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Abstract
Steganalysis is usually considered as a two-class classification problem of differentiating
between covers and stegos. However, in the real world, the cover image may have under-
gone various operations, which causes two problems that some processed covers tend to be
judged as stegos by the steganalyzer and the stegos processed before information embedding
may be easily missed, resulting in the high false alarm rate and the high missed detection
rate of steganalysis respectively. To address the former problem, this paper proposed a ste-
ganalysis framework based on the combination of the image forensics and the steganalysis
tools to reduce the false alarms. First, the fragile detection of image manipulations which is
not robust to steganography is applied to separate the normally processed images from the
investigated images. Then remaining images are fed to the trained classifier for stegnalysis.
The experimental results on gamma transformed images validate the effectiveness of the
proposed steganalysis framework that the false alarm rates of steganalysis can be reduced
when the investigated image dataset contains normally processed images.

Keywords Fragile detection · Gamma transformation · Image manipulation · Steganalysis

1 Introduction

Steganography is a technique for covert communication, which embeds secret messages
into ordinary digital media without drawing suspicion, while steganalysis, the counterpart of
steganography, mainly aims to judge whether the unknown digital media carrier secret mes-
sages. In the decades, researchers have proposed many effective steganalysis algorithms,
where the steganalysis framework based on the feature vector and the classifier has become
the mainstream of steganalysis. The prevailing steganalysis algorithms analyze the effects
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of steganography on image statistics to construct steganalysis features, such as SPAM [27]
and SRM series [9–11, 32]. The features of labeled images are used to train the classifiers,
such as the support vector machine SVM [7] and the ensemble classifier [19], which are
applied to steganalysis in practice.

However, a common issue to most steganalysis tools is that the investigated images are
supposed to be from a single type of images directly, that is, the covers are of the same
type and the stegos are generated directly by embedding secret messages into the covers.
Moreover, the performances of these steganalysis tools are usually evaluated on the image
databases with only a few image types. While in the real world, there are thousands of
image types due to the rapid development of image processing technology. It is very easy to
deal with digital images for a certain application [12]. Images on the web pages, received
by communication tools and in the social network, may have undergone various image
manipulations. As all these images can be taken as the covers for steganography, it is key
to deal with the heterogeneous images for the application of steganalysis tools in practice.
In fact, the statistical distributions of covers may be quite different from that of natural
images. Although most existing steganalysis methods achieve excellent results in the certain
experimental settings, they may suffer the problem of cover source mismatch when the
training set does not contain the images of the same type as the testing images. While it is
fallacious to try to train the classifier on a large heterogeneous data set of mixed sources
[17], the detection results are not reliable in the real world due to the complicated case where
the image may have undergone various image manipulations before information embedding.

There are two possibilities that image manipulations affect the detection performances of
steganalysis tools in the real world. On the one hand, image manipulations may change the
statistical distributions of cover images, which makes it hard to distinguish a stego from the
normally processed images. The steganalysis tools may judge the processed covers as stegos,
resulting in a high false alarm rate. While in the real world, the stegos are relatively hardly
observed, and high false alarm rates could make the steganalysis system collapse due to a
large number of misjudged covers. Therefore, real-world steganalysis should be required to
have very low false alarm rates. On the other hand, steganography on the processed images
may make the stego statistics similar to the cover images statistics, resulting in a high missed
detection rate of steganalysis. Besides. to avoid the problem of cover source mismatch, the
training set should cover the types of testing images. However, enlarging the training set and
increasing the types of training data may reduce detection accuracies. Besides, due to the
huge number of image types, the training set could hardly contain all image types. Hence,
most of the steganalysis tools are hardly directly applicable in the real world.

To improve the reliability of steganalysis in the real world, some methods are proposed
to deal with heterogeneous images. In [13], He et al. selected the characteristic function
moments of the image and its wavelet subbands as features to classify the natural, the
stego and the sharpened images. The method aims to reduce false alarms by differenti-
ating stego images and processed images. Considering that a cover may have undergone
image manipulations before information embedding, another scheme [1, 15, 21] is pro-
posed for steganalysis on images with different types separately. In [1], Barni et al. used the
forensics tools to aid the steganalysis of heterogeneous images. They firstly differentiated
camera images and computer-generated images, and then used the steganalyzer explicitly
trained to work with images belonging to the correct class. Li et al. [21] applied the image
pre-classification to cluster the image into different classes. For each cluster, the stegana-
lyzer is trained separately. However, the image type in each cluster is unknown, while with
the knowledge of the image type, a higher accuracy of steganalysis may be achieved. In
[15], different tools were selected for steganalysis based on the knowledge of whether the
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investigated bitmap images have undergone the JPEG compression or not. Furthermore,
with the knowledge of quality factors, a much more reliable detection accuracy could be
achieved.

Fragile detection of image manipulation is one kind of image forensics technology which
could identify the last applied image operation, while failing to detect the targeted operation
if it is followed by another operation, such as steganography. In this paper, we proposed a
steganalysis framework based on the combination of the image forensics and the steganal-
ysis tools to attenuate the problem that normally processed images are judged as stegos.
Firstly, the normally processed images are separated from the investigated images by frag-
ile detection of image manipulations. Then the steganalysis is conducted on the unlabeled
images. The identified normally processed images are judged as covers, which reduces
the false alarm rates of steganalysis. Different from existing methods based on the image
multi-classification, any effective fragile detection of image manipulations can be applied
to the proposed steganalysis framework, ensuring the extensibility of the framework. As
image gamma transformation is one of the most frequently-used operations for image con-
trast changing, it is considered to be a practical tool as an assistant of steganography [31].
The image manipulation gamma transformation, and two steganographic schemes, LSB
matching and S-UNIWARD [14], are conducted in the experiments, which validates the
effectiveness of the proposed for improving the reliability of steganalysis in the real world.
The experimental results show that the steganalysis false alarm rates of the proposed frame-
work is smaller than that of the steganalysis without image forensics where the classifiers
are trained on both original covers and heterogeneous images respectively.

2 Steganalysis error probability

Generally, the performance of a steganalyzer is assessed by the average detection error of
the covers and stegos. Let C and S note the covers and stegos respectively, NC and NS

present their numbers, and N stand for the total image number, i.e., N = NC + NS . Then
the steganalysis error probability is

PE = NC

N
PFA + NS

N
PMD (1)

where PFA and PMD are the false alarm rate and missed detection rate, which are defined as
⎧
⎨

⎩

PFA = NS
C

NC

PMD = NC
S

NS

(2)

where NS
C and NC

S are the numbers of the misjudged covers and stegos respectively.
At present, most of the prevailing steganalysis schemes use machine learning method

where steganalytic features are fed to the classifier. Figure 1 gives the steganalysis frame-
work where the classifier is trained by the features of covers and stegos, and then the trained
classifier is used to detect the unknown images. For the sake of clarity and comparison,
the steganalysis framework is called as the traditional steganalysis framework in this paper.
The construction of steganalysis features is motivated to capture the changes on the image
by steganography and the steganalysis error comes from two parts, namely, the false alarms
that natural images are judged as stegos and the missed detections that stegos are judged as
covers.
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Fig. 1 Steganalysis framework in the traditional mode

While the testing image set consists of heterogeneous images, the false alarm rate can
be represented as the sum of the detection errors of all image classes. Assume there are
m kinds of images which have undergone various operations. Let C0 represent the original
image, Ci represent the image processed by the i-th operation, where 1 ≤ i ≤ m. Then the
false alarm rate could be rewritten as

PFA =
m∑

i=0

NS
Ci

NC

=
m∑

i=0

NCi

NC

· NS
Ci

NCi

(3)

For the sake of brevity and readability, we assume the ratio of the covers number and the
stegos number are fixed. In this way, we could focus on the analysis of the false alarm rate.
Assume that m = 1, namely, the covers are consists of two kinds of images: the original
images and the images processed by an operation. In this case, the false alarm is

P̃FA = NC0

NC

· NS
C0

NC0

+ NC1

NC

· NS
C1

NC1

(4)

Note that if the covers are all original images, then the false alarm rate is

P̄FA = NS
C0

NC0

(5)

Then

P̃FA = P̄FA + NC1

NC

(
NS

C1

NC1

− NS
C0

NC0

)

(6)

When
NS

C1
NC1

>
NS

C0
NC0

, P̃FA > P̄FA, which means that if the detection error probability of C1

is larger than that of the natural images, then the average false alarm rate of steganalysis on
heterogeneous images would increase. Moreover, the more images C1 are in the heteroge-
neous images, the larger is the false alarm rate. The similar conclusion could be made in the
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cases where m > 1. Specifically, when
NS

Ci

NCi
= 1, 1 ≤ i ≤ m, the false alarm rate reaches

the maximum that

Pmax
FA =

m∑

i=0

NCi

NC

· NS
Ci

NCi

= NC0
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+
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NC

(
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)

(7)

Steganography could be regarded as a special image operation that adds a few noises to
images, and the image visual effect is hardly altered. While the normal image operations,
such as contrast enhancement, usually change the visual effect for certain applications, they
may introduce a lot of noises. When the normally processed images are fed to a steganalysis
classifier which is trained to discriminate original images and stegos, they may be judged
as stegos with high probabilities. As there is a great number of processed images in the
real world, the false alarm rates of traditional steganalysis schemes would be very high in
practice applications.

3 Proposed steganalysis framework

An intuitive idea to remove the effects of image operations on the steganalysis performance
in the real world is to separate the processed images from the investigated images before
steganalysis. In this paper, we take advantage of image forensics.

Image manipulation identification is an image forensics technology which could judge
whether an image has undergone the specific operation. At present, the research of image
manipulation identification technology has made a lot of achievements, including the detec-
tion of median filtering [18, 26, 42], contrast changing [5, 29], blurring [4, 22, 44], rescaling
[3] and JPEG compression [2, 16, 38]. Most of the existing image manipulation detection
tools are capable of detecting the last operation applied to the investigated image even if the
image has undergone various operations. However, if the targeted operation is followed by
another operation, some forensics tool may fail. As the counterpart of robust detection, the
detection of the targeted operation is called as fragile detection to the post-operation which
could make the forensics tool fail.

While the fragility of an image manipulation detection may be taken as a weakness in
image forensics [33, 34], it could be exploited to assist the steganalysis in the real world.
Consider the case where the investigated images include original images, normally pro-
cessed images and stegos. Note that the stego may have undergone image operations before
information embedding. If an image is a stego, then the fragile detection of image manip-
ulations would not judge the stego as the normally processed image due to its fragility to
steganography. Moreover, if an image is a normally processed image, then it does not carry
any secret message. Therefore, the false alarm rate of steganalysis could be reduced by the
fragile detection of image manipulations applied before the steganalyzer. Figure 2 gives the
proposed steganalysis framework based on the fragile detection of image manipulations.
Firstly, the fragile forensics tools are applied to separate the normally processed images
from the investigated images, and then the remaining images are steganalyzed.
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Fig. 2 Steganalysis framework based on the combination of the image forensics and the steganalysis

It is worth noting that the proposed framework is different from the one proposed in [13]
which uses the characteristic function moments for multiclassification. In this paper, the
specific images are separated by the corresponding fragile forensics tools before steganal-
ysis. Any fragile forensics tools for image manipulations detection could be applied to the
proposed framework. Thus, it possesses the feature of extensibility.

4 Steganalysis aidded by gamma transformation detection

In this section, we are considering the case where gamma transformation is involved. Firstly,
the application of gamma transformation in the steganography [31] is reviewed. Then we
construct a new feature for gamma transformation detection. Finally, a steganalysis scheme
aided by gamma transformation detection is presented.

4.1 Application of gamma transformation in steganography

Image gamma transformation is an operation for image contrast changing, whose basics
form is s = rγ , where r ∈ [0, 1] is the input and γ > 0 is the only decisive parameter
which controls the direction and intensity of the transformation. Generally, due to the limited
storage space, the pixel values of the digital image need to be truncated. In this paper, we
consider the 8-bit images, which is widely used as covers in steganography. Thus, the form
of image gamma transformation is

y = round
(
255 ×

( x

255

)γ )
(8)
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where x, y ∈ {n|n ∈ [0, 255] ∩ Z} represent image pixel values before and after gamma
transformation respectively, and round(·) is the rounding operation.

As widely used in image processing, gamma transformation is considered to be a prac-
tical tool as an assistant of steganography. In [31] (in Chinese with English abstract), Sun
et al. analyzed the deviation of an image statistical feature and pointed out that the gamma
transformed images tend to be judged as stegos in steganalysis. Based on the conclusion,
they proposed a steganography scheme that embeds information into gamma transformed
images. Firstly, the image is gamma transformed with parameter γ = 1 + �, where � is
the disturbance factor of the gamma transformation parameter. Then the secret message is
embedded into the gamma transformed images. In this way, the normal gamma transformed
images will be judged as the stegos, resulting in a high false alarm rate.

4.2 Fragile detection of gamma transformation

If the gamma transformed images without information embedding could be separated from
the investigated images, then the steganalysis performance would be improved. The idea can
be achieved by fragile detection of gamma transformation as it is effective for the detection
of the last applied gamma transformation, while it will fail if the gamma transformed images
have undergone steganography at last.

For gamma transformation detection, Stamm and Liu [30] exploited the high-frequency
coefficients of image histogram characteristics function. They pointed out that after
gamma transformation, the high-frequency coefficients will be enlarged. Therefore, they
constructed a feature by averaging the high-frequency coefficients to detect gamma trans-
formation. Cao et al. [6] proposed a gamma transformation detection method based on the
number of image histogram gaps. They observed that after gamma transformation, many
gaps emerge that their values are zero and their adjacent histogram bins are nonzero. In our
prior works [35, 36], we analyzed effects of gamma transformation on the image histogram
and pointed out that gamma transformation introduces zero-value histogram bins whose
locations are closely related to the gamma transformation parameter. Based on the con-
clusion, we proposed a manipulation detector and a parameter estimator for image gamma
transformation.

The methods above have more or less taken advantage of the zero-value histogram bins
introduced by gamma transformation. While after steganography, the zero-value histogram
bins may be filled, therefore these methods are fragile to steganography. Based on this
feature, the zero-value histogram bins could be exploited to separate the gamma transformed
images without information embedding from stegos, and it need not consider whether the
stegos have undergone gamma transformation.

More specifically, we assume that the steganography applies ±K operation to pixels to
embed the information, such as EA [23], HUGO [28], S-UNIWARD [14], and HILL [20]
etc. Then the relationship between the image histograms before and after steganography
could represented by the following equation

hs (n) =
∑

k

αn−k,khc (k) (9)

where hs (n) and hc (n) are the histogram bins of the stego and the cover at n respectively,
αi,j ≥ 0 and

∑

i

αi,j = 1. As to the steganography LSB matching with the payload ρ,

α−1,j = α1,j = 0.25ρ and α0,j = 1 − 0.5ρ. Therefore, the zero-value histogram bin
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Fig. 3 Histograms of image Lena. a original; b gamma transformed with γ = 0.67; c LSB matching on (a)
with ρ = 0.4; d LSB matching on (b) with ρ = 0.4

will be filled due to the shares of its adjacent nonzero histogram bins. Figure 3 shows the
histograms of the typical image Lena with size 512× 512 under gamma transformation and
LSB matching. The parameter of gamma transformation is γ = 0.67 and the payload of
LSB matching is ρ = 0.4. Figure 3a and b are the histograms of the original image and the
gamma transformed image, and Fig. 3c and d are the histograms of the stegos which are
generated by embedding information into the original image and the gamma transformed
image respectively. It is showed that only the histogram of gamma transformed image in
Fig. 3b owns many zero-value histogram bins.

However, the natural images and stegos may also have zero-value histogram bins or
unsmooth histogram envelopes. Therefore, the existing gamma transformation detection
will judge these images as the gamma transformed, which led to the missed detection of
steganalysis. Considering the issue, we constructed a new feature based on the zero-value
histogram bins and their adjacent histogram bins values. It is observed that in the histograms
of natural images and stegos, the values of histogram bins adjacent to the zero-value his-
togram bins are usually small, as shown in Fig. 3a, c and d, while in the histogram of
the gamma transformed images without information embedding they are relatively large,
Fig. 3b. Besides, the numbers of zero-value histogram bins of the gamma transformed
images without information embedding are usually larger than that of the natural images
and stegos. Based on the observation, we multiply the two histogram bins adjacent to the
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zero-value histogram bin, and take the sum of all the products as the feature to detect gamma
transformation, namely,

F =
∑

x∈�

h (x − 1) · h (x + 1) (10)

where � = {x|h (x) = 0, 0 < x < 255} is zero-value histogram bin locations set. In the
construction of feature F , we consider both the number of zero-value histogram bins and the
values of histogram bins adjacent to them. By this way, the value of F is small for the natural
image and the stego, while it is large for the gamma transformed image. Therefore, using
F to detect gamma transformation, we can avoid judging the stegos as gamma transformed
images, which ensures the low missed detection rate of steganalysis when the forensics tool
is used to reduce the false alarm rate.

4.3 Steganalysis aided by gamma transformation detection

Figure 4 show the flow chart of steganalysis aided by gamma transformation detection.
Given an unknown image, the feature F is extracted firstly to detect gamma transformation.
Based on the result, it is decided whether or not to further apply the steganalysis tool. In
this paper, we use the steganalysis feature SRM [11] and the ensemble classifier [19] for
steganalysis. The detailed steps are as follows.

#1 Calculate the image histogram h(x).
#2 Find the zero-value histogram bin locations �.
#3 Calculate the image feature F according to (10).
#4 Detect gamma transformation according to the predefined threshold η using the

following rule

δ =
{
image is gamma transformed, F > η

image is not gamma transformed, F ≤ η
(11)

If gamma transformation is presented, then judge the image as the cover; otherwise,
take the next step.

#5 Extract the steganalysis feature SRM.
#6 Feed the SRM to the trained ensemble classifier for steganalysis.

5 Experimental results

We use 10,000 original images in BossBase-1.011 to validate the effectiveness of the pro-
posed framework. The original images are with fixed size 512× 512 coming from rescaled
and cropped natural images of various sizes. For experiments, They are firstly gamma trans-
formed with parameter γ = 1 + �, where � ∈ {±0.1,±0.2}. Meanwhile, the original
image is considered as the gamma transformed with γ = 1, namely, � = 0. Then, infor-
mation is embedded into each image by LSB matching and S-UNIWARD with payload
ρ ∈ {0.1, 0.2, 0.3, 0.4}. Hence, there are 450, 000 images in total in the constructed image
dataset. At last, the proposed framework is applied for steganalysis.

At first, the performance of the feature F for gamma transformation detection is tested.
Then the detected gamma transformed images are separated from the image dataset, and the

1http://agents.fel.cvut.cz/stegodata/

http://agents.fel.cvut.cz/stegodata/
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Fig. 4 Flow chart of steganalysis aided by gamma transformation detection

remaining images are fed to the trained classifier for steganalysis. Images in each class are
divided into two parts. One is for classifier training and threshold setting, and the other is for
performance testing, including gamma transformation detection and steganalysis. It is worth
mentioning that the missed detections of steganalysis should include the false positives of
gamma transformation detection that the stegos are judged as gamma transformed. Mean-
while, the false alarm rate of steganalysis is the ratio of the number of misjudged covers to
the number of all covers, instead of to the number of covers fed to the ensemble classifier.

5.1 Gamma transformation detection

We randomly selected 5,000 images to test the performance of gamma transformation detec-
tion. For contrast experiments, the methods proposed in [30] and [6] are used, which are
called as STM and CGM in the rest of this paper. Figure 5 presents the ROC curves of
gamma transformation detection results. Here, the gamma transformed image is considered
as positive. The results show that the proposed method outperforms the other two methods.
Besides, the proposed method achieves a high detection accuracy of gamma transformation
at a very low false positive rate. For example, at the false positive rate of 0.02, the detection
accuracies are 99.86%, 99.77%, 94.7%, and 94.97% when � = −0.2, −0.1, 0.1 and 0.2
respectively. This is significantly important to the followed steganalysis, because the low
false positive rate of gamma transformation detection means few stegos are separated out in
the gamma transformation detection.
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Fig. 5 ROC curves of gamma transformation detection results

In practice, gamma transformation detection according to the value of feature F needs
a predefined threshold η. Figure 6 shows the distributions of the feature F of the origi-
nal images, the gamma transformed images without information embedding and the stegos
generated by LSB matching, where the payload ρ = 0 represents the images which have
not undergone steganography. There are 5,000 images in each class, and the region where
the values are larger than 6 × 10−7 is compressed for a clear comparison between the
gamma transformed images without information embedding and the other kinds of images.
It is showed in Fig. 6 that the F values of original images and stegos are all smaller than
6×10−7, while most of the gamma transformed images without information embedding are
over than 6 × 10−7. It indicates that by the thresholding method based on the F value, the
gamma transformed images without information embedding could be separated from the
original images and stegos. Considering the missed detection rate of steganalysis, the value
of η should be large so that few stegos will be judged as the gamma transformed. While
a too large threshold will lead to a high false alarm rate of steganalysis that many gamma
transformed images will be missed detected and further undergo steganalysis. According to
the experimental results, the threshold is set as η = 10−6.

Table 1 gives the error probability of gamma transformation detection for each kind
of images using the feature F when η = 10−6. The results show that images that have
not undergone gamma transformation (� = 0) are all correctly classified, whether the
steganography is applied or not. With respect to LSB matching, all stegos are judged as
the not gamma transformed, while there are a few stegos generated by S-UNIWARD that
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Fig. 6 Plots of F values of heterogeneous images. The region where the values are larger than 6 × 10−7 is
compressed. The F values of original images and stegos are all smaller than 6 × 10−7 while most of the
gamma transformed images are over than 6 × 10−7

are judged as the gamma transformed, which are going to be judged as covers directly
without steganalysis. Therefore, judging the stegos as the gamma transformed may enlarge
the missed detection rate of steganalysis. Besides, there are some false detections of gamma
transformed images. As the zero-value histogram bins introduced by gamma transformation
only distribute in one side of histogram [35, 36], there may be no zero-value histogram bins
in the histograms except for that in the two histogram sides. Therefore, these images will be
further steganalyzed.

5.2 Steganalysis

After gamma transformation detection, the remaining images are going to be steganalyzed.
In the proposed mode, the classifier trained on the original images and the corresponding
stegos is used, and only the images which are not judged as not gamma transformed are
tested. Steganalysis in the traditional mode is compared in two ways due to the types of the

Table 1 Error probability of gamma transformation detection for each kind of images

� ρ = 0 LSB Matching S-UNIWARD

ρ = 0.1 ρ = 0.2 ρ = 0.3 ρ = 0.4 ρ = 0.1 ρ = 0.2 ρ = 0.3 ρ = 0.4

−0.2 0.0108 0 0 0 0 0.082 0.0195 0.007 0.0019

−0.1 0.014 0 0 0 0 0.0652 0.0175 0.006 0.0019

0 0 0 0 0 0 0 0 0 0

0.1 0.1825 0 0 0 0 0.0638 0.0226 0.0088 0.0030

0.2 0.1595 0 0 0 0 0.0838 0.0302 0.0147 0.0054
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dataset for classifier training. Namely, the classifier is trained on the original images and
the corresponding stegos, or on the heterogeneous images. The former and the latter trained
ensemble classifiers are referred to as S-EC and M-EC respectively here. All investigated
images in the testing sets are steganalyzed in the traditional mode. For the experiments of
steganalysis in the traditional mode using M-EC, one fifth of each type of images are ran-
domly selected to form the heterogeneous images set for classifier training and testing. We
test 10 times for each image class and take the average of the 10 results for the performance
evaluation.

5.2.1 Stegnalysis of LSBmatching

Table 2 shows the false alarm rates (PFA), the missed detection rates (PMD), and the average
error probabilities (PE) of steganalysis of LSB matching, where the rows indexed byMixed
present the overall steganalysis results of gamma transformed images with all parameters
including ρ = 0 under each payload. In the traditional mode using S-EC, many gamma
transformed images are judges as stegos, resulting in high false alarm rates. While in the
proposed mode, most of the gamma transformed images without information embedding are
separated in the gamma transformation detection, which reduces the probability of covers

Table 2 Final results of steganalysis of LSB matching

� Traditional mode Proposed mode

Classifier ρ = 0.1 ρ = 0.2 ρ = 0.3 ρ = 0.4 Classifier ρ = 0.1 ρ = 0.2 ρ = 0.3 ρ = 0.4

False alarm rates PFA

−0.2 S-EC 0.4978 0.2267 0.1027 0.0658 S-EC 0.0041 0.0027 0.0014 0.0002

−0.1 S-EC 0.4979 0.2514 0.1236 0.0701 S-EC 0.0037 0.0025 0.0009 0.0004

0 S-EC 0.0859 0.051 0.0331 0.0238 S-EC 0.0862 0.0511 0.0333 0.024

0.1 S-EC 0.3227 0.1292 0.0559 0.0335 S-EC 0.0397 0.0177 0.0067 0.0026

0.2 S-EC 0.3935 0.1442 0.0526 0.0286 S-EC 0.0324 0.0123 0.0042 0.0013

Mixed M-EC 0.087 0.0464 0.029 0.0202 S-EC 0.0332 0.0173 0.0093 0.0057

Missed detection rates PMD

−0.2 S-EC 0.0377 0.0297 0.0211 0.0128 S-EC 0.0283 0.0296 0.0197 0.013

−0.1 S-EC 0.0207 0.018 0.0159 0.0125 S-EC 0.02 0.0189 0.0146 0.012

0 S-EC 0.0707 0.0415 0.0265 0.0192 S-EC 0.0698 0.0413 0.0272 0.0185

0.1 S-EC 0.0216 0.0177 0.0159 0.0121 S-EC 0.0208 0.0181 0.0154 0.012

0.2 S-EC 0.0183 0.0158 0.0146 0.011 S-EC 0.0169 0.017 0.0138 0.0112

Mixed M-EC 0.0709 0.0371 0.0208 0.0137 S-EC 0.0312 0.025 0.0182 0.0134

Average error probabilities PE

−0.2 S-EC 0.2678 0.1282 0.0619 0.0393 S-EC 0.0162 0.0162 0.0105 0.0066

−0.1 S-EC 0.2593 0.1347 0.0697 0.0413 S-EC 0.0119 0.0107 0.0078 0.0062

0 S-EC 0.0783 0.0462 0.0298 0.0215 S-EC 0.078 0.0462 0.0303 0.0213

0.1 S-EC 0.1721 0.0734 0.0359 0.0228 S-EC 0.0303 0.0179 0.0111 0.0073

0.2 S-EC 0.2059 0.08 0.0336 0.0198 S-EC 0.0246 0.0147 0.009 0.0063

Mixed M-EC 0.0789 0.0418 0.0249 0.0169 S-EC 0.0322 0.0211 0.0137 0.0095



23322 Multimedia Tools and Applications (2019) 78:23309–23328

being judged as stegos. Therefore, the false alarm rates in the proposed mode are relatively
low, which contributes to the small average detection error probabilities.

As no stegos are judged as the gamma transformed in the gamma transformation detec-
tion, the final missed detection rates of steganalysis in the traditional and proposed modes
are almost equal because they have the same trained classifier and the same testing images.
The only difference in the results is caused by the randomicity of the selected feature sub-
spaces. Besides, the missed detection rates when � = 0 are higher than that when � �= 0,
which indicates that the stegos generated by embedding information into gamma trans-
formed images are easier to detect than that have not undergone gamma transformation.
However, due to the high false alarm rates in the traditional mode when � �= 0, the average
error probabilities are larger than that when � = 0.

Using M-EC in the traditional mode could reduce the false alarms, especially for the
steganalysis of the types of images which are gamma transformed, while the missed detec-
tion rate of the corresponding stegos is increased. In general, the performance of M-EC
is better than S-EC in the traditional mode, but less than that in the proposed mode. In
fact, for the application of steganalysis in the real world, it is almost impossible to train
a universal classifier which is capable of detecting the stego in the heterogeneous images.
Besides, the classifier trained on heterogeneous images may capture little information about
the steganography as the main difference of a cover and a stego may be introduced by
the image manipulations. Integrating a large number of different types of images into the
training dataset will deteriorate the steganalysis performance of the trained classifier.

Overall, when the investigated image set includes gamma transformed images, the pro-
posed framework can improve the reliability of steganalysis of LSB matching. On one hand,
the false alarm rates are reduced by separating the gamma transformed images without
information embedding from the investigated images. On the other hand, embedding infor-
mation into the gamma transformed images by LSB matching will make it easier to detect
the stegos. In this point of view, if the proposed steganalysis framework is applied and the
results of gamma transformation detection are reliable, the security of steganography on
gamma transformed images is lower than that on the natural images.

5.2.2 Stegnalysis of S-UNIWARD

Table 3 gives the false alarm rates (PFA), the missed detection rates (PMD), and the average
error probabilities (PE) of steganalysis of S-UNIWARD. The results show that the proposed
mode reduces the false alarms of steganalysis and decreases the average error probabilities.
However, due to the false positives of gamma transformation detection that stegos are judged
as gamma transformed images, the missed detection rates of steganalysis are higher than
that in the traditional mode.

In addition, in the traditional mode there is an exceptional case that the false alarm rates
when � = −0.2 is relatively smaller than that when � = −0.1, 0.1, and 0.2. Specially,
when ρ = 0.3, the false alarm rate when � = −0.2 is even smaller than that when � =
0. Moreover, the missed detection rates of steganalysis when � = −0.2 are higher than
others, which indicates that when � = −0.2, the SRM features of the stegos generated
by S-UNIWARD following the gamma transformation with parameter γ = 0.8 are more
similar to the features of original images than that of other stegos. In this case, the proposed
steganslysis framework is not capable of reducing the missed detections of steganalysis.
While a possible solution to this problem is to judge that whether the investigated images
have undergone gamma transformation and then use the classifier trained on the gamma
transformed images to steganalyze the identified images, it is beyond the scope of this paper.
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Table 3 Final results of steganalysis of S-UNIWARD

� Traditional mode Proposed mode

Classifier ρ = 0.1 ρ = 0.2 ρ = 0.3 ρ = 0.4 Classifier ρ = 0.1 ρ = 0.2 ρ = 0.3 ρ = 0.4

False alarm rates PFA

−0.2 S-EC 0.4386 0.3991 0.2549 0.3172 S-EC 0.0078 0.0064 0.0058 0.005

−0.1 S-EC 0.6818 0.6746 0.4924 0.51 S-EC 0.0082 0.0073 0.0062 0.0052

0 S-EC 0.4136 0.3359 0.2714 0.2201 S-EC 0.4141 0.3311 0.2716 0.2254

0.1 S-EC 0.6836 0.5984 0.4541 0.4017 S-EC 0.0959 0.0701 0.0499 0.0396

0.2 S-EC 0.6358 0.5666 0.4113 0.3829 S-EC 0.073 0.0483 0.0344 0.0268

Mixed M-EC 0.3926 0.3102 0.2489 0.193 S-EC 0.1198 0.0926 0.0736 0.0604

Missed detection rates PMD

−0.2 S-EC 0.5101 0.436 0.4641 0.3022 S-EC 0.5471 0.4849 0.4673 0.2862

−0.1 S-EC 0.2623 0.1656 0.1808 0.1077 S-EC 0.3058 0.1966 0.1831 0.1034

0 S-EC 0.3896 0.3078 0.2411 0.1892 S-EC 0.3884 0.3069 0.2387 0.1876

0.1 S-EC 0.1802 0.1317 0.1287 0.0909 S-EC 0.2303 0.1616 0.1362 0.0882

0.2 S-EC 0.2265 0.1563 0.1615 0.1073 S-EC 0.2901 0.2004 0.171 0.1071

Mixed M-EC 0.4003 0.3051 0.2339 0.1731 S-EC 0.3523 0.2701 0.2393 0.1545

Average error probabilities PE

−0.2 S-EC 0.4743 0.4175 0.3595 0.3097 S-EC 0.2775 0.2457 0.2366 0.1456

−0.1 S-EC 0.4724 0.4201 0.3366 0.3088 S-EC 0.157 0.102 0.0947 0.0543

0 S-EC 0.4016 0.3219 0.2563 0.2047 S-EC 0.4013 0.319 0.2552 0.2065

0.1 S-EC 0.4319 0.365 0.2914 0.2463 S-EC 0.1631 0.1159 0.0931 0.0639

0.2 S-EC 0.4312 0.3614 0.2864 0.2451 S-EC 0.1816 0.1244 0.1027 0.067

Mixed M-EC 0.3964 0.3077 0.2414 0.1831 S-EC 0.2361 0.1814 0.1565 0.1075

6 Conclusions and future works

This paper addresses the problem that the normally processed images may be judged as ste-
gos by the steganalyzer, resulting in high false alarm rates of steganalysis in the real world.
A steganalysis framework based on the combination of image forensics and steganalysis
tools is proposed to improve the reliability of steganalysis in the real world. Firstly, the
unknown image is investigated by fragile forensics of image manipulations. If no opera-
tions are presented on the image, then it is further detected by steganalyzers. Any fragile
forensics tools for image manipulations detection could be applied to the proposed steganal-
ysis framework to improve the steganalysis performance in the real world. The validation
of the proposed steganalysis framework is verified by combining the steganalysis of LSB
matching and S-UNIWARD with gamma transformation detection, where a new feature is
constructed as the sum of products of two histogram bins adjacent to zero-value histogram
bins. The false alarm rate is reduced by separating the gamma transformed images without
information embedding from the investigated images.

However, the proposed steganalysis framework introduces more factors which affect the
performance of steganalysis. The steganalysis reliability now depends on both the accu-
racies of image manipulation identification and stego detection. For example, with a low
accuracy of the image operation forensics, many normally processed images will undergo



23324 Multimedia Tools and Applications (2019) 78:23309–23328

steganalysis, which could result in a high false alarm rate of steganalysis. Meanwhile, if
stegos are picked out by an image operation detector, they will be judged as covers directly
without applying steganalyzers. Therefore, reliable image manipulation forensics tools are
significantly important to improve the performance of steganalysis in the real world.

This paper focuses on reducing the false alarms of steganalysis in practice. While in
reality, the information may be embedded into the processed images, and the stegos may
trend to be judged as covers by steganalysis tools. In this case, the proposed steganalysis are
not capable of reducing the missed detection rate. For the problem, further researches are
needed to find the corresponding solutions.

Besides, our future research directions include but not be limited as follows. We try to
extend our idea to process other type of data [24, 25, 37]. We also want to adopt multi-
core CPU and many-core GPU parallel techniques [39, 45] to accelerate our algorithms in
processing big image data [8, 40, 41, 43].

Acknowledgements The authors would like to thank the anonymous reviewers for their thorough
comments and suggestions that helped to improve this paper.

References

1. Barni M, Cancelli G, Esposito A (2010) Forensics aided steganalysis of heterogeneous images. In: Pro-
ceedings of the IEEE international conference on acoustics, speech, and signal processing, ICASSP
2010. IEEE, Dallas, pp 1690–1693, https://doi.org/10.1109/ICASSP.2010.5495494

2. Bianchi T, Piva A (2012) Detection of nonaligned double jpeg compression based on integer periodicity
maps. IEEE Trans Inf Forensics Secur 7(2):842–848. https://doi.org/10.1109/TIFS.2011.2170836

3. Birajdar GK, Mankar VH (2014) Blind method for rescaling detection and rescale factor estimation in
digital images using periodic properties of interpolation. AEU - Int J Electron Commun 68(7):644–652.
https://doi.org/10.1016/j.aeue.2014.01.013

4. Cao G, Zhao Y, Ni R (2010) Edge-based blur metric for tamper detection. J Inf Hiding Multimed Signal
Process 1(1):20–27

5. Cao G, Zhao Y, Ni R (2010) Forensic estimation of gamma correction in digital images. In: Proceedings
of the international conference on image processing, ICIP 2010. IEEE, Hong Kong, pp 2097–2100,
https://doi.org/10.1109/ICIP.2010.5652701

6. Cao G, Zhao Y, Ni R, Li X (2014) Contrast enhancement-based forensics in digital images. IEEE Trans
Inf Forensics Secur 9(3):515–525. https://doi.org/10.1109/TIFS.2014.2300937

7. Chang CC, Lin CJ (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst
Technol (TIST) 2(3):27:1–27:27. https://doi.org/10.1145/1961189.1961199

8. Chen X, He F, Yu H (2018) A matting method based on full feature coverage. In: Multimedia tools and
applications. https://doi.org/10.1007/s11042-018-6690-1

9. Denemark T, Sedighi V, Holub V, Cogranne R, Fridrich J (2014) Selection-channel-aware rich model
for Steganalysis of digital images. In: 2014 IEEE international workshop on information forensics and
security, WIFS 2014. IEEE, Atlanta, pp 48–53. https://doi.org/10.1109/WIFS.2014.7084302

10. Denemark T, Fridrich J, Alfaro PC (2016) Improving selection-channel-aware steganalysis features. In:
Alattar AM, Memon ND (eds) Proceedings of IS&T, electronic imaging, media watermarking, security,
and forensics 2016. Ingenta, San Francisco, pp 1–8
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