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Abstract
In this article, we propose a mixed-noise removal model which incorporates with a non-
smooth and nonconvex regularizer. To solve this model, a multistage convex relaxation
method is used to deal with the optimization problem due to the nonconvex regularizer.
Besides, we adopt the number of iteration steps as the termination condition of the proposed
algorithm and select the optimal parameters for the model by a genetic algorithm. Several
experiments on classic images with different level noises indicate that the robustness, run-
ning time, ISNR (Improvement in Signalto-Noise ratio) and PSNR (Peak Signal to Noise
Ratio) of our model are better than those of other three models, and the proposed model
can retain the local information of the image to obtain the optimal quantitative metrics and
visual quality of the restored images.

Keywords Image restoration · Inverse problem · Alternating direction method
of multipliers · Nonconvex optimization

1 Introduction

With the rapid development of computer technology, images are widely used in each field,
especially in remote sensing and medical imaging. However, the images are usually polluted
by all kinds of noises in the transmission. Due to the poor characteristics of noisy image,
we cannot directly use noisy image in practical image applications (such as image clas-
sification, super-resolution, image enhancement and recognition). Therefore, image noise
removal is an indispensable step in many practical applications, and an active topic in
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computer low-level vision. Formally speaking, image noise removal is an inverse problem
which reconstructs the original image as much as possible from its polluted one, and the
problem has been extensively studied in recent decades [8, 11, 18, 21–23, 25, 34, 39, 41–45,
47, 48, 68, 70]. Image denosing can be modeled as follows,

f = Au + n (1)

Here, u denotes the origin image and Ω is a bounded open domain with a compact Lipschitz
boundary. The observed image f : Ω → R is partitioned into a true image and additive
noise n. A can either be an identity operator or a blurring operator. In practical applications,
two types of noises are often encountered during image transmission and image acquisition:
white Gaussian noise (GN) and impulse noise (IN). Commonly, GN is brought up into
images due to the thermal motion in camera, while IN is generally caused by the damaged
pixels in camera transmission and sensors [6].

In recent decades, various techniques are proposed for image denoising, such as the
methods in [63, 71, 74] for GN, the methods for IN removal [41, 44, 68, 70], and Poisson
noise [28, 73]. Although those algorithms have powerful accomplishment for single noise
reduction, they don’t perform well in mixed noise denoising because different noises have
different distributions.

In most previous works, Maximum a posteriori (MAP) estimation approach is often used
for image denosing algorithms. We can formalize the problem as follows,

û = argmax
u

p (u|f ) (2)

Here, the observed image f (x), and the original image u(x) are two random variables for
each x ∈ Ω . Therefore, we can apply Bayes rule, and then obtain,

û = argmax
u

p (u|f )

= argmax
u

p (f |u) p (u)

p (f )

= argmin
u

− log (f |u) − log (u)

= argmin
u

−
∫

Ω

logp (f (x) |u (x))dx − logp (u) (3)

Normally, the first term captures the noise-data distribution which is often called data
fidelity term, and the second term denotes the prior information of origin image which is
usually named regular term. In practical applications, the L2-norm is used to fit the GN
distribution, and L1-norm data fidelity term is employed to simulate IN distribution, respec-
tively [41, 44, 63, 68, 70, 71, 74]. Consequently, based on Bayes method, GN can be
removed successfully by solving the following optimization problem,

û = argmin
u

‖f − u‖22 + λR(u) (4)

here, f ∈ RN , u ∈ RN , λ, and R(u) refer to noisy image, clean image, weight parame-
ter, and the regularization term, respectively. Similarly, IN can be removed by solving the
following minimization problem,

û = argmin
u

{‖f − Au‖1 + λR (u)
}

(5)
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With the above derivations for the GN or IN image, now we can derive a model that links
both types of noises. If we set up a multi-noise likelihood, according to Bayes’ Theorem,
and then we can obtain,

û = argmin
u

{
μ1 ‖f − u‖22 + μ2‖f − Au‖1 + λR (u)

}
(6)

here, μ1 and μ2 are also weight parameters.
Minimization problem (6) is a template of many variational optimization models. And

in the past years, the variational optimization model for image processing is an active topic
in computer vision all the time. Those models mainly consist of two parts: data-fidelity
and regularization term. Regularization term can maintain the smoothness of the objective
function and recover a clean image with sharp edges and fine image detail information.
Model with regularization term is also called variational regularization [62], which have
been applied to both statistical learning and variational workframe problems [4, 26, 30–32,
46], and if it is a convex regularization model, a unique solution of optimization problem
exists. However, if it is a nonconvex regularization one, the solution of optimization problem
is not necessarily unique. Recently, nonconvex regularization has become a popular method
because it can restore high-quality images with well-kept detail information of local charac-
teristics and edges. Therefore, Some sholars explored the theoretical solution and numerical
solution in [53], [31, 32, 50, 55, 59], respectively. Since the nonconvex and nonsmooth
regularization is a powerful method, there is still exploration space for improvement of per-
formance in computer vison, especially for image noise reduction. Subsequently, in this
paper, we introduce an efficient image mixed noised removal algorithm with multi-fidelity
terms based on nonsmooth and nonconvex optimization.

Although a theoretical solution to the minimization problem with a nonconvex and non-
smooth regularization has not yet been proposed, many numerical algorithms, such as
iteratively reweighted least squares algorithms [19, 31, 54, 66], half-quadratic algorithms
[2, 14, 65], and graduated nonconvexity algorithms (GNC) [5, 55, 56], have been proposed.
However, the GNCmethod, which accommodates the minimizer of nonsmooth and noncon-
vex potentials, requires considerable computational time. The iteratively reweighted (IR)
method [15] was proposed to track the sparsity properties of the regularization comprehen-
sive sensing problems, which has been introduced to process the image restoration problems
[35, 57]. In consequence, in this paper, a nonsmooth and nonconvex regularization method
is used to solve the image restoration problem. Meanwhile, due to the nonconvex regular-
ization, we adopt a multistage nonconvex relaxation method [72] that gave a more better
solution than the standard convex relaxation solution.

Apart from variational optimization models, the most often-used mixed noise removal
approaches are based on the “detecting then filtering” strategy. Trilateral filter [29] com-
bined a gradient bilateral filter and an intensity bilateral filter with a pyramidbased method
to limit filter window. Nonlocal mean (NLM) [8, 9] filter averages all pixels in the image
to remove image noise and the filter can also be set as a regular term in variational opti-
mization models. Recently, with development of compressive sensing technology, sparse
representation has become a powerful tool in various computer vision assignments. Some
scientific researchers used the detection trick for mixed noise removal based on the sparse
representation model. Tao et al. [64] have done a lot of precious works, and they used a
powerful manifold ranking and optimization algorithm-based matrix factorization method
for the saliency detection.

With the widespred appllication of deep learning, several discriminative learning meth-
ods have been developed to learning image prior models in the context of truncated inference
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procedure. For example, Chen et al. [16, 17, 27] proposed a trainable nonlinear reaction dif-
fusion model, which learnt a modified fields of experts [61] image prior by unfolding a fixed
number of gradient descent inference steps. And He et al. [37] proposed a pulse-coupled
neural network (PCNN)-based algorithm to underwater image enhancement scheme for
robotic visual systems. The experimental results shown that the enhanced result improved
the color and contrast of the source image and enhanced the details and edges of darker
regions, which made a great contribution for deep-sea exploration tasks.

In this paper, we propose an efficient mixed GN and IN removal approach based on
the L1 and L2 data-fidelity terms. Moreover, we also introduce a nonsmooth and noncon-
vex regularization term for solving the image restoration problem. Additionally, we use
the multistage convex relaxation method in order to deal with the nonconvex regulariza-
tion, which provides a good performance solution. Experimental results of simulated noisy
images illustrate that our method outperforms current state-of-the-art mixed-noise removal
methods.

2 Preliminaries

2.1 Alternating directionmethod of multipliers

In this subsection, the theories underpinning the proposed image mixed noise removal algo-
rithm are introduced. Firstly, the Alternating direction method of multipliers (ADMM)
will be explained. Therefore, now we consider the following structured constrained convex
optimization problem, called the Alternating Direction Method [7, 26, 36],

min
x∈X,y∈Y

{θ1 (x) + θ2 (y) |Ax + By = b, x ∈ X, y ∈ Y } (7)

here, θ1 (x) : Rn1 → R, θ2 (x) : Rn2 → R are convex functions (but not necessary smooth).
A ∈ Rm×n1 , B ∈ Rm×n2 and b ∈ Rm, X ∈ Rn1 , and Y ∈ Rn2 are given closed convex sets.
Let λ be the Lagrangian multiplier for the linear constraints Ax + By = b in (7). Then, the
augmented Lagrangian function is as follows,

L (x, y, λ) = argmin

{
θ1 (x) + θ2 (y) − (

λk
)T

(Ax + By − b)

+β
2 ‖Ax + By − b‖22

∣∣∣∣ x ∈ X

y ∈ Y

}
(8)

which is defined onX×Y ×Rm. Thirdly, let (x∗, y∗, z∗) be a saddle point of the Lagrangian
function. So, (x∗, y∗, z∗) ∈ Ω , and it satisfies,

⎧⎨
⎩

θ1 (x) − θ1 (x∗) + (x − x∗)T
(−AT λ∗) ≥ 0

θ2 (y) − θ2 (y∗) + (y − y∗)T
(−BT λ∗) ≥ 0

(λ − λ∗)T (Ax∗ + By∗ − b) ≥ 0
, ∀ (x, y, λ) ∈ Ω (9)

here, Ω = X × Y × Rm. By defining

u =
(

x

y

)
, w =

⎛
⎝ x

y

λ

⎞
⎠ , F (w) =

⎛
⎝ −AT λ

−BT λ

Ax + By − b

⎞
⎠ (10)

and θ (u) = θ1 (x)+θ2 (y). The first-order optimal condition (9) can be written in a compact
form as,

w∗ ∈ Ω, θ (u) − θ
(
u∗)+ (

w − w∗)T F
(
w∗) ≥ 0, ∀w ∈ Ω (11)
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Note that the mapping F is monotone. We use Ω∗ to denote the solution set of the
variational inequality (11). For convenience, we use the notations, namely,

v =
(

y

x

)
, V ∗ = {(

x∗, y∗) ∣∣(x∗, y∗, λ∗) ∈ Ω
}

(12)

For a given λk , uk+1 = (
xk+1, yk+1

)
is the solution of the following problem,

(
xk+1, yk+1

)
= argmin

⎧⎨
⎩

θ1 (x) + θ2 (y)

−(λk
)T

(Ax + By − b)

+β
2 ‖Ax + By − b‖22

∣∣∣∣ x ∈ X

y ∈ Y

⎫⎬
⎭ (13)

The multiplier update is defined by,

λk+1 = λk − β
(
Axk+1 + Byk+1 − b

)
(14)

For a given
(
yk, λk

)
, xk+1 is the solution of the following problem,

xk+1 =
{

θ1 (x) − (
λk
)T (

Ax + Byk − b
)

+ β
2

∥∥Ax + Byk − b
∥∥2
2

}
(15)

Using operator separation technique for λk , xk+1, and yk+1 respectively, we have the
solution of the following problem,

yk+1 =
{

θ2 (y) − (
λk
)T (

Axk+1 + By − b
)

+ β
2

∥∥Axk+1 + By − b
∥∥2
2

}
(16)

and
λk+1 = λk − β

(
Axk+1 + Byk+1 − b

)
(17)

Note that (15) and (16) are equivalent to (18) and (19), respectively.

xk+1 =
{

θ1 (x) + β

2

∥∥∥∥
(
Ax + Byk − b

)
− 1

β
λk

∥∥∥∥
2

2

}
(18)

yk+1 =
{

θ2 (y) + β

2

∥∥∥∥
(
Axk+1 + By − b

)
− 1

β
λk

∥∥∥∥
2

2

}
(19)

2.2 Themulti-stage convex relaxationmethod

In this subsection, because the multistage convex relaxation method will be used, so we first
introduce it as following. From the multi-stage convex relaxation method first proposed in
[72], we have the following optimization problem,

ŵ = argmin
w∈Rd

{
g (w) = g0 (w) +

I∑
i=1

gi (w)

}
(20)

where g0 (w) is convex in w and each gi (w) is nonconvex. The convex/concave duality that
was first defined in [72] can solve this optimization problem efficiently.

Let hi (w) : Rd → Ωi ⊂ Rdi be a vector function with range Ωi , and assume that there
is a function ḡi , which is defined on Ωi , such that,

gi (w) = ḡ (hi (w)) (21)
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Suppose that exists hi such that the function ḡi (zi) is concave on zi ∈ Ωi . Then, the
function gi (w) can be rewritten as,

gi (w) = min
vi∈Rdi

{
vT
i hi (w) + g∗

i (vi)
}

(22)

Using the concave duality [60], if g∗
i (vi) is the concave dual of ḡi (zi), we define,

g∗
i (vi) = min

zi∈Ωi

[
−vT

i zi + ḡi (zi)
]

(23)

The minimum of (22) can be obtained by solving the following equation,

V̂i = ∇zḡi (z) |z = hi (w) (24)

Secondly, we present a simple convex relaxation of (20),

ŵ = argmin
w∈Rd

{
g0 (w) +

I∑
i=1

gi(w)T vi

}
(25)

Therefore, we can summarize the multistage convex relation algorithm as Algorithm 1.

3 The related work

Numerous previous methods have been developed for image denoising in the past decades,
and most of these works can be classified as two types methods, namely, deep learning
Neural Network based method and regularization optimization based method.

3.1 Deep neural networks for image denoising

Several deep neural networks have been attempted to handle image noise reduction and
image enhancement. Scientific scholars used sparse representation (SR) to deal with various
image computer vision and image processing assignments in the past few years. In [69], the
authors used sparse denoising auto-encoders technique to handle GN removal and obtained
satisfactory results compared to K-SVD [25]. The multilayer perceptron (MLP) was victo-
riously used for image noise reduction in [10]. Convolutional neural networks (CNNs) for
image noise removal has been used by Kingma and Ba [40], which have achieved compa-
rable results. In [16] a trainable nonlinear reaction diffusion (TNRD) model was proposed
which can be expressed as a feed-forward deep network by unfolding a fixed number of
gradient descent inference steps. In [27] a trainable nonlinear reaction diffusion (TNRD)
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model for passion noise is proposed and achieves promising performance. In [37] pulse-
coupled neural network (PCNN)-based image enhancement and color transfer algorithms
are combined to enhance the underwater image, which make some contribution for deep-sea
exploration businesses. Kai Zhang and Lei Zhang et. [75] used residual learning and batch
normalization to speed up the training process as well as boost the denoising performance.
To the best of our knowledge, it remains uninvestigated to develop CNN for general image
denoising.

3.2 Regularization optimization for image noise reduction

Traditional regularization optimization is still an active method in image processing and
computer vision tasks, and most of these works use different regularization terms about the
prior information to constraint image u. If an observed image u is corrupted with GN only,
the noise distribution can be fitted successfully by the L2-norm of the data fidelity term,
thus we can solve the following optimization problem to remove advantageously the GN,

û = argmin
u

‖f − u‖22 + R (u) (26)

here, R (u) is a regular function. If we formulate the Gaussian model as a MAP estimation,
we can obtain the following general form,

û = argmin
u

‖f − u‖22 + p (u) (27)

here, p (u) = R (u). Usually, we assume that u follows a Gibbs prior [3],

p (u) = exp

⎛
⎝−γ

∫

Ω

φ (u (x))

⎞
⎠ dx (28)

here, φ is a nonnegative function. Let φ (u (x)) = ‖∇u (x)‖1, ∇u (x) = (∇xu, ∇yu
)
is the

gradient of u, and ‖∇u (x)‖1 is the total variation (TV) of u in [62].
The TV-L1 model [13] is obtained as a variant of the ROF model by replacing the

squared-norm in the data fidelity term by the robust-norm. Although this was only a slight
change, the TV-L1 model has some potential advantages over the ROF model. For example,
1) the TV-L1 model contrasts in variant; and 2) the TV-L1 model is much more effective in
removing strong impulse noise (e.g., salt- and pepper noise). Because the Mumford-Shah
(MS) model [49] is non-convex, therefore, it is difficult to solve the functional minimizer. To
explore the true implicit solution of the MS function, Cai et al. [12] proposed the following
equivalence model,

û = argmin
u

{γ1

2
‖f − Au‖22 + α

2
‖∇u (x)‖22 + ‖∇u (x)‖1

}
(29)

here, γ1 and α are positive weight parameters.
Because the TV-L1 model is more effective than the MS model at removing strong

impulse noise (e.g., salt-and pepper noise), the L1-data fidelity term ‖f − Au‖1 plays an
important role in the processing. The L1 data fidelity term has been extensively studied in
[1, 51, 52]. Some researchers proposed the following model which is based on the TV-L1
model to remove strong impulse noise.

û = argmin
u

{γ1

2
‖f − Au‖1 + α

2
‖∇u (x)‖22 + ‖∇u (x)‖1

}
(30)
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To remove both GN and IN [38], a combined L1-L2 data fidelity terms were suggested
by Shi, who combined (28) and (29) to obtain [43].

û = argmin
u

{ γ1
2 ‖f − Au‖1 + γ2

2 ‖f − Au‖22
+ α

2 ‖∇u (x)‖22 + ‖∇u (x)‖1
}

(31)

here, α > 0, γ1 ≥ 0, and γ2 ≥ 0 are parameters that balance the data fidelity terms and the
regularization terms.

Currently, the patch-based nonlocal low rank regularization was shown to have better
performance than the nuclear norm regularization in image reconstruction [22, 24, 34,
39, 41, 42]. Because the rank minimization problem is the key subproblem in patch-based
nonlocal rank regularization methods, and it can be approximately solved by minimizing
the following optimization problem [24].

E (u, ε) = log (u + εI) (32)

here, u ∈ Rn×n is a symmetric positive semidefinite matrix, I is the identity matrix. In [58],
Osher et al. proposed a novel low dimensional manifold model (LDMM), not only applied
it to image noise reduction, but also achieved successful accomplishment. Tao et al. [64]
used Manifold Ranking-Based Matrix Factorization (MRMF) for Saliency Detection. In the
paper, they proved that the MRMF has good generalizability, and developed an efficient
optimization algorithm based on the Nesterov method for Saliency Detection.

4 Proposed nonconvex image denoisingmodel and algorithms

Based on the Shi-Model [43], we propose the following image denosing model,

û = argmin
u

{ γ1
2 ‖f − Au‖1 + γ2

2 ‖f − Au‖22
+ α

2 ‖∇u (x)‖22 + p (u)

}
(33)

Using the Gibbs prior p (u) = exp

(
−γ

∫
Ω

φ (u (x))

)
dx, Shi let φ (u (x)) = ‖∇u (x)‖1,

which resulted in [16]. To improve the image denoising effect, we define the Gibbs prior
nonconvex regularizer as

∫
φ (|∇u|)dx, here, φ is a nonconvex function, namely,
{

φ1 (|t |) = |t |p
1+ρ|t |p

φ2 (|t |) = 1
ρ
log

(
1 + ρ|t |p) (34)

for p ≥ 1.
Enven though the existence and uniqueness of solution of nonconvex regularizing opti-

mization is still an open problem, which can preserve the more detail information of
image during image processing. Therefore, we propose the following model (based on the
Shi-model),

û = argmin
u

{
λ‖f − Au‖1 + μ

2 ‖f − Au‖22
+α

2 ‖∇u (x)‖22 + ∫
Ω

φ (|∇u|) dx

}
(35)

here, the Gibbs prior p (u) = exp

(
−γ

∫
Ω

φ (u (x))

)
dx = ∫

φ (|∇u|)dx, and φ is the

nonconvex function defined in (34).
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In the following subsections, we present the optimization algorithm to solve the proposed
model (35), which is based on a variable splitting technique [67]. To deal with the nonconvex
regularizer, a multistage convex relaxation method is used.

We exploit the algorithmic framework of the variable splitting technique [67] to solve
the unconstrained problem was described by (35). To obtain variable splitting, we introduce
the auxiliary variables h and d under the constraints h = f − Au, ∇u = d subject to⎧⎪⎪⎨

⎪⎪⎩
min
u,h,d

⎧⎨
⎩

∫
Ω

|h| dx + μ
2

∫
Ω

|f − Au|2dx

+ α
2 ‖∇u‖22 + ∫

Ω

φ (|d|) dx

⎫⎬
⎭

s.t .h = f − Au,∇u = d

(36)

Next, we exploit the algorithmic framework of the Split Bregman Iteration Method
(SBIM) [33] to solve (36). The additional details of the SBIM algorithm are as follows,

(
uk+1, hk+1, dk+1

)
= argmin

u,d,h

{
F (h, d) + γ1

2

∥∥h − (f − Au) − bk
1

∥∥2
2

+ γ2
2

∥∥d − ∇u − bk
2

∥∥2
2

}
(37)

bk+1
1 = bk

1 +
(
f − Auk+1

)
− hk+1 (38)

bk+1
2 = bk

2 + ∇uk+1 − dk+1 (39)

here,

F (h, d) =
⎛
⎝

λ
∫
Ω

|h| dx + μ
2

∫
Ω

|f − Au|2dx

+ α
2 ‖∇u‖22 + ∫

Ω

φ (|d|) dx

⎞
⎠ (40)

To solve the minimization problem (37), an alternative iteration algorithm is used.
Specifically, the solution of minimization problem

(
uk+1, hk+1, dk+1

)
are defined as

follows,

uk+1 ∈ argmin
u

⎧⎪⎨
⎪⎩

μ
2 ‖f − Au‖22 + α

2 ‖∇u‖22
+ γ1

2

∥∥h − (f − Au) − bk
1

∥∥2
2

+ γ2
2

∥∥dk − ∇u − bk
2

∥∥2
2

⎫⎪⎬
⎪⎭ (41)

hk+1 ∈ argmin
h

⎧⎨
⎩λ

∫

Ω

|h| dx + γ1

2

∥∥∥h − (f − Au) −bk
1

∥∥∥2
2

⎫⎬
⎭ (42)

dk+1 ∈ argmin
d

⎧⎨
⎩
∫

Ω

φ (|d|) dx + γ2

2

∥∥∥dk − ∇u − bk
2

∥∥∥2
2

⎫⎬
⎭ (43)

It is noteworthy that the alternative (SBIM) is equivalent to the alternative ADMM [7]
when φ is convex.

4.1 u-subproblem

Due to (41), the optimal value of uk+1 must satisfy the following Euler-Lagrange equation,
[
(μ + γ1) AT Au − (α + γ2) �

]
u =

(
μAT f + γ1A

T
(
f + bk

1 − hk
)

− γ2div
(
dk − bk

2

)
)

(44)

We can use the Gauss-Seidel method to solve this equation as in [3]. Equation (44) may
also be solved efficiently in the discrete Fourier domain if we assume periodic boundary
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conditions. If we define F (u) as the Fourier transform of u, the close-form solution of (44)
can be written as follows,

u = F−1

⎛
⎜⎜⎝

μF
(
AT f

)+ γ1F
[
AT

(
f + bk

1 − hk
)]

−γ2F
(
div

(
dk − bk

2

))
(μ + γ1) AT A − (α + γ2)F (�)

⎞
⎟⎟⎠ (45)

4.2 h-subproblem

Similarly, due to the minimization problem of (42), and we can get its approximate solution
by the following shrinkage operator,

hk+1 = shrink

(
f + bk

1 − Auk+1,
λ

γ1

)
(46)

here, shrink (s, t) is the shrinkage operator [67], and which was defined at each point α ∈
[0, 1]2 by

shrink (sα, tα) = sα

|sα| max (|sα| − tα, 0) (47)

4.3 d-subproblem

Moreover, resembling to the u-subproblem, we can obtain dk+1 by solving the following
nonconvex minimization problem,

min
d

{∫
φ (|d|) dx + γ2

2
‖d − s‖22

}
(48)

here, φ is the nonconvex regularizer in (36), and s = ∇uk+1 + bk
2. To handle the non-

convex term, we apply the multistage convex relaxation technique, which was described
above.Consequently, we directly use the result in [3]. Specifically, the solution of (48) can
be easily obtained as follows,

dk+1 ∈ argmin
d

⎧⎨
⎩
∫

Ω

vk+1,l |d| dx + γ2

2
‖d − s‖22

⎫⎬
⎭ (49)

dk+1,l+1 = shrink

(
s,

vk+1,l

γ

)
(50)

v
k+1,l+1
1 = 1(

1 + ρ
∣∣dk+1,l+1

∣∣)2 f or φ = φ1 (51)

In this paper, we decompose the difficult optimization problem (37) into three sub-
problems (the u, h, and d-subproblems) based on the SBIM. In addition, all the sub-
problems have fast and accurate techniques for obtaining the solutions. For example,
the u-subproblem can be solved efficiently by using the FFT technique or Gauss-Seidel
iteration method. Furthermore, the h-subproblem and d-subproblem can be resolved suc-
cessfully through applying the shrinkage operator. Eventually, the optimization procedure
is summarized in Algorithm 2.
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5 Experimental results

In this section, we present the results of our application of a nonconvex and nonsmooth
mixed noise removal algorithm to the image restoration problem. Firstly, we employ a
genetic algorithm aims to select the optimal parameters of the model. Secondly, we compare
the noise removal effects of other models on multiple different levels noise images.

Because the proposed model with regularizer is nonconvex and nonsmooth, therefore,
we could not give analysis convergence of the algorithm with an increasing number of
iteration steps (Fig. 1b). Accordingly, we use the number of iterations of the algorithm as
our termination condition. Additionally, we calculate the relationship between the number
of algorithm iteration steps and the optimal ISNR on 100 images and chose to terminate
with 16 iterations (Fig. 1a).

Moreover, we compare the models TVL1 [13], LRTM [20] and SHI [43] by applying
them to several images, e.g., Parrots, Monarch, Boats, Cameraman, House and Lena
(Fig. 2). Furthermore, we compare the models’ ISNR and PSNR values after the image
was denoised. The peak signal to noise ratio (PSNR) and improvement signal to noise ratio
(ISNR) were chosen as the quantitative measures of image quality.

We utilize the improvement in the signal-to-noise ratio (ISNR) and the Peak Signal to
Noise Ratio (PSNR) to evaluate the effectiveness of all methods for removing the noise, and
the two metrics can be defined as follows,

ISNR
(
u∗, û, ũ

) = 10log10

(∑
(u∗ − ũ)2∑(
u∗ − û

)2
)

PSNR
(
u∗, û

) = 10log10

(
2552mn∥∥u∗ − û

∥∥2
2

)

here, u∗ ∈ Rm×n is the clean image, û ∈ Rm×n is the restored image, and ũ ∈ Rm×n is the
contaminated image. Note that a high value (ISNR and PSNR) indicates a better restored
result.
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Fig. 1 a The relationship between the number of algorithm iteration steps and frequency of convergence;
b The relationship between the number of algorithm iteration steps and the optimal ISNR on 100 images

5.1 Parameter selection

There are a total of 5 required parameters in our algorithm, and there are two methods with
which to select them. In the first method, the parameters were chosen by their experience.
In the second method, one fixes the values of one or more of the parameters and varies the
values of other parameters. We used a genetic algorithm to find the best parameters. In the
proposed model, the parameters (a, b, c, and d) should be satisfied the following conditions,
namely, a > 0, b < 0, and d > 0. Our goal is to choose one of the best points in the
parameter space. Therefore, we chose our parameters to maximize the average of the ISNR
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a b c

d e f

Fig. 2 The six classic Ground Truth (a–f): a is the Parrot, b is the Monarch, c is the Boat, d is the Cameraman,
e is the House, f is the Lena

and PSNR values on the training set P , and such that the objective function of the genetic
algorithm is defined by,

⎧⎪⎪⎨
⎪⎪⎩

O (a, b, c, d) = ∑
p∈P

ISNR (M (p|a, b, c, d))

O (a, b, c, d) = ∑
p∈P

PSNR (M (p|a, b, c, d))

P = {p1, p2, p3, p4, ..., pn}
(52)

here, pi is an image in training set, and a, b, c, and d are the model parameters that need
to be selected. M represents the proposed model, and O is the objective function of genetic
algorithm.

In the genetic algorithm, the number of chromosomes is 20, the heritability is 0.85, and
the number of reproduction generation is 400. The following figure is the result of the
parameter selection with 0.1 Gauss noise (Fig. 3).

According to the result of the operation, we choose the optimal parameters as follows,
a = 0.01, b = 0.20,... It needs to be explained that in the following experiments, we used
this same method to select the optimal parameters for different types of noise.

5.2 Comparison of pure noise experiments

In this subsection, we compare the denoising effects of the different models on pure noise
images. Moreover, we compare Gauss noise with salt and pepper noise with the noise lev-
els set at 0.01, 0.1, and 0.4, respectively. The denoising ISNR and PSNR results of the four
models for different images are shown in Tables 1 and 2. The GN0.01 denoising visualiza-
tion effect of Parrots, Monarch, Boats, Cameraman, House and Lena have been shown
in Fig. 4. And The SP0.1 denoising visualization effect has been shown in Fig. 5.
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Table 1 The denoising ISNR and PSNR results of the four models for different images with GN

Images Methods GN0.01 GN0.1 GN0.4

ISNR|PSNR|TIME ISNR|PSNR|TIME ISNR|PSNR|TIME

parrots ours 8.31|76.61|1.77 2.4|67.96|1.97 0.19|58.04|2.02
SHI model [43] 8.09|76.38|10.14 2.27|67.82|8.89 0.06|56.95|7.67
TVL1 [13] 5.02|73.32|8.67 1.45|67|8.91 −0.14|56.2|6.34
LRTM [20] 7.08|75.37|9.14 2.34|67.94|8.94 0.15|57.22|9.19

monarch ours 7.49|75.68|1.8 2.31|67.59|1.81 0.18|56.93|1.77
SHI model [43] 7.17|75.36|9.91 2.2|67.48|9.13 0.04|56.72|7.88
TVL1 [13] 4.69|72.87|8.05 1.68|66.96|6.88 −0.14|56.31|5.31
LRTM [20] 6.32|74.47|8.98 2.21|67.47|8.88 0.12|56.76|8.83

boats ours 7.59|75.8|1.77 2.31|67.5|1.72 0.13|57.22|1.75
SHI model [43] 7.38|75.58|9.56 2.26|67.46|8.42 −0.09|55.93|8.17
TVL1 [13] 5.24|73.44|6.97 1.78|66.97|7.22 −0.41|55.74|5.72
LRTM [20] 6.49|74.68|9.23 2.36|67.54|8.92 0.11|56.98|8.8

cameraman ours 7.04|75.41|1.64 2.28|67.48|1.91 0.13|57.11|1.83
SHI model [43] 6.6|74.98|9.95 2.18|67.38|8.88 −0.05|56.72|7.59
TVL1 [13] 3.9|72.28|9.8 1.61|66.82|8.63 −0.28|56.51|8.55
LRTM [20] 6|74.39|9.13 2.27|67.46|8.63 0.12|56.92|8.56

house ours 9.71|77.9|1.81 2.56|67.83|1.7 0.17|57.31|1.91
SHI model [43] 9.66|77.84|9.19 2.51|67.79|9.08 0.05|57.15|6.61
TVL1 [13] 8.28|76.47|9.86 2.3|67.57|8.8 −0.08|57.03|7.7
LRTM [20] 8.11|76.27|9.34 2.53|67.84|8.89 0.17|57.25|8.58

Lena ours 7.82|75.99|1.84 2.36|67.59|1.66 0.15|56.84|1.75
SHI model [43] 7.63|75.8|9.83 2.31|67.54|8.81 0.02|56.8|7.89
TVL1 [13] 5.83|74|6.7 1.98|67.21|8.13 -0.19|56.5|7.95
LRTM [20] 6.74|74.91|9.25 2.37|67.61|8.78 0.15|56.82|8.84
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Table 2 The denoising ISNR and PSNR results of the four models for different images with SP noise

Images Methods SP0.01 SP0.1 SP0.4

ISNR|PSNR|TIME ISNR|PSNR|TIME ISNR|PSNR|TIME

parrots ours 13.21|86.57|1.83 18.47|81.75|1.88 17.23|74.56|1.75
SHI model [43] 10.2|83.55|25.19 17.02|80.3|25.03 14.76|72.08|21.03
TVL1 [13] 1.67|75.03|6.14 11.11|74.39|7.3 14.86|72.18|6.88
LRTM [20] 8.52|81.76|9.3 12.8|76.21|9.48 15.49|72.81|9.23

monarch ours 14.93|87.99|1.7 17.33|80.75|1.88 15.85|73.21|1.86
SHI model [43] 11.44|84.5|24.67 15.69|79.11|25.23 13.12|70.48|21.84
TVL1 [13] 3.23|76.29|6.09 11.15|74.57|6.89 13.25|70.61|6.45
LRTM [20] 8.55|82.15|8.7 13.35|76.79|10.11 13.78|71.13|8.98

boats ours 20.91|94.69|1.7 20.07|83.61|1.77 18.35|75.89|1.64
SHI model [43] 12.79|86.57|24.48 17|80.54|22.28 13.98|71.52|21.31
TVL1 [13] 2.94|76.72|7.27 12.33|75.86|7.64 15.48|73.02|7.66
LRTM [20] 9.16|82.5|9.27 14.23|77.7|9.59 15.68|73.21|9.3

cameraman ours 8.06|81.23|1.61 14.81|78.01|1.73 15.01|72.24|1.81
SHI model [43] 5.91|79.07|28.5 13.51|76.71|27.13 13.41|70.65|23.5
TVL1 [13] 0.13|73.3|6.83 9.58|72.78|7.3 13.61|70.84|7.44
LRTM [20] 5.99|78.66|8.73 10.99|74.11|10.02 14|71.22|8.84

house ours 21.54|95.12|1.58 21.56|85.2|1.89 20.41|78|1.86
SHI model [43] 14.22|87.8|24.48 18.96|82.61|26.52 15.11|72.71|21.41
TVL1 [13] 6.78| 80.36|6.06 15.84|79.49|7.53 18.64|76.23|7.38
LRTM [20] 10.66|83.94|8.91 16.56|80.22|9.67 17.73|75.3|9.05

Lena ours 16.79|90.17|1.91 19.62|83.22|1.89 18.34|75.93|1.69
SHI model [43] 11.53|84.91|25.89 17.08|80.68|23.3 14.6|72.19|21.13
TVL1 [13] 3.86|77.24|6.98 12.87|76.47|6.36 15.99|73.58|6.14
LRTM [20] 8.23|81.82|8.98 13.55|77.05|9.55 15.84|73.37|8.92

The results in Tables 1 and 2 illustrate that our proposed model algorithm is superior
to other models in terms of: running time, indices of Gaussian and salt-and-pepper noise
images, and the local visualization quality after restoration.

5.3 Comparison of mixed noise experiments

In this subsection, in order to verify the robustness of the proposed model, we perform an
experimental comparison on images with mixed noise. Where the mixed noise is a mix-
ture of Gaussian noise and salt and pepper noise, the noise levels are GN0.01+SP0.01,
GN0.01+SP0.1, GN0.1+SP0.01, and GN0.1+SP0.1, respectively. The experimental results
are shown in Table 3, and the effective images before and after denoising of the different
models are shown in Fig. 5.
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Fig. 4 Denoising effect of noisy images (GN0.01): The first column is the LRTM, the second column is the
TVL1, the third column is the SHI model, and the fourth column is Ours
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Fig. 5 Denoising effect of noisy images (SP0.1): The first column is the LRTM, the second column is the
TVL1, the third column is the SHI model, and the fourth column is Ours
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Table 3 The denoising ISNR and PSNR results of the four models for different images with MIXED noise

Images Methods GN0.01+SP0.01 GN0.01+SP0.1 GN0.1+SP0.1

ISNR|PSNR|TIME ISNR|PSNR|TIME ISNR|PSNR|TIME

parrots ours 9.04|76.18|2.02 12.67|74.82|1.98 3.04|67.91|1.86
SHI model [43] 7.58|74.72|10.19 10.6|72.75|15.75 2.4|67.27|14.91
TVL1 [13] 6.04|73.18|9.17 10.67|72.83|8.86 2.14|67.01|5.78
LRTM [20] 8.01|75.36|9.3 11.37|73.98|9.17 2.84|67.9|8.64

monarch ours 8.06|75.21|1.88 11.5|73.78|1.81 2.83|67.56|1.73
SHI model [43] 6.98|74.13|9.97 9.78|72.06|15.34 2.25|66.98|14.58
TVL1 [13] 5.65|72.8|6.58 9.62|71.9|7.72 2.2|66.93|8.38
LRTM [20] 7.04|74.26|8.8 9.97|72.62|9.3 2.7|67.47|8.66

boats ours 8.18|75.37|1.83 11.99|74.37|1.83 2.79|67.45|1.78
SHI model [43] 7.26|74.45|9.52 9.97|72.35|16.44 2.37|67.03|14.58
TVL1 [13] 6.21|73.39|8.05 10.5|72.89|8.02 2.32|66.98|6.59
LRTM [20] 7.35|74.56|9.16 10.52|73.35|9.08 2.75|67.48|8.88

cameraman ours 7.84|75|1.75 11.26|73.46|1.81 2.76|67.39|1.77
SHI model [43] 6.41|73.57|9.83 9.71|71.91|16.22 2.32|66.96|14.8
TVL1 [13] 4.95|72.11|9.3 9.55|71.75|8.92 2.12|66.76|8.05
LRTM [20] 6.8|74.12|9.08 10.22|72.8|9.34 2.73|67.43|8.81

house ours 10.26|77.36|1.75 13.79|76.32|1.94 3.06|67.82|1.69
SHI model [43] 8.92|76.02|9.08 10.72|73.25|14.88 2.44|67.2|14.95
TVL1 [13] 9.22|76.32|9.22 13.58|76.11|10.55 2.81|67.57|9.05
LRTM [20] 8.76|75.97|8.95 11.85|74.73|9.28 2.97|67.83|8.69

Lena ours 8.56|75.58|1.63 12.12|74.51|1.75 2.88|67.55|1.78
SHI model [43] 7.52|74.54|9.84 10.07|72.46|17.06 2.4|67.07|15.05
TVL1 [13] 6.9|73.92|8.28 11.01|73.4|6.61 2.52|67.19|6.98
LRTM [20] 7.63|74.75|9.13 10.81|73.7|8.98 2.82|67.55|8.95

It can be seen from Table 3 that the proposed model algorithm is superior to the other
three models in terms of running time and indexes on images with mixed noise, and the
quality of local visualization after restoration is better than that of other models (Fig. 6).

6 Conclusion

In this paper, we proposed a nonconvex and nonsmooth regular image mixed noise removal
algorithm based on the Shi model by solving the nonconvex minimization problem. we use
the multistage nonconvex relaxation technique, which aims to deal with the nonconvex term.
Furthermore, we employ a genetic algorithm to select the optimal parameters for the model
and set the number of iteration steps as the termination condition for the algorithm. Several,
experiments on different images with different noise levels illustrate that the model’s robust-
ness, running time, ISNR and PSNR are better than the other three models. Additionally,
our algorithm can maintain the local information of the images with better visual quality.
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Fig. 6 Denoising effect of noisy images (GN0.01+SP0.01): The first column is the LRTM, the second
column is the TVL1, the third column is the SHI model, and the fourth column is Ours
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14. Charbonnier P, Blanc-Féraud L, Aubert G, Barlaud M (1997) Deterministic edge-preserving regulariza-
tion in computed imaging. IEEE Trans Image Process 6(2):298–311

15. Chartrand R, Yin W (2008) Iterative reweighted algorithms for compressive sensing. Tech. Rep.
16. Chen Y, Pock T (2017) Trainable nonlinear reaction diffusion: a flexible framework for fast and effective

image restoration. IEEE Trans Pattern Anal Mach Intell 39(6):1256–1272
17. Chen Y, Yu W, Pock T (2015) On learning optimized reaction diffusion processes for effective

image restoration. In: Proceedings of the IEEE conference on computer vision and pattern recognition,
pp 5261–5269

18. Dabov K, Foi A, Katkovnik V, Egiazarian K (2007) Image denoising by sparse 3-d transform-domain
collaborative filtering. IEEE Trans Image Process 16(8):2080–2095
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