

At each location, a pool of neurons with Nθ different preferred orientations, θi, is employed
to process the local stimuli:

θi ¼ i−1ð Þπ
N θ

; i ¼ 1; 2;…;N θ: ð3Þ

For an input image, I(x, y), the CRF response of a V1 neuron with preferred orientation θi is
computed as follows:

ei x; y; θi;σð Þ ¼ I x; yð Þ*CRF x; y; θi;σð Þj j; ð4Þ
where ∗ denotes the convolution operation. The maximum CRF response over all Nθ neurons
is selected as the final CRF response:

E x; y; θð Þ ¼ max ei x; y; θi;σð Þji ¼ 1; 2;…;N θf g: ð5Þ

The orientation corresponding to the maximum CRF response, ΘI(x, y), is computed as

ΘI x; yð Þ ¼ θk ; ð6Þ

k ¼ argmax Eλ;σ;θi x; yð Þji ¼ 1;…;N θ

� �
: ð7Þ

Fig. 2 General framework of CSLCM: the final response at each pixel is computed by subtracting the non-CRF
inhibition from the CRF response
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3.2 Non-CRF inhibition responses

An experiment about the behavior of inhibition terms on synthetic images has shown that the
gradient magnitude is strong on both isolated edges and textures [31]. Therefore, CRF(x,
y; θ, σ) alone is not sufficient to discriminate between the two patterns. In contrast, the
inhibition term is much higher on textures than on isolated edges. Thus, when the inhibition
term is subtracted from the gradient magnitude, the resulting quantity has a strong response on
isolated edges only.

The local center–surround luminance contrast is an important visual feature for understand-
ing natural scenes. Many studies have reported the statistics of local luminance and contrast in
natural images, but with inconsistent conclusions. For example, Mante et al. [27] claimed that
local luminance and luminance contrast are independent (or weakly correlated) in early visual
systems and in natural scenes. However, Lindgren et al. [24] revealed a strong spatial
correlation between local luminance and luminance contrast in natural images.

In this work, we evaluate the contribution of local luminance contrast in contour detection
with surround inhibition. Specifically, a normalized DoG function is used as the extraction
operator:

w x; yð Þ ¼

DoG x; y;σ; kð Þ
∑DoG x; y;σ; kð Þ <0DoG x; y;σ; kð Þ ;DoG x; y;σ; kð Þ < 0;

DoG x; y;σ; kð Þ
∑DoG x; y;σ; kð Þ≥0DoG x; y;σ; kð Þ ;DoG x; y;σ; kð Þ≥0;

8>>>><
>>>>:

ð8Þ

DoG x; y;σ; kð Þ ¼ 1

2π kσð Þ2 e
−x2þy2

2 kσð Þ2−
1

2πσ2
e−

x2þy2

2σ2 ; ð9Þ

where k represents the ratio of two different scales. Then, the response local luminance contrast
LC(x, y) is computed by convolution:

LC x; yð Þ ¼ I x; yð Þ*w x; yð Þj j: ð10Þ
Intuitively, it is rational to suppose that if the luminance contrast obeys LC(x, y) ≤ T, then the
difference between the brightness of the center and that of its surroundings is small in this local
range, and vice versa. Thus, a sigmoid function is used to activate the LC(x, y), and the final
inhibition response, with soft threshold T, is obtained:

Inh x; yð Þ ¼ 1−sigmoid LC x; yð Þ−T ; eβ� �
; ð11Þ

sigmoid x; zð Þ ¼ 1

1þ z−x
; ð12Þ

where sigmoid(x, z) is usually used as an activation function in a neural network, and β
controls the smoothness of the sigmoid function. Equations (11) and (12) show that Inh(x, y) is
near 1 or 0 when LC(x, y) is less than or greater than parameter T, respectively. As β increases,
Inh(x, y) approaches the binary function; in Section 4.2.1, quantitative experiments reveal that
the performance of the binary function is better than the ‘soft’ sigmoid function.
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3.3 Contour extraction

The final contour response is the combination of the CRF response, E(x, y; θ), and the
inhibition term, Inh(x, y):

r x; yð Þ ¼ H E x; y; θð Þ−αInh x; yð Þð Þ; ð13Þ

H zð Þ ¼ 0; z < 0;
z; z≥0;

	
ð14Þ

where the function H(z) ensures that the operator yields non-negative responses and α is an
inhibition factor that controls the connection strength between the CRF and non-CRF of
neurons.

4 Results and discussion

In this section, we first provide a qualitative example of the inhibition effect of CSLCM. Then,
we quantitatively measure the performance on the RuG dataset [13], which includes 40 natural
gray-scale images with corresponding ground truths, and BSDS300 and BSDS500 [3, 28],
which include 300 images and 5–10 associated human-marked segmentations for each image.
Finally, we compare the computational complexity of CSLCM with other contour-detection
models. Table 1 summarizes the meanings of the parameters involved in the proposed model.
The parameter settings are also listed in Table 1, which are identical for both the RuG and
BSDS300 datasets.

Using standard post-processing, the binary contour maps are constructed from RuG and
BSDS by the standard procedure of non-maxima suppression (NMS) followed by hysteresis
thresholding [13].

4.1 Qualitative experiments

In this section, we proceed through some qualitative and intuitive experiments comparing two
kinds of center–surround inhibition methods: isotropic non-CRF inhibition model (ISO) [13],
which constructs center–surround contrast by using edge probability cues, and center–
surround luminance contrast cues [40]. It is worth noting that luminance contrast is only used

Table 1 Summary of parameter meanings and values

Parameter Description Equation value

σ Size of CRF and the standard deviation of Gaussian filter (1) [1.0,3.0]
γ Spatial aspect ratio of the CRF filter (2) 0.5
Nθ Number of preferred orientations for neurons (3) 8
k Ratio of Gaussian functions with two different scales (9) [1.5,4]
T Sigmoid function offset value along x-axis (11) [0.01,0.2]
β Smoothness of the sigmoid function (11) [1300]
α Coefficient to control the inhibition of surroundings (13) 0.5
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as one of the inhibition cues in MCI [40]. Thus, in this section, we also use luminance contrast
inhibition (CI) for comparison [40].

4.1.1 Comparison with ISO model

As shown in Fig. 3b, much of the background texture remains in the CRF response map. In
order to suppress textures, ISO uses the edge probability cues to obtain the inhibition term
(Fig. 3d1. In CSLCM, the inhibition term is constructed from the luminance contrast cues (Fig.
3c1). Both inhibition terms target contours and background textures, but the luminance contrast
cues are more efficient at textural inhibition, highlighting the difference between the contour
and the background texture response. Figures 3c2 and d2 show the final responses for the target
contour from CSLCM and the ISO model, respectively, which are calculated by subtracting the
inhibition term from the CRF response. Figures 3c3 and d3 show the binary contour maps from
CSLCM and the ISO model, respectively, which are constructed through the standard proce-
dure of NMS followed by hysteresis thresholding. The binary contour map in Fig. 3c3 is more
complete and more effectively suppresses background textures than that in Fig. 3d3. This
contrast experiment sufficiently demonstrates that the extracted luminance contrast cues can
further suppress background textures while more completely preserving the contour
information.

4.1.2 Comparison with CI model

As with the previous example, many unwanted texture edges exist in the CRF response map
(Fig. 4b). In order to suppress textures, the CI model [40] computes the inhibition term by

Fig. 3 Qualitative comparison between CSLCM and the ISO model: (a) input image, (b) gradient magnitude
map as the neuronal responses to the stimuli within CRF, (c1–3) the inhibition term Inh(x, y) with T = 0.05, β =
300, final responses r(x, y), and binary contour map, respectively, and (d1–3) the inhibition term from the ISO
model, final responses r(x, y), and binary contour map, respectively
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considering the luminance contrast cues and RMS calculations (Fig. 4d1). With the limitation of the
sliding window size and the lack of a corresponding activation function, the isotropic inhibition
efficiently suppresses textures, but it also inhibits some perceptually salient contours, especially
contours embedded in cluttered background. In the proposed model, the final inhibition term (Fig.
4c1) is modulated by DoG and activated by a sigmoid function. Comparing Fig. 4c3 and d3 reveals
that at object contours (e.g., the contour of bear), the inhibition strengths of CSLCM are generally
weaker; in contrast, the texture regions (e.g., the water) receive relatively stronger inhibition with
CSLCM.Consequently, our inhibition strategy is more efficient for texture suppression and contour
protection. Hence, CSLCM can respond strongly to perceptually salient contours, but is relatively
insensitive to textures as compared with the CI model [40].

4.2 Quantitative experiments

4.2.1 RuG dataset

We test CSLCM on the RuG dataset, which includes 40 natural images and associated ground
truth binary contour maps drawn by hand. This dataset has been widely used to evaluate the
performance of contour detectors [13, 21, 31, 35, 36, 40, 43, 44]. For quantitative evaluation of
the performance of the proposed method, the binary contour maps will be constructed by the
standard procedure of NMS followed by hysteresis thresholding [7]. We measure the similarity
between the detected contour maps and corresponding known ground truth with the P-score
[13]:

P ¼ card Eð Þ
card Eð Þ þ card EFPð Þ þ card EFNð Þ ; ð15Þ

Fig. 4 Qualitative comparison between CSLCM and the CI model: (a) input image, (b) gradient magnitude map
as the neuronal responses to the stimuli within CRF, (c1–3) the inhibition term Inh(x, y) with T = 0.05, β = 300,
final responses r(x, y), and binary contour map, respectively, and (d1–3) the inhibition term from the CI model,
final responses r(x, y), and binary contour map, respectively
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where card(A) denotes the number of elements of set A, E refers to the set of contour pixels
that are correctly detected by the algorithm, and EFP and EFN refer to the set of false positive

Fig. 5 Optimal dataset scale (ODS) of CSLCM over all images of the RuG dataset with various parameter
combinations. Each bar in the figure represents the ODS over all the images for a given parameter combination.
The text above each panel highlights the best ODS, which is obtained using the given parameter values. The
symbol B*^ indicates the fixed parameters

Fig. 6 Optimal image scale (OIS) of CSLCM over all images of the RuG dataset with various parameter
combinations. Each bar in the figure represents the OIS over all the images for a given parameter combination.
The text above each panel highlights the best OIS, which is obtained using the given parameter values. The
symbol B*^ indicates the fixed parameters
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pixels and false negative pixels, respectively. The range of the P-score is [0, 1]; therefore,
higher P-scores reflect better detection performance.

In this experiment, series of parameter combinations (5 values of σ within [1.0,3.0], 11
values of T within [0.01,0.2], 7 values of β within [1,300], and 3 values of k within [1.5,
4]) were selected for further statistical analysis. The parameter values are displayed in
Table 1. In Figs. 5 and 6, the heights of the bars reflect, respectively, the optimal dataset
scale (ODS) and optimal image scale (OIS) of P over all 40 images in the RuG dataset with

Fig. 7 Binary contour maps of four images from the RuG dataset: from left to right, the columns are input
images, corresponding ground truth, and the ISO-gd [40], CORF-PP [5], MCI [40], and CSLCM models. The
values in the upper-left corner are the P-scores

Table 2 Quanxtitative results for several contour detection algorithms on RuG40

Model RuG40

ODS OIS Best P-scores

Biologically motivated
CSLCM 0.49 0.51 0.56
MCI [40] 0.47 0.49 0.52
CORF-PP [5] 0.45 0.49 0.49
ISO-gd [40] 0.41 0.44 0.47

Computational/Machine learning
Pb (BG+TG) [28] 0.46 0.50 0.50
gPb [3] 0.48 0.56 0.56
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different parameter combinations. Two parameters were fixed while the remaining two
parameters were measured. The optimal performance P and the corresponding parameters
over all images are listed at the top of each. Comparing Figs. 5 and 6, we find an
interesting fact in that some of the performance trends between ODS and OIS are opposite.
For example, from the left two panels and the upper right panel of Fig. 5, the smaller σ, T,
and k achieve better performance, whereas the corresponding panels of Fig. 6 exhibit that
the larger T, k, and moderate σ achieve better performance. This may reveal a potential fact
that in the case of a fixed threshold, a smaller receptive field size (small σ and k) can
extract more stable local information, making the model more robust.

Intuitively, a Bsoft^ inhibition term, e.g., β = 1, should yield more effective contour
performance. However, in the above experiments, a Bhard^ inhibition term results in
robust and good performance, as shown in the upper middle and bottom right panels of
Figs. 5 and 6. This may be due to the fact that Bhard^ segmentation will cause strict texture
inhibition or that a truncated activation response is more consistent with neuronal infor-
mation transmission in the human visual system.

We evaluated and compared CSLCMwith three other excellent biologically inspired models,
i.e., ISO-gd [40], CORF-PP [5], andMCI [40], for four typical natural images in the RuG dataset,
as shown in Fig. 7. Note that ISO-gd [40] uses the derivative of the 2D Gaussian function instead
of the Gabor function for contour detection. The proposed method outperformed all the other
models in terms of better suppression of responses to textures and better preservation of contours.
The images show that CSLCM performs best in the trade-off between contour preservation and
texture suppression. Specifically, the contour map obtained by CSLCM for Gnu_1, is very close
to the ground truth, especially when compared with the other models.

We qualitatively measured the performance of some biologically motivated models, such as
ISO-gd [40], CORF-PP [5], MCI [40], and CSLCM, and some computational/machine learning
models, such as Pb (BG+TG) [28] and gPb [3], on the RuG dataset, as shown in Table 2. The best
P-scores indicate that the parameters were optimized for each image and averaged over 40 images.

Fig. 8 Binary contour map on four images from the BSDS300 dataset. The columns from left to right are input
images, corresponding ground truth, Pb (BG+ TG) [28], MCI model [40], and CSLCM, respectively
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CSLCM outperformed the compared models in the RuG dataset and reached a new state-of-the-art
result (ODS = 0.49, OIS = 0.51, Best P-score = 0.56) compared with biologically motivated models
for the RuG dataset. Note that we used the parameter combination (β = 100, σ = 1.5, T= 0.01 and
k= 1.5) to measure the ODS and OIS performances. Interestingly, some machine learning based
models, e.g., Pb [28] and gPb [3], did not perform well across different datasets because the
biologically motivated models simulate the information processing mechanism of the human visual
system, and usually use low-level image features, which are not dataset-dependent.

4.2.2 BSDS results

We further tested the proposed model with BSDS300 and BSDS500. Figure 8 presents several
examples of the contour maps obtained with CSLCM followed by the NMS and binarization. The
first and second columns of Fig. 8 show five test images from BSDS300 dataset and their human-
marked boundaries, respectively. The third and fourth columns show the results of a machine
learning based algorithm (Pb (BG+TG) [28]) and a state-of-the-art biologically motivated model
(MCI [40]). The last column shows the results of CSLCM, showing that CSLCM is superior to the
compared models in the continuity and preservation of contours.

The performance of CSLCMwas further evaluated using BSDS300 and BSDS500. Each image
in the dataset has multiple human-labeled segmentations as the ground truth data. The so-called F-
score [28] was also computed for each contour:

F ¼ 2*Precision*Recall
Precisionþ Recall

; ð16Þ

Fig. 9 Precision–Recall curves of CSLCM for BSDS300
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where Precision denotes the fraction of detected edges that are valid and Recall denotes the fraction
of ground truth edges that were detected. Note that we used tolerant parametersmaxDist = 0.0075 in
the BSDS benchmark.

Quantitative performance measurements were also performed using a test set of 100
images from BSDS300 and 200 images from BSDS500. Figures 9 and 10 show the
Precision–Recall curves of CSLCM with different parameter combinations for BSDS300
and BSDS500, respectively. These results show that small k performs better than the value
from experience (k = 4) in previous work [13, 22, 23, 25, 43, 44].

Table 3 shows the statistical results for BSDS300 and BSDS500. In this experiment, we set
β = 100, σ = 2.5, T = 0.05, and k = 1.5. We can see that CSLCM has good performance
compared with the other biologically motivated models for gray-scale images. The proposed
method uses only center–surround luminance contrast for texture inhibition. The state-of-the-
art method (MCI) used luminance, luminance contrast, and orientation cues for texture
suppression. The model of PC/BC-V1 + lateral+texture [34] achieves its performance scores
under the condition that recurrent lateral excitatory connections and other special lateral

Fig. 10 Precision–Recall curves of CSLCM for BSDS500
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connections are incorporated into the classical PC/BC model of V1. CSLCM and the CI model
[40] obtain similar ODS; however, CSLCM far exceeds CI [40] in calculation speed (see
Section 4.3). Although CSLCM only used luminance contrast cues, the F-scores of OIS and
AP for BSDS300 and BSDS500 reached state-of-the-art levels. Furthermore, the F-score of
CSLCM outperforms some traditional machine learning–based methods (e.g., Pb (BG) [28])
for BSDS300.

4.3 Computational complexity

The proposed model has very low computational cost because its building blocks are simple
convolutions with different kernels. With this in mind, we report the average computational
time of some algorithms for BSDS500 in Table 4; although the MATLAB implementation of
CSLCM is very slow, it outperforms nearly every method considered. We only used a single
CPU core for computation and o mitted the computational time of the post-processing actions
of NMS and hysteresis thresholding.

Table 4 Average computational time (s) of seven-edge detection algorithms on BSDS500 under the MATLAB
framework with Intel(R) Xeon(R) CPU E5–2650 v4 @ 2.20 GHz

Algorithm Time (s)

Canny [6] 0.08
ISO [13] 0.21
MCI [40] 17.12
CI [40] 3.25
PC/BC-V1 + lateral+texture[34] > > 1200
Pb (BG + TG) [28] 5.78
CSLCM 0.11

Table 3 Quantitative results for several contour detection algorithms applied to the gray-scale images of
BSDS300 and BSDS500

Method BSDS300 BSDS500

ODS OIS APa ODS OIS AP

Computational/Machine learning
gPb [3] 0.69 0.70 0.73 0.70 0.74 0.71
BEL [11] 0.64 – – – – –
Mean Shift [9] 0.63 0.66 0.54 0.64 0.68 0.56
N-cuts [10] 0.62 0.66 0.43 0.64 0.68 0.45
Pb (BG+TG) [28] 0.63 0.66 0.62 – – –
Pb (BG) [28] 0.61 0.64 0.60 – – –
Canny [6] 0.58 0.62 0.58 0.60 0.63 0.58

Biologically motivated
CSLCM 0.61 0.64 0.60 0.62 0.66 0.61
MCI [40] 0.62 0.64 0.54 0.64 0.66 0.56
CI [40] 0.61 0.63 0.57 – – –
PC/BC-V1 + lateral+texture [34] 0.61 0.63 0.40 0.64 0.65 0.41
ISO-gd [40] 0.56 0.59 0.54 – – –
Butterfly-shaped [44] 0.59 0.61 0.49 – – –

a AP: average precision
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5 Conclusions

Since 1980, many psychophysical and neurophysiological studies have focused on the non-CRF in
V1. Inspired by these studies, many computational models for contextual influences and center–
surround interactions exist. Several of these models use various features for computing center-
surround contrast to improve contour performance [13, 31, 40, 44], and others focus on simulating
biological visual cellular mechanisms [42, 43]. In this paper, we focused on center-surround
luminance contrast information and proposed a novel contour detection model. The proposed
model performed well for three popular datasets: RuG, BSDS300, and BSDS500. More impor-
tantly, the proposed model is computationally very fast. The proposed CSLCM has computational
complexity similar to Canny [6] but its performance is similar to that of MCI, which is better than
Canny. It must be acknowledged that within the proposed framework, we have managed to only
model a portion of what is known about center–surround interaction. The entire mechanism is
considerably more complex. We simulated a simplified version of the center Boff^ function of the
GCs and LGN layers to extract center–surround luminance contrast information. However, even in
the early information processing truncation, i.e., the retina, the information processing of cells shows
functional diversification and specificity, such as color-coding modeled cone cells [39, 41] and
bright- and dim-coding modeled rod cells [45].

Biologically inspire d solutions, such as the one presented here, make two contributions:
technological (improving performance or reducing computational time) and scientific (understand-
ing the relationship between the human visual system and the visual environment). As we learn
more about the properties of the human visual system, we will be able to better explain visual
behavior. Compared with machine learning–based models, the proposed architecture simulates the
low-level features that are common to mammalian cortical architecture, which emerged after
millions of years of evolution (i.e., it is not dataset-dependent; Pb, gPb, and the proposed model
are compared in Tables 2 and 3). In future research, we will explore the potential role of cells with
different functions and integrate them into a unified framework. Different information represents
different local information for the input images, and finding an appropriate way to integrate the
visual cues will help us understand and simulate the working mode of V1more deeply. In addition,
we will continuously explore more effective and efficient cues, such as luminance contrast in this
paper. Such an algorithm might be suitable for some scenarios that require good real-time
performance. In summary, the model proposed in this work offers an efficient contour detection
solution that uses a simplified DoG function to extract luminance contrast information and a Bhard^
sigmoid function to obtain an inhibition term. With competitive performance in comparison to the
other biologically inspired approaches, we find that the proposed method achieves state-of-art
performance for the RuG dataset and near-MCI performance for the BSDSs, with minimal
computational complexity.
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