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Abstract
The main objective of the image enhancement is to improve the visual appearance or quality of
an image. In this paper, the proposed scheme aims to improve the performance of the
homomorphic filtering by employing the fractional derivatives with Discrete Fourier Trans-
form (DFT) and Fractional Fourier Transform (FrFT). FrFT in combination with fractional
derivative provides two fractional orders as extra degrees of freedom, thus, providing more
design flexibility. This paper uses Grunwald-Letnikov (GL) fractional derivative to enhance
the high and mid frequency components non-linearly while preserving the low frequency
components. In the proposed approach, modification of homomorphic filtering technique is
done on the basis of fractional derivative and FrFT to enhance the low contrast and non-
uniformly illuminated images. The effectiveness of the proposed work is evaluated on the
basis of various image assessment parameters such as PSNR, information entropy, universal
image quality index, etc. on several images of different sizes. The proposed scheme outper-
forms the existing state-of-the-art techniques by providing better image visual quality and
image information in terms of average PSNR and entropy values. The improvement in the
average PSNR and information entropy is in the range 0.2635–50.37 dB and 0.02–42%
respectively for standard images as well as for images with different contrast and illumination
conditions.
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1 Introduction

In today’s era, there is requirement of the image acquisition devices to capture the images for
various practical applications ranging from medical to surveillance [11, 14]. But, sometimes
captured images are not suitable for processing due to improper imaging conditions like non-
uniform illumination, luminescence level etc. Since, illumination is crucial to improve the
optimum image quality, so, there is need of enhancement for non-uniformly illuminated images.

Several image enhancement techniques exist to improve the quality of images in terms of
both visual appearance and quantitativemeasures [1, 4, 13, 20, 35, 36, 50, 51]. These are further
divided into the spatial and frequency domain techniques. In spatial domain techniques, the
operation is performed directly on the pixels while in frequency domain techniques, the image
is transformed into the frequency domain before applying any operation on the image [11, 14].
The transformation has been done using the Discrete Fourier Transform (DFT), Wavelet
Transform (WT), Discrete Cosine Transform (DCT), Fractional Fourier Transform (FrFT),
Discrete Fractional Cosine Transform (DFrCT), Linear Canonical Transform (LCT) etc. [2, 10,
11, 14, 15, 28, 33, 37]. There are various image enhancement techniques for low contrast and
non-uniformly illuminated images such as Histogram Equalization (HE), Single Scale Retinex
(SSR), Multi Scale Retinex (MSR), Homomorphic Filtering (HF), Linear Contrast Adjustment
(LCA), Contrast Limited Adaptive Histogram Equalization (CLAHE) etc. [4, 11, 14, 50, 51].
Moreover, the issue of non-uniform illumination can be resolved by using the frequency
domain technique such as Homomorphic Filtering (HF). In addition to image enhancement, it
also sharpens the edges of the image. It is applied in various applications such as medical
images, underwater images, face recognition etc. [1, 7, 13, 16, 19, 27, 29, 31, 35, 36, 45, 47].

Sheet et al. [35] modified the Brightness PreservingDynamic HistogramEqualization (BPDHE)
technique by computing the fuzzy histogram to perform smoothing before dividing the image into
sub-histograms. It increases the ability of technique to preserve brightness and contrast enhancement
with additional advantage of less computation time in comparison to BPDHE [13]. Median-Mean
Based Sub-Image-Clipped Histogram Equalization (MMSICHE) preserves images. But, these
methods can be used only for images with substantial peaks in the histogram. So, HF has been
introduced for the enhancement of non-uniformly illuminated images. In [45], Tseng and Lee used
image fusion in addition to the DCT based HF to combine the various enhanced images having
different exposures to get the final output image. In [19], Lee and Tseng presented a DCT based
matrix homomorphic filtering technique on the grayscale and color images.

Nowadays, image enhancement is mostly done with the fractional derivatives because they
are able to enhance the low frequency details in smooth areas and sharpen the high frequency
details. Thus, fractional derivatives have been used in various signal and image processing
applications [3, 5, 8, 9, 12, 17, 18, 21, 30, 38, 39]. In [30], YiFeiPU−2 is considered to be better
among the six fractional derivative masks and algorithms analyzed by Pu et al. for the texture
enhancement on the basis of error analysis. Garg and Singh [9] improved GL based fractional
differential operator for enhancing the textural information of an image that depends on the
intensity factor and order of fractional operator. Besides, some recent works such as [40, 41] on
image enhancement are based on Deep Neural Networks (DNNs). Actually, the image en-
hancement techniques based on fractional derivatives by using Deep Neural Network (DNN) is
still not common in the existing literature. Moreover, the existing literature does not provide a
comparison between DNN based image enhancement methods and fractional derivative based
image enhancement methods. This may be due to the fact that the DNN approaches are
designed for different scenarios. For instance, DNN methods are useful, when we need to deal
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with very large datasets with a large number of features and complex classification, thereby
increasing the computation cost or execution time. Moreover, most of the existing recent image
enhancement techniques such as [5, 12] are based on this concept. Therefore, in this paper, the
proposed scheme is evaluated by considering most of the recent image enhancement methods
based on fractional derivatives in order to make the comparison feasible.

In [19, 45] DCT has been used for the transformation of image into the frequency domain in
HF. Although, DCT provides more accumulation of energy as compared to other transforms. But,
it is unable to extract the local spectral features. In this paper, two techniques are presented for
enhancement of the low contrast and non-uniformly illuminated images as well as sharpening of
the edges. The first technique employs the fractional derivative (GL) instead of high pass filter
while the second technique involves a combination of fractional derivative with FrFT to take the
advantage of two extra degrees of freedom. FrFT is used instead of DCT in the proposed
technique as its energy is also concentrated in the central region [24]. The performance of the
proposed technique is evaluated and compared with other image enhancement techniques on the
basis of various image assessment parameters [1, 11, 35, 36, 45]. The proposed scheme provides
better image visual quality and image information in terms of average PSNR and entropy values.

The paper is organized as follows: Section 2 discussed about the preliminaries used in the
paper. Section 3 depicts the proposed HF technique based on the fractional derivative as well
as the combination of fractional derivative with FrFT. Section 4 discussed the simulated results
of the proposed work and comparison with the existing techniques. The conclusion and future
scope are presented in Section 5.

2 Preliminaries

2.1 Fractional derivative

Fractional Order Calculus (FOC) is a generalization of the integer order calculus. FOC has the
capability to model systems more accurately in comparison to the integer orders. The
commonly used fractional order derivatives are Riemann–Liouville (RL), Grünwald–Letnikov
(GL), Caputo etc. Due to the discrete nature, GL derivative is used in most of the applications.
The GL based derivative of a function z(t) is given as [22, 23]:

cD
ϑ
t z tð Þ ¼ lim

h→0

1

Γ ϑð Þhϑ ∑
t−c
hð Þ

k¼0

Γ ϑþ kð Þ
Γ k þ 1ð Þ z t−khð Þ ð1Þ

where, c and t are lower and upper limits of the integration. Here, ϑ ε R+ (real numbers) such
that m − 1 < ϑ <m, where, m is the operation order (integer). Here, Γ(.) is the Euler’s gamma

function and h is the sampling period, where, t−c
h

� �
is an integer and k ranges from 0 to t−c

h

� �
.

2.2 Fractional Fourier Transform (FrFT)

Fractional Fourier Transform (FrFT) is an important signal processing tool that rotates the signal in
the time-frequency plane by an angle ‘α’ [33]. The FrFT of the signal z(t) is given by [25, 26]:

Zα uαð Þ ¼ ∫∞−∞z tð ÞKα t; uαð Þdt ð2Þ
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where, 0 < |a| < 2, α=aπ/2 and Kα(t, uα) represents the Kernel function defined as:

Kα t; uαð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−i cot α

2 π

r
exp i

t2 þ uα2

2

� �
cot α−i uα t cscα

� �
if α ≠ nπ

δ t−uð Þ if α ¼ 2nπ
δ t þ uð Þ if αþ π ¼ 2nπ

8>><
>>:

ð3Þ

and δ(t) represents the Dirac’s delta function. The signal is restored by taking the FrFTwith the
rotation angle of ‘-α’, i.e., by replacing ‘α’ with ‘-α’ in eq. (2) and (3). The two-dimensional
FrFT is required to process the images in the frequency domain. The two-dimensional FrFT is
taken separately in x and y directions. The separable two-dimensional FrFT has two orders α
and β for x and y directions, i.e., 0 <α < π/2 and 0 < β < π/2 is given below:

Zα;β uα; vβ
� � ¼ ∫∞−∞∫

∞
−∞z x; yð ÞKα;β x; y; uα; vβ

� �
dx dy ð4Þ

where, α and β are the rotation angles.
The Kernel function Kα, β(x, y, uα, vβ) is defined as:

Kα;β x; y; uα; vβ
� � ¼ Kα x; uαð Þ Kβ y; vβ

� � ð5Þ

¼ 1

2 π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−i cot α

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−i cot β

p
exp i

x2 þ uα2

2

� �
cot α−i uαx csc α

� �
exp i

y2 þ vβ2

2

� �
cotβ−i vβ y csc β

� �

ð6Þ
The signal is restored by taking FrFTwith the rotation angle of ‘-α’ and ‘-β’, that is, by replacing ‘α’
with ‘-α’ and ‘β’ with ‘-β’ in eq. (4)–(7). The proposed work uses two-dimensional Discrete
Fractional Fourier Transform (2D-DFrFT) [26]. The (K,L)-point 2D-DFrFT is given as:

Zα;β uα; vβ
� � ¼ ∑

L−1

y¼0
∑
K−1

x¼0
z x; yð Þexp i

x2 þ uα2

2

� �
cot α−i uαx csc α

� �� �
exp i

y2 þ vβ2

2

� �
cotβ−i vβ y csc β

� �
ð7Þ

The 2D-DFrFT for matrix K × L is determined by applying the one-dimensional DFrFT to each
row of the matrix and afterwards to the column of the resultant.

2.3 Homomorphic Filtering

The HF technique is based on the illumination-reflectance model. Illumination refers to the
amount of source illumination which is incident on the scene to be viewed denoted by (x, y).
Reflectance refers to the amount of illumination that is reflected by the entities present in scene
denoted by Ʀ(x, y). Intensity of image (x, y) at spatial coordinates (x, y) is given by:

where, 0 < (x, y) <∞ and 0 <Ʀ(x, y) < 1. The nature of illumination depends on the source of
illumination while the reflectance depends on the attributes of the image entities. Reflectance is
bounded by zero and one which means, total absorption and total reflectance, respectively. In this
technique, the logarithm of the original image is taken, which maps the image frommultiplicative
domain into the additive domain. Image obtained after the logarithm operation is transformed into
the frequency domain, after which the linear filtering is done that amplified the high frequencies

(8)
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while attenuating the low frequencies. Then, the enhanced image is obtained by taking the
exponential of inverse transform of the image which is filtered also as shown in Fig. 1.

The HF method used the High Pass Filter (HPF) for the enhancement of image which is the
procedure to capture the important properties such as geometry, reflectivity, and illumination.
The basic ideal high pass filters are used in the modified form in this technique. This
modification is done by including two parameters γL and γH in the equation of ideal high
pass filter such that γL < 1 while, γH > 1 as shown in eq. (9):

Н u; vð Þ ¼ γH−γLð Þ* HPFð Þ þ γL ð9Þ
Here, Н(u, v) is modified equation for HPF in the frequency domain. The parameters γH and
γL decreases the contribution made by low frequencies, whereas, increases the contribution
made by the high frequencies. This technique increases the contrast of images as well as
sharpens the edges of the images [11].

3 Proposed scheme

On the basis of HF technique [45], an improved HF technique is presented to achieve better
visual quality and more information detail from the enhanced images. DCT transform [19, 45]
provides accumulation of energy but it doesn’t provide the local spectral features. The
improved HF technique used fractional derivative and FrFT to enhance the high frequency
features. In this paper, two techniques are proposed for enhancement of the low contrast and
non-uniformly illuminated images. The first technique employs the fractional derivative (GL)
instead of high pass filter while the second technique involves a combination of fractional
derivative with FrFT to take the advantage of two extra degrees of freedom. The significance
of the proposed algorithms is to achieve the enhancement of the low contrast and non-
uniformly illuminated images as well as sharpening of the edges with the utilization of the
fractional derivative and fractional derivative in combination with FrFT.

3.1 Proposed Algorithm 1: Fractional derivative based HF

In this algorithm, the fractional derivative is used to enhance the low contrast and non-
uniformly illuminated images and sharpening the edges of image. The block diagram of the
proposed algorithm based on fractional derivative is shown in Fig. 2.

In this technique, the logarithm of intensity as given in eq. (8) is taken before applying the
transform because the transform of product of two functions is not separable.

where, z(x, y) is the logarithm of Ƒ(x, y).

Linear
Filter

Input 
Image

Enhanced
Image

Transform 
(Time to 

Frequency 
Domain)

Log
ln(. )

Inverse 
Transform
(Frequency

to Time
Domain)

Exp
(.)

Fig. 1 Generalized homomorphic filtering technique [14]

(10)

(11)
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Here, and Ζ(u, v) refers to the DFT of z(x, y). ƑƗ(u, v) and ƑƦ(u, v) is the DFT of
ln(Ɨ(x, y)) and ln(Ʀ(x, y)) respectively. The GL fractional derivative is used for the analysis in DFT.

The precise form of the GL based fractional operator [30] is given by the following equation:

dϑ

dtϑ
z tð Þ ¼ lim

h→0

1

Γ −ϑð Þhϑ ∑
n−1ð Þ

k¼0

Γ k−ϑð Þ
Γ k þ 1ð Þ z t þ ϑh

2
−kh

� �
ð12Þ

The GL based fractional derivative is derived by inserting the values of signals on the non-nodes
assuming ϑ= 0, ± 2, ± 4,…, considering the nodes at z(t+ h− kh), z(t− kh) and z(t− h− kh).

The interpolation is done using the Lagrange’s 3-point interpolation method [9, 30]:

z τð Þ≅ τ−t þ khð Þ τ−t þ hþ khð Þ
2h2

z t þ h−khð Þ− τ−t−hþ khð Þ τ−t þ hþ khð Þ
h2

z t−khð Þ

þ τ−t þ khð Þ τ−t−hþ khð Þ
2h2

z t−h−khð Þ ð13Þ

Let τ ¼ t þ ϑh
2 −kh

� �
and interpolating it, the equation comes out to be:

z t þ ϑh
2

−kh
� �

≅
ϑ
4
þ ϑ2

8

� �
z t þ h−khð Þ þ 1−

ϑ2

4

� �
z t−khð Þ þ −

ϑ
4
þ ϑ2

8

� �
z t−h−khð Þ ð14Þ

dϑ

dtϑ
z tð Þ≅ 1

Γ −ϑð Þhϑ ∑
n−1ð Þ

k¼0

Γ k−ϑð Þ
Γ k þ 1ð Þ zk þ ϑ

4
zk−1−zkþ1ð Þ þ ϑ2

8
zk−1−2zk þ zkþ1ð Þ

� �
ð15Þ

The coefficients of the filter obtained from eq. (15) are in the spatial domain. So, the DFT of
the fractional derivative will be obtained in order to compute the frequency domain coeffi-
cients required in the HF technique. Then, the fractional derivative Н(u, v) is applied on the
obtained Fourier Transform coefficients.

where, S u; vð Þ is the DFT of the result obtained after filtering operation. The obtained
coefficients after IDFT is given by:

where, and . The en-
hanced image obtained after the exponential operation is given by:

where, and .

Fractional 
Derivative

DFT Log
ln

IDFT Exp

Fractional order ( )

Fig. 2 Proposed HF technique based on fractional derivative

(16)

(17)

(18)
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3.2 Proposed Algorithm 2: Fractional derivative FrFT based HF

In this technique, the fractional derivative is used in combination with DFrFT to enhance the edges
of the low contrast and non-uniformly illuminated images. The DFrFT is applied in eq. (11) for
transforming the image into frequency domain. This technique also uses GL fractional derivative as
discussed in Algorithm 1. Instead of computing the DFT, DFrFT of eq. (15) will be obtained in
order to compute the frequency domain coefficients required in theHF technique. Similarly, IDFrFT
is used to obtain the spatial domain coefficients instead of IDFT. The block diagram of the proposed
algorithm based on fractional derivative in combination with FrFT is shown in Fig. 3.

4 Experimental results

The adequacy of proposed techniques is confirmed using theMATLABR2016a on a systemwith an
Intel®CPU 2.7 GHz processor with 16 GBRAM. The effectiveness of the proposed scheme is also
evaluatedwith different images. The comparison of the proposed algorithms is donewith the existing
techniques that is, HE [11], BDPFHE [35], MMSICHE [36], HF [1] and DCT based HF [45].

4.1 Performance analysis for images from standard datasets

In this section, the performance of proposed techniques is evaluated on various original images
of different sizes from different datasets namely The USC-SIPI Image Database, TraitImage,

Fractional 
Derivative

DFrFT Log
ln

IDFrFT Exp

Fractional order Rotation angle Rotation angle 

Fig. 3 Proposed HF technique based on the combination of fractional derivative and FrFT
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Segmentation by Regions, Image Databases and in-built MATLAB images as shown in Fig. 4
[11, 34, 42, 43].

The enhanced images for the test images obtained using both Proposed Algorithm 1 and
Algorithm 2 and existing techniques [1, 11, 35, 36, 45] are shown in Fig. 5. The performance
of the enhancement of images is evaluated with the different performance metric parameters
such as Peak Signal to Noise Ratio (PSNR), Mean Square Error (MSE), Information Entropy,
Structural Similarity Index Measure (SSIM) and Universal Image Quality Index (UIQI).

The MSE formula is given by [32]:

MSE ¼ 1

kl
∑
k−1

i¼0
∑
l−1

j¼0
A i; jð Þ−O i; jð Þ½ �2 ð19Þ

where, A and O are the images for comparison with size k × l.
The PSNR is given by [32]:

PSNR ¼ 10 log10
MaxI 2

MSE

� �
ð20Þ

where, MaxI is the maximum value of a pixel.
Table 1 shows the Average PSNR for the different test images for various techniques. The

optimal order of fractional derivative and transform order ‘a’ is mentioned in Table 1 that
provides the best results. Maximum average PSNR is obtained for the proposed scheme for
fractional derivative order of range 0.11–0.124 for transform order 0.99. It is interpreted that
the enhanced images obtained with the fractional derivatives and DFrFT are more similar to
the original images. Average PSNR is high for proposed scheme for all the considered images
because the fractional derivatives enhance the high-frequency information present in the
images. The amplitude and phase information of the image in DFrFT depends on its transform

(a) Lena (256×256) (b) Aquitaine (256×256) (c) Carrefour (256×256) (d) Laiton (256×256) (e) Line3 (256×256) 

(f) Muscle (256×256) (g) Pout (240×291) (h) Circuit (272×280) (i) Kids (400×318) (j) Pollen (500×500) 

(k) Aeroplane (512×512) (l) Motion (512×512) (m) Tank (512×512) (n) Barbara (512×512) (o) Washington Satellite
(512×512)

Fig. 4 Test images used for simulation of different sizes
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order [24]. The results of PSNR in Algorithm 2 are better as DFrFT preserves the details of the
texture of the image with an increase in transform order. Moreover, it is clear from the visual
perception that the proposed scheme is better than the existing techniques [1, 11, 35, 36, 45] as
shown in Fig. 5. The average PSNR obtained is maximum for Algorithm 2 as it exploited the
advantage of both fractional derivative and DFrFT. From the eq. (19) and (20), it is clear that
lesser the MSE, more the PSNR, better the quality of enhanced image. Table 2 shows the MSE
of different test images for a proposed scheme in comparison to the existing techniques.

Proposed
Algorithm 2

Proposed
Algorithm 1

FHdesabTCD
[45]

HF 
[1]

MMSICHE 
[36]

BPDFHE 
[35]

HE 
[11]

Images

Lena
(256×256)

Aquitaine
(256×256)

Carrefour
(256×256)

Laiton
(256×256)

Proposed
Algorithm 2

Proposed
Algorithm 1

FHdesabTCD
[45]

HF 
[1]

MMSICHE 
[36]

BPDFHE 
[35]

HE 
[11]

Images

Line3
(256×256)

Muscle
(256×256)

Pout
(240×291)

Circuit
(272×280)

Fig. 5 Enhanced test images obtained with proposed algorithms in comparison to the existing techniques
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On the basis of Shannon’s information, the entropy of an image is given by [44]:

E ¼ − ∑
255

i¼0
Pilog2Pi ð21Þ

where, E is entropy, Pi is i’s probability in the image. Table 3 shows the information entropy
for the different test images for different techniques.

Information entropy of the proposed scheme is more as compared to the existing techniques
[1, 11, 35, 36, 45] for all the considered images because it enhances the high frequency
information while preserving low and medium frequency details. As observed from Table 3,
Algorithm 2 provides more detailed information about the image. The information entropy for
the images of Aquitaine and Line3 is almost comparable for both proposed algorithms.

Proposed
Algorithm 2

Proposed
Algorithm 1

FHdesabTCD
[45]

HF 
[1]

MMSICHE 
[36]

BPDFHE 
[35]

HE
[11]

Images

Kids
(400×318)

Pollen
(500×500)

Aeroplane
(512×512)

Motion

(512×512)

Proposed
Algorithm 2

Proposed
Algorithm 1

FHdesabTCD
[45]

HF 
[1]

MMSICHE 
[36]

BPDFHE 
[35]

HE
[11]

Images

Barbara
(512×512)

Tank

(512×512)

Washington 
Satellite
(512×512)

Fig. 5 (continued)
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The SSIM is represented by the given formula [49]:

SSIM x; yð Þ ¼
2μxμy þ K1

	 

2σxy þ K2

� �
μ2
x þ μ2

y þ K1

	 

σ2
x þ σ2

y þ K2

	 
 ð22Þ

where,μx and μy represent the mean intensities, σx and σy represent the contrast while K1 and K2

represent the constants. Table 4 shows the SSIM for the different test images for various techniques.
SSIM value corresponds to the structural similarity between the original and reconstructed

image. Enhancement of the low contrast and non-uniformly illuminated images results in the
change in the structure of the image, thus reducing its SSIM. Although, SSIM of the proposed
algorithms is less, but, it is still comparable to the existing techniques [1, 11, 35, 36, 45]. SSIM is
high for Algorithm 1 in case of Aquitaine, Line3 andMotion as the change in structure is less after
enhancement as compared to other techniques. It has kept the structure almost similar in addition
to the enhancement of images. The Mean Structural Similarity Index Measure (SSIM) has also
been calculated, but, it is observed thatMSSIM ismaximum for HF than the proposed techniques.

UIQI possess the ability to measure the structural distortion occurred during the process of
degradation of an image. It indicates similarity and dissimilarity. It considers the three compo-
nents for computing distortion while SSIM considers only one component, i.e., structure. In
this, the comparison between two images is done by dividing it further into the three compar-
isons, that is, luminance L(x, y), contrastC(x, y) and structural comparison S (x, y) given by [48]:

UIQI ¼ L x; yð Þ C x; yð Þ S x; yð Þ ¼ 4μxμyμxy

μ2
x þ μ2

y

	 

σ2
x þ σ2

y

	 
 ð23Þ

Table 2 MSE for the test images of different sizes

Images HE [11] BPDFHE
[35]

MMSICHE
[36]

HF [1] DCT
based
HF [45]

Proposed
Algorithm
1

Proposed
Algorithm
2

Lena (256 × 256) 797.6729 40.7400 209.7148 60.6233 31.5447 14.1307 14.1304
Aquitaine

(256 × 256)
16,064 338.4894 1746.7 3.5483 2.6180 0.1574 0.1476

Carrefour
(256 × 256)

7475.9 723.7576 958.7034 14.9491 13.6927 7.0021 4.1892

Laiton (256 × 256) 14,860 358.8806 2858.8 3.6803 3.1330 0.9285 0.9280
Line3 (256 × 256) 16,056 451.5964 4220 3.2630 0.2826 0.1820 0.1805
Muscle (256 × 256) 9169.7 133.3723 1299.4 9.8135 8.4042 6.3694 5.0760
Pout (240 × 291) 3031.1 199.2492 783.7943 42.9209 10.6402 5.2790 1.2617
Circuit (272 × 280) 3530 139.7250 644.4671 27.4826 7.1963 5.9594 4.4637
Kids (400 × 318) 13,512 334.9111 2969.9 4.5068 2.2716 1.8795 1.6129
Pollen (500 × 500) 4362.1 1440.9 1445.4 40.5225 9.1039 0.7662 0.5252
Aeroplane

(512 × 512)
6170.4 115.9455 256.9340 107.5186 57.6463 6.1818 3.3776

Motion (512 × 512) 7726.1 306.1593 1144.9 133.9448 2.1005 1.5574 1.1954
Barbara (512 × 512) 1019.6 30.2023 240.3974 51.0623 30.4454 17.5022 17.2345
Tank (512 × 512) 2716.9 81.6585 404.5918 61.8157 41.4351 10.7117 4.0758
Washington Satellite

(512 × 512)
7794.4 1442.6 410.5071 15.8420 12.8900 3.7547 3.5833

The bold values correspond to the lowest value of MSE
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The L(x, y), C(x, y) and S (x, y) is given by:

L x; yð Þ ¼ 2μxμy

μ2
x þ μ2

y

C x; yð Þ ¼ 2σxσy

σ2
x þ σ2

y

S x; yð Þ ¼ 2σxy

σx þ σy

Table 3 Information entropy for the test images of different sizes

Images HE
[11]

BPDFHE
[35]

MMSICHE
[36]

HF [1] DCT
based
HF [45]

Proposed
Algorithm 1

Proposed
Algorithm 2

Lena (256 × 256) 5.9733 7.2328 7.4016 7.4429 7.3659 7.4625 7.4673
Aquitaine (256 × 256) 4.1892 3.8603 4.0986 4.2326 4.0070 4.2098 4.2093
Carrefour (256 × 256) 5.6752 5.8990 6.1364 6.2032 6.0778 6.1649 6.1886
Laiton (256 × 256) 4.6416 4.1345 4.6000 4.7792 4.5850 4.7476 4.7689
Line3 (256 × 256) 4.2204 3.7297 4.1374 4.2426 4.0781 4.2135 4.2130
Muscle (256 × 256) 5.8207 5.9309 6.3824 6.4072 6.3092 6.3731 6.3940
Pout (240 × 291) 5.4342 5.5950 5.7026 5.7551 5.9211 6.0630 6.1032
Circuit (272 × 280) 5.9358 6.8569 6.9134 6.9426 7.0745 7.1419 7.1620
Kids (400 × 318) 5.2508 5.0698 5.4609 5.4847 5.4728 5.4996 5.5084
Pollen (500 × 500) 4.9774 4.8087 4.9724 5.0339 5.0534 5.1878 5.2472
Aeroplane (512 × 512) 3.7451 3.9536 3.9914 4.0042 4.8442 5.1624 5.3693
Motion (512 × 512) 5.4164 5.8889 6.0083 5.9873 6.1608 6.1519 6.1774
Barbara (512 × 512) 5.9821 7.2688 7.4245 7.4680 7.3851 7.4768 7.4910
Tank (512 × 512) 4.9953 5.3276 5.7499 5.5017 6.2665 6.3892 6.4181
Washington
Satellite (512 × 512)

2.8032 2.8500 2.8676 2.8688 4.2402 4.8377 4.8433

The bold values correspond to the highest value of Information Entropy

Table 4 SSIM for the test images of different sizes

Images HE
[11]

BPDFHE
[35]

MMSICHE
[36]

HF [1] DCT
based
HF [45]

Proposed
Algorithm 1

Proposed
Algorithm 2

Lena (256 × 256) 0.8573 0.9616 0.9014 0.9969 0.9940 0.9881 0.9869
Aquitaine (256 × 256) 0.1296 0.4409 0.5820 0.9961 0.9956 0.9983 0.9982
Carrefour (256 × 256) 0.4012 0.6589 0.7616 0.9970 0.9918 0.9920 0.9915
Laiton (256 × 256) 0.1771 0.5953 0.7712 0.9967 0.9948 0.9941 0.9939
Line3 (256 × 256) 0.2562 0.5926 0.7536 0.9962 0.9981 0.9985 0.9983
Muscle (256 × 256) 0.3960 0.9463 0.7657 0.9943 0.9912 0.9882 0.9878
Pout (240 × 291) 0.5644 0.8281 0.6992 0.9972 0.9977 0.9955 0.9945
Circuit (272 × 280) 0.7445 0.9312 0.8825 0.9967 0.9970 0.9922 0.9914
Kids (400 × 318) 0.2146 0.8355 0.7332 0.9750 0.9734 0.9694 0.9691
Pollen (500 × 500) 0.4213 0.6128 0.6141 0.9974 0.9992 0.9965 0.9951
Aeroplane (512 × 512) 0.3140 0.7796 0.7188 0.9973 0.9981 0.9929 0.9901
Motion (512 × 512) 0.5355 0..9252 0.7985 0.9951 0.9971 0.9974 0.9930
Barbara (512 × 512) 0.8526 0.9649 0.9068 0.9969 0.9927 0.9885 0.9871
Tank (512 × 512) 0.4263 0.8643 0.6849 0.9969 0.9978 0.9896 0.9879
Washington
Satellite (512 × 512)

0.2181 0.3722 0.7106 0.9971 0.9929 0.9900 0.9917

The bold values correspond to the highest value of SSIM
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where,μx and μy represent the mean intensities of original and distorted images, σx and σy
represent the standard deviation of original and distorted images while σxy represent the
covariance of both images. Table 5 shows the UIQI for different test images for various
techniques.

It is almost comparable to other techniques, but as illustrated in Table 5, the Algorithm 2
has the highest UIQI for all considered test images of different sizes as compared to the
existing techniques as well as the Algorithm 1. This may happen due to the use of DFrFT
transform in combination with fractional derivatives because it enhances high frequency
information as well as contrast while preserving the low and medium frequency details.

The effectiveness of the proposed techniques for the enhancement of the low contrast and
non-uniformly illuminated images as well as strengthening of edges is demonstrated with the
various image assessment parameters in Fig. 6. PSNR of the proposed techniques
(Algorithm 2) is improved by 2.86–50.37 dB, thus, indicating that the images enhanced by
proposed algorithms are of higher quality in comparison to existing algorithms [1, 11, 35, 36,
45] as shown in Fig. 6. The PSNR shows the improvement of 9.59 dB, 11.71 dB, 6.3 dB, and
3.4 dB in case of proposed techniques when compared to BPDFHE, MMSICHE, HF and DCT
based HF for test image of Lena. MSE for HE and MMSICHE is not shown in Fig. 6 as it is
large as compared to other techniques. Information Entropy shows the improvement of 0.3–
20% when the comparison of proposed algorithm is done with the existing techniques for test
image Lena [1, 11, 35, 36, 45]. Information entropy is improved by 3–42% with the
Algorithm 2 for different images. The UIQI of all the images is close to one, indicating that
even after enhancement the images are almost similar to original ones. Therefore, in Fig. 6, it is
perceived that the proposed algorithms provide more enhancement and information details in
comparison to the existing techniques [1, 11, 35, 36, 45]. The average time elapsed for
execution of code ranges from 9.01 to 39.476 s for Algorithm 1 and 9.17 to 52.09 s for the
Algorithm 2 for different images. The execution time varies in accordance with the number of
pixels in the image.

Table 5 UIQI for the test images of different sizes

Images HE
[11]

BPDFHE
[35]

MMSICHE
[36]

HF [1] DCT
based
HF [45]

Proposed
Algorithm 1

Proposed
Algorithm 2

Lena (256 × 256) 0.8872 0.9907 0.9524 0.9967 0.9986 0.9995 0.9996
Aquitaine (256 × 256) 0.2443 0.4264 0.7983 0.9852 0.9693 0.9947 0.9998
Carrefour (256 × 256) 0.6249 0.8043 0.9398 0.9964 0.9973 0.9988 0.9995
Laiton (256 × 256) 0.2265 0.4306 0.8540 0.9945 0.9948 0.9997 0.9999
Line3 (256 × 256) 0.1214 0.3216 0.8178 0.9872 0.9701 0.9704 0.9957
Muscle (256 × 256) 0.3027 0.9241 0.9488 0.9813 0.9845 0.9827 0.9850
Pout (240 × 291) 0.7804 0.9776 0.9149 0.9968 0.9992 0.9997 0.9999
Circuit (272 × 280) 0.7557 0.9910 0.8848 0.9944 0.9985 0.9982 0.9982
Kids (400 × 318) 0.1154 0.6520 0.7282 0.8617 0.8567 0.8354 0.8698
Pollen (500 × 500) 0.7301 0.8899 0.8754 0.9968 0.9992 0.9992 0.9993
Aeroplane (512 × 512) 0.7044 0.9958 0.9823 0.9967 0.9981 0.9991 0.9993
Motion (512 × 512) 0.6772 0.9843 0.9393 0.9967 0.9995 0.9996 0.9999
Barbara (512 × 512) 0.7914 0.7588 0.9309 0.9967 0.9987 0.9996 0.9997
Tank (512 × 512) 0.7874 0.9852 0.9539 0.9968 0.9978 0.9996 0.9999
Washington Satellite

(512 × 512)
0.6489 0.9896 0.9689 0.9965 0.9971 0.9987 0.9989

The bold values correspond to the highest value of UIQI
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(b) MSE
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(e) UIQI
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Fig. 6 Comparison of various image enhancement techniques on the basis of image assessment parameters for
Kids and Lena Image
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4.2 Performance analysis for images with different contrast and illumination
conditions

In this section, the performance of proposed techniques is analyzed on datasets [6, 46]
containing test images with different contrast and illumination conditions as shown in Fig. 7.

It is difficult to add all the images due to the space constraint. So, the enhanced images for
some test images with different contrast and illumination conditions are shown in Fig. 8. It is
clearly perceived from Fig. 8 that proposed algorithm results in more clarity in the enhanced
images in comparison to the existing techniques. Tables 6, 7, 8, 9 and 10 depicts various
performance parameters for different contrast and illumination conditions of various test
images of different sizes.

It is worth noting that in the case of lossy compression such as JPEG, the PSNR value is
constrained to 50 dB [20]. However, the PSNR value of greater than 50 dB is achieved in the
case of proposed scheme because the test images (from datasets [11, 34, 42, 43]) used to
evaluate the proposed scheme are in lossless file format. Secondly, this may also happen
because the proposed scheme is based on fractional derivatives that results in the enhancement
of high and mid frequency components non-linearly while preserving the low frequency
components.

(a) c1 (480×270) (b) c2 (480×270) (c) c3 (480×270) (d) c4 (480×270)

(e) court1 (352×240) (f) court2 (352×240) (g) court3 (352×240) (h) court4 (352×240)

(i) court5 (352×240) (j) court6 (352×240) (k) court7 (352×240) (l) statue1 (352×240)

(m) statue2 (352×240) (n) statue3 (352×240) (o) statue4 (352×240) (p) statue5 (352×240)

(q) statue6 (352×240) (r) statue7 (352×240) (s) trees1 (320×224) (t) trees2 (320×224)

(u) trees3 (320×224) (v) trees4 (320×224) (w) trees5 (320×224)

Fig. 7 Test images with different contrast and illumination conditions
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Nevertheless, in order to confirm the above mentioned fact, the proposed scheme is further
evaluated by considering the dataset images [46] in the JPEG file format. It is observed from
Table 6 that maximum PSNR value achieved for the proposed scheme is of value 49.5650 dB
(i.e. statue5 image) because the considered images are in JPEG file format. The PSNR value
greater than 50 dB is achieved for lossless images such as TIFF, PNG file formats as shown in
Table 1. It is also noted from Tables 6 to 10 that Algorithm 1 and Algorithm 2 provides high
PSNR, information entropy, and UIQI in comparison to existing techniques even in the case of
different contrast and illumination conditions for the same scene. The improvement in PSNR is
0.2635–42.2162 dB for Algorithm 1 and 0.2777–42.2273 dB for Algorithm 2 in case of
images with different contrast and illumination conditions for the same scene. Furthermore, the
improvement in information entropy is 0.02–32.63% for Algorithm 1 and 0.04–32.65% for
Algorithm 2. It provides less SSIM but still it is comparable to existing techniques. Thus, the

Proposed

Algorithm 2

Proposed

Algorithm 1
][45FHdesabTCDHF [1][36]EHCISMMBPDFHE [35]HE [11]Images

c1

(480×270)

c2

(480×270)

c3

(480×270)

c4

(480×270)

court1 

(352×240)

court2 

(352×240)

Proposed

Algorithm 2

Proposed

Algorithm 1
[45]FHdesabTCDHF [1][36]EHCISMMBPDFHE [35]HE [11]Images

court3 

(352×240)

court4 

(352×240)

court5 

(352×240)

court6 

(352×240)

court7 

(352×240)

Fig. 8 Enhanced test images for different contrast and illumination conditions obtained with proposed algorithms
in comparison to the existing techniques

Multimedia Tools and Applications (2019) 78:27891–27914 27907



Ta
bl
e
6

PS
N
R
(d
B
)
of

te
st
im

ag
es

of
di
ff
er
en
t
si
ze
s
fo
r
di
ff
er
en
t
co
nt
ra
st
an
d
ill
um

in
at
io
n
co
nd
iti
on
s

Im
ag
es

a
ϑ

(A
lg
.1
)

ϑ
(A

lg
.2
)

H
E
[1
1]

B
PD

FH
E
[3
5]

M
M
SI
C
H
E
[3
6]

H
F
[1
]

D
C
T
ba
se
d
H
F
[4
5]

Pr
op
os
ed

A
lg
or
ith

m
1

Pr
op
os
ed

A
lg
or
ith

m
2

c1
(4
80

×
27
0)

0.
99

0.
10
1

0.
10
2

15
.3
11
4

32
.5
07
9

24
.0
44
0

31
.5
84
5

36
.2
30
0

37
.0
23
6

38
.0
06
1

c2
(4
80

×
27
0)

0.
99

0.
1

0.
1

14
.7
93
6

40
.6
29
4

26
.2
08
6

32
.2
33
8

36
.6
62
5

41
.2
36
4

42
.0
41
2

c3
(4
80

×
27
0)

0.
99

0.
1

0.
09
9

16
.1
06
3

42
.1
52
2

29
.0
11
3

31
.9
09
1

36
.5
19
6

44
.1
99
2

44
.7
22
9

c4
(4
80

×
27
0)

0.
99

0.
11

0.
1

11
.0
77
2

33
.2
89
2

25
.2
17
6

35
.5
95
8

38
.1
45
8

39
.0
28
1

42
.4
13
1

co
ur
t1

(3
52

×
24
0)

0.
99

0.
1

0.
10
1

17
.5
27
7

29
.4
20
7

25
.3
01
9

31
.4
18
7

31
.9
49
6

33
.5
97
3

35
.6
52
2

co
ur
t2

(3
52

×
24
0)

0.
99

0.
09
9

0.
1

19
.1
62
7

28
.4
53
5

24
.8
88
5

29
.1
54
6

32
.3
09
5

34
.8
94
6

36
.4
59
2

co
ur
t3

(3
52

×
24
0)

0.
99

0.
11

0.
08
9

17
.8
25
0

33
.0
48
1

26
.3
42
1

28
.9
81
1

32
.0
53
8

34
.5
48
8

36
.1
93
0

co
ur
t4

(3
52

×
24
0)

0.
99

0.
1

0.
10
1

18
.2
13
2

29
.1
30
1

24
.4
09
4

32
.0
26
4

32
.4
09
3

33
.8
75
9

35
.9
65
3

co
ur
t5

(3
52

×
24
0)

0.
99

0.
10
1

0.
1

16
.5
13
0

22
.9
68
1

22
.8
52
1

31
.8
05
5

32
.3
60
3

33
.7
76
6

35
.9
03
8

co
ur
t6

(3
52

×
24
0)

0.
99

0.
09
9

0.
09
5

19
.3
16
7

26
.9
74
1

25
.8
85
7

29
.6
50
6

30
.8
13
6

33
.1
48
6

35
.5
44
6

co
ur
t7

(3
52

×
24
0)

0.
99

0.
1

0.
1

17
.9
84
6

32
.2
21
6

22
.4
24
9

30
.4
67
5

32
.0
86
8

33
.7
39
6

34
.6
73
5

st
at
ue
1
(3
52

×
24
0)

0.
99

0.
09
9

0.
1

14
.8
99
9

18
.2
13
7

20
.3
88
1

30
.7
42
9

35
.9
93
5

37
.4
61
8

38
.4
56
7

st
at
ue
2
(3
52

×
24
0)

0.
99

0.
09

0.
08
5

5.
21
02

29
.7
71
6

31
.4
09
8

46
.6
75
1

47
.1
59
8

47
.4
26
4

47
.4
37
5

st
at
ue
3
(3
52

×
24
0)

0.
99

0.
1

0.
09
9

11
.8
79
9

25
.5
29
1

17
.1
10
1

31
.0
50
1

36
.5
90
1

38
.9
59
5

39
.1
17
5

st
at
ue
4
(3
52

×
24
0)

0.
99

0.
1

0.
1

16
.1
12
2

24
.1
62
2

21
.5
81
0

30
.8
66
8

36
.2
87
3

37
.4
85
7

38
.6
20
2

st
at
ue
5
(3
52

×
24
0)

0.
99

0.
10
2

0.
09
8

7.
64
03

29
.4
48
6

20
.1
15
7

39
.3
95
1

48
.5
63
1

48
.9
17
9

49
.5
65
0

st
at
ue
6
(3
52

×
24
0)

0.
99

0.
1

0.
08
8

11
.8
49
4

17
.3
10
3

21
.1
21
8

31
.3
05
2

36
.6
34
9

37
.1
16
0

37
.8
63
8

st
at
ue
7
(3
52

×
24
0)

0.
99

0.
10
1

0.
1

14
.9
96
6

29
.4
65
4

22
.1
45
6

31
.3
30
5

36
.7
64
8

37
.0
28
3

37
.2
22
0

tr
ee
s1

(3
20

×
22
4)

0.
99

0.
1

0.
09
6

17
.8
75
6

31
.4
44
6

25
.4
13
5

28
.2
12
2

31
.9
66
3

37
.7
37
3

38
.4
65
7

tr
ee
s2

(3
20

×
22
4)

0.
99

0.
09
9

0.
08
9

16
.4
54
7

24
.2
12
9

25
.3
53
4

27
.8
04
9

31
.5
73
9

38
.3
92
5

38
.9
54
9

tr
ee
s3

(3
20

×
22
4)

0.
99

0.
1

0.
09

16
.0
06
8

30
.3
53
2

24
.6
17
4

27
.7
71
6

31
.2
20
6

36
.9
63
7

37
.8
61
3

tr
ee
s4

(3
20

×
22
4)

0.
99

0.
1

0.
08
4

15
.3
76
7

25
.4
79
5

22
.9
58
1

28
.0
35
3

31
.8
51
9

37
.7
92
8

38
.8
50
9

tr
ee
s5

(3
20

×
22
4)

0.
99

0.
09
9

0.
08
9

17
.0
28
9

32
.1
29
1

27
.6
43
4

28
.8
72
1

31
.5
02
8

37
.9
20
9

38
.8
17
9

T
he

bo
ld

va
lu
es

co
rr
es
po
nd

to
th
e
hi
gh
es
t
va
lu
e
of

PS
N
R
(d
B
)

27908 Multimedia Tools and Applications (2019) 78:27891–27914



Table 7 MSE of test images of different sizes for different contrast and illumination conditions

Images HE [11] BPDFHE
[35]

MMSICHE
[36]

HF [1] DCT based
HF [45]

Proposed
Algorithm 1

Proposed
Algorithm 2

c1 (480 × 270) 1914 36.4994 256.2613 45.1471 15.4911 12.9038 10.2913
c2 (480 × 270) 2156.3 5.6252 155.6757 38.8780 14.0225 4.8915 4.0640
c3 (480 × 270) 1593.8 3.9615 81.6480 41.8959 14.4919 2.4727 2.1918
c4 (480 × 270) 5074.1 30.4905 195.5778 17.9267 9.9655 8.1334 3.7305
court1 (352 × 240) 1149 74.3033 191.8195 46.9037 41.5065 28.4018 17.6953
court2 (352 × 240) 788.52 92.8400 210.9727 78.9982 38.2059 21.0680 14.6946
court3 (352 × 240) 1073 32.2307 150.9638 82.2178 40.5225 22.8139 15.6235
court4 (352 × 240) 977.13 79.4463 235.5831 40.7790 37.3375 26.6371 16.4647
court5 (352 × 240) 1451.4 328.3027 337.1849 42.9074 37.7620 27.2535 16.6993
court6 (352 × 240) 761.03 130.5180 167.6906 70.4729 53.9168 31.4938 21.9789
court7 (352 × 240) 1034.2 38.9866 372.0399 58.3891 40.2158 27.4867 22.1680
statue1 (352 × 240) 2104.2 981.0873 594.6642 54.8014 16.3580 11.6655 9.2771
statue2 (352 × 240) 19,591 68.5356 47.0005 1.3982 1.2506 1.1761 1.1074
statue3 (352 × 240) 4217.8 182.0420 1264.9 51.0593 14.2584 8.2629 7.9676
statue4 (352 × 240) 1591.7 249.3818 451.8313 53.2601 15.2881 11.6015 8.9342
statue5 (352 × 240) 11,196 73.8271 633.1578 7.4744 0.9053 0.8342 0.7188
statue6 (352 × 240) 4247.5 1208 502.2224 48.1464 14.1121 12.6324 10.6342
statue7 (352 × 240) 2057.9 73.5431 396.7531 47.8661 13.6961 12.8899 12.3277
trees1 (320 × 224) 1060.5 46.6253 186.9521 98.1432 41.3472 10.9484 9.2579
trees2 (320 × 224) 1471 246.4861 189.5579 107.7928 45.2572 9.4152 8.2716
trees3 (320 × 224) 1630.8 59.9462 224.5624 108.6227 49.0929 13.0831 10.6401
trees4 (320 × 224) 1885.4 184.1333 329.0556 102.2241 42.4515 10.8094 8.4722
trees5 (320 × 224) 1288.8 39.8259 111.8768 84.3090 46.0041 10.4951 8.5367

The bold values correspond to the lowest value of MSE

Table 8 Information Entropy of test images of different sizes for different contrast and illumination conditions

Images HE
[11]

BPDFHE
[35]

MMSICHE
[36]

HF
[1]

DCT based
HF [45]

Proposed
Algorithm 1

Proposed
Algorithm 2

c1 (480 × 270) 5.7839 6.5291 6.7968 6.8654 6.8028 6.8718 6.8770
c2 (480 × 270) 5.9517 6.9986 7.2077 7.2756 7.2217 7.2849 7.2872
c3 (480 × 270) 5.9807 7.4473 7.6049 7.6498 7.6049 7.6641 7.6681
c4 (480 × 270) 5.9420 6.7627 7.0232 7.0297 7.0427 7.0509 7.0789
court1 (352 × 240) 5.2882 6.3159 6.4893 6.3712 6.5213 6.5487 6.5533
court2 (352 × 240) 5.8039 6.9490 7.1010 7.1436 7.1392 7.1788 7.1872
court3 (352 × 240) 5.9274 6.9920 7.2345 7.3020 7.2709 7.3083 7.3178
court4 (352 × 240) 5.2440 6.1570 6.3056 6.2052 6.3398 6.3629 6.3706
court5 (352 × 240) 5.2787 6.0049 6.1750 5.9927 6.2178 6.2231 6.2335
court6 (352 × 240) 5.8406 6.7430 6.9657 6.2622 7.0912 7.1236 7.1264
court7 (352 × 240) 5.6477 6.7338 6.8632 6.5830 6.9341 6.9493 6.9573
statue1 (352 × 240) 5.1384 5.5909 5.7574 5.8164 5.8071 5.8175 5.8273
statue2 (352 × 240) 2.9151 2.4790 2.3821 3.1585 3.1501 3.1594 3.1598
statue3 (352 × 240) 3.2699 3.3373 3.4963 3.5080 3.4960 3.5042 3.5053
statue4 (352 × 240) 5.7295 6.2640 6.3534 6.4021 6.4020 6.4062 6.4214
statue5 (352 × 240) 4.9074 5.0970 5.2634 5.3797 5.3927 5.3950 5.3960
statue6 (352 × 240) 3.5425 3.8720 4.0504 4.0710 4.0876 4.0938 4.2852
statue7 (352 × 240) 5.3904 5.7740 6.0225 6.0395 6.0725 6.0754 6.0888
trees1 (320 × 224) 5.9524 7.1295 7.2620 7.3575 7.3212 7.3595 7.3624
trees2 (320 × 224) 5.7584 6.6547 6.8175 6.8909 6.8539 6.8988 6.8995
trees3 (320 × 224) 5.6859 6.6162 6.7609 6.8472 6.7956 6.8567 6.8586
trees4 (320 × 224) 5.2492 5.9042 6.0505 6.1203 6.0653 6.1229 6.1270
trees5 (320 × 224) 5.9093 7.1738 7.2012 6.8693 7.3417 7.3833 7.3866

The bold values correspond to the highest value of Information Entropy

Multimedia Tools and Applications (2019) 78:27891–27914 27909



Table 9 SSIM of test images of different sizes for different contrast and illumination conditions

Images HE
[11]

BPDFHE
[35]

MMSICHE
[36]

HF
[1]

DCT based
HF [45]

Proposed
Algorithm 1

Proposed
Algorithm 2

c1 (480 × 270) 0.7958 0.9736 0.9055 0.9974 0.9957 0.9965 0.9962
c2 (480 × 270) 0.8323 0.9897 0.9381 0.9973 0.9959 0.9958 0.9967
c3 (480 × 270) 0.8804 0.9949 0.9599 0.9967 0.9965 0.9968 0.9966
c4 (480 × 270) 0.6813 0.9880 0.9547 0.9964 0.9961 0.9963 0.9962
court1 (352 × 240) 0.7900 0.9479 0.9218 0.9959 0.9940 0.9976 0.9975
court2 (352 × 240) 0.8413 0.9427 0.9100 0.9971 0.9936 0.9973 0.9972
court3 (352 × 240) 0.8014 0.9633 0.9268 0.9971 0.9930 0.9968 0.9969
court4 (352 × 240) 0.7615 0.9456 0.9038 0.9962 0.9944 0.9979 0.9976
court5 (352 × 240) 0.7300 0.8944 0.8671 0.9963 0.9961 0.9979 0.9977
court6 (352 × 240) 0.8352 0.9223 0.9061 0.9949 0.9930 0.9968 0.9967
court7 (352 × 240) 0.8039 0.9548 0.8303 0.9955 0.9939 0.9973 0.9972
statue1 (352 × 240) 0.6518 0.7622 0.7249 0.9977 0.9975 0.9988 0.9984
statue2 (352 × 240) 0.0263 0.8515 0.9217 0.9724 0.9724 0.9723 0.9722
statue3 (352 × 240) 0.6375 0.8838 0.8010 0.9980 0.9990 0.9994 0.9993
statue4 (352 × 240) 0.8080 0.8884 0.8550 0.9977 0.9980 0.9988 0.9986
statue5 (352 × 240) 0.4061 0.9032 0.9177 0.9952 0.9959 0.9963 0.9963
statue6 (352 × 240) 0.6331 0.8002 0.8867 0.9981 0.9981 0.9989 0.9981
statue7 (352 × 240) 0.7746 0.9255 0.8554 0.9974 0.9984 0.9988 0.9986
trees1 (320 × 224) 0.8758 0.9712 0.9255 0.9972 0.9950 0.9959 0.9957
trees2 (320 × 224) 0.7733 0.9010 0.9048 0.9972 0.9956 0.9967 0.9965
trees3 (320 × 224) 0.7991 0.9605 0.9215 0.9971 0.9944 0.9955 0.9952
trees4 (320 × 224) 0.5877 0.8726 0.8953 0.9961 0.9953 0.9956 0.9956
trees5 (320 × 224) 0.8555 0.9620 0.9334 0.9901 0.9961 0.9971 0.9967

The bold values correspond to the highest value of SSIM

Table 10 UIQI of test images of different sizes for different contrast and illumination conditions

Images HE
[11]

BPDFHE
[35]

MMSICHE
[36]

HF
[1]

DCT based
HF [45]

Proposed
Algorithm 1

Proposed
Algorithm 2

a c1 (480 × 270) 0.8852 0.9961 0.9745 0.9965 0.9989 0.9991 0.9994
c2 (480 × 270) 0.8567 0.9988 0.9659 0.9966 0.9989 0.9995 0.9997
c3 (480 × 270) 0.8592 0.9938 0.9407 0.9953 0.9991 0.9992 0.9992
c4 (480 × 270) 0.5618 0.9892 0.9850 0.9944 0.9975 0.9978 0.9979
court1 (352 × 240) 0.8332 0.9831 0.9502 0.9975 0.9989 0.9992 0.9995
court2 (352 × 240) 0.8553 0.9789 0.9504 0.9968 0.9989 0.9993 0.9996
court3 (352 × 240) 0.8384 0.9972 0.9663 0.9967 0.9989 0.9993 0.9996
court4 (352 × 240) 0.8476 0.9938 0.9454 0.9975 0.9990 0.9993 0.9995
court5 (352 × 240) 0.8193 0.9833 0.9468 0.9975 0.9989 0.9992 0.9996
court6 (352 × 240) 0.8969 0.9575 0.9389 0.9972 0.9989 0.9993 0.9997
court7 (352 × 240) 0.8357 0.9955 0.9224 0.9973 0.9989 0.9992 0.9994
statue1 (352 × 240) 0.8175 0.9364 0.9195 0.9967 0.9991 0.9994 0.9995
statue2 (352 × 240) 0.0167 0.6076 0.7818 0.9547 0.9520 0.9525 0.9525
statue3 (352 × 240) 0.7334 0.9820 0.8956 0.9968 0.9990 0.9994 0.9995
statue4 (352 × 240) 0.8440 0.9667 0.9172 0.9968 0.9992 0.9994 0.9995
statue5 (352 × 240) 0.3228 0.9181 0.9666 0.9918 0.9935 0.9919 0.9919
statue6 (352 × 240) 0.7417 0.9164 0.9473 0.9969 0.9991 0.9991 0.9993
statue7 (352 × 240) 0.8277 0.9774 0.9172 0.9968 0.9992 0.9992 0.9993
trees1 (320 × 224) 0.9023 0.9989 0.9818 0.9958 0.9967 0.9995 0.9995
trees2 (320 × 224) 0.9132 0.9651 0.9490 0.9960 0.9989 0.9996 0.9996
trees3 (320 × 224) 0.9437 0.9925 0.9957 0.9950 0.9981 0.9974 0.9996
trees4 (320 × 224) 0.7429 0.9081 0.9868 0.9938 0.9958 0.9971 0.9973
trees5 (320 × 224) 0.9147 0.9755 0.9791 0.9965 0.9990 0.9997 0.9998

The bold values correspond to the highest value of UIQI
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analysis done on the basis of different contrast and illumination conditions for the same scene
confirms the efficacy of the proposed algorithms.

5 Conclusion

In this paper, two techniques based on fractional derivative and FrFT have been implemented.
These techniques sharpened the edges of the image as well as enhanced the low contrast and
non-uniformly illuminated images. The improvement in average PSNR of 2.86–20.49 dB has
been obtained for the test images on comparison with the HF and DCT based HF. While, for
HE, BPDFHE and MMSICHE improvement in PSNR is 2.44–50.37 dB for the different test
images. The improvement of about 3–42% has been achieved in the information entropy for
proposed techniques when comparedwith the HE, HF, and DCT based HF techniques. In the case
of images with different contrast and illumination conditions for the same scene, the improvement
in PSNR is 0.2635–42.2273 dB while for information entropy is 0.02–32.65% for the proposed
algorithms. The analysis of proposed techniques on basis of various image assessment parameters
shows more enhancement in comparison to the existing techniques. Thus, it has been observed
that techniques based on fractional derivative and FrFT outperform the existing techniques. The
future work involves the use of fractional derivative operators and FrFT for more image
processing applications. Moreover, the future work will be devoted to perform the comparative
analysis of fractional derivative based enhancement methods with DNN based image enhance-
ment methods, which would further confirm the capability of the proposed technique.
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