
Drop flow method: an iterative algorithm for complete
segmentation of Devanagari ancient manuscripts

Sonika Rani Narang1 & Manish Kumar Jindal2 & Munish Kumar3

Received: 10 May 2018 /Revised: 17 January 2019 /Accepted: 8 April 2019 /
Published online: 1 May 2019
Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
One of the major challenges of ancient manuscripts recognition is character segmentation.
Because of many distinct features of ancient documents (thick characters, overlapping and
touching characters), character segmentation is a very difficult task. Devanagari ancient
manuscripts consist of vowels, consonants, modifiers, conjuncts and compound characters.
Using existing techniques, segmentation of overlapping and touching characters is problem-
atic. In this paper, an iterative character segmentation algorithm is presented for ancient
documents in Devanagari script. At the beginning, the lines are extracted from the ancient
documents by dividing the document image into vertical stripes and then using piecewise
horizontal projection profiles. After that, these lines are segmented into words using vertical
projection profiles and finally, words are segmented in characters using an iterative algorithm.
In each iteration, character segmentation is refined. In the present work, we have proposed a
new algorithm with the name ‘Drop Flow Method’ to find the segmentation path between
touching components. The proposed algorithm can segment touching characters and 96.0%
accuracy has been achieved for complete segmentation of Devanagari ancient manuscripts.

Keywords Pattern recognition .Optical character recognition .Drop flow.Ancientmanuscripts .

Ancient documents

1 Introduction

Text line, word and character segmentation are important steps in an optical character
recognition system. Segmentation plays a major role in increasing the recognition accuracy
of the text. It is very important to keep errors as minimum as possible in the segmentation

Multimedia Tools and Applications (2019) 78:23255–23280
https://doi.org/10.1007/s11042-019-7620-6

* Munish Kumar
munishcse@gmail.com

Sonika Rani Narang
sonikanarang@davcollegeabohar.com

Manish Kumar Jindal
manishphd@rediffmail.com

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-019-7620-6&domain=pdf
mailto:munishcse@gmail.com

phase. Segmentation of a printed document is very easy, but not so easy for handwritten text.
Especially for ancient documents, line and character segmentation are very difficult because
ancient documents have many distinct features like skewed lines, touching and overlapping
lines, uneven distance between consecutive lines, thick characters, uneven thickness of
characters, overlapping and touching characters. Optical Character Recognition (OCR) for
the Devanagari printed script has been developed up to acceptable accuracy, but OCR of
handwritten Devanagari documents, especially ancient documents is still at a very early stage.
Not much work has been done in this field. In this paper, the authors have proposed an iterative
algorithm for segmentation of Devanagari ancient documents. First of all, lines are obtained
from the ancient documents by dividing the document image into vertical stripes and then
using piecewise horizontal projection profiles. Then these lines are segmented into words
using vertical projection profiles and finally, words are segmented into characters using an
iterative algorithm. In each iteration, character segmentation is refined and can segment any
number of touching characters. Water flow method was used to segment lines from the
document image [7]. Also water flow method assumes pouring of water at a certain angle.
[24] used drop fall method for character segmentation. In this method, a hypothetical drop of
water falls in a downward direction to find segmentation path. Tripathy and Pal [33] used the
water reservoir method to segment characters. This method uses the thick flow of water, but in
the present work, we have used only a single drop of water to get the water passage. In the
proposed work, we have combined the above approaches to get a new technique named drop
flow. The drop flow method is used to segment some touching characters. This work follows
an iterative approach for the segmentation of document image. The proposed method can be
used for other languages also. Based on the structure of any script, some of the iterations may
be missed but overall, this approach can be used for other languages also. So, it is important for
the scientific community apart from residents of India. This paper is organized as follows:
Section 2 describes characteristics of the Devanagari script. Prior work is given in section 3.
Section 4 describes the proposed algorithm. Results and discussions are presented in section 5.
Concluding notes and future directions are given in section 6.

2 Characteristics of Devanagari script

Devanagari is a major script in India. Devanagari is used to write languages like Hindi,
Sanskrit, Nepali and Marathi languages. Devanagari consists of 11 vowels, 33 consonants,
called basic characters. Vowels may be written as independent characters or the use of
diacritical marks. These diacritical marks are defined as modifiers or matras. Characters, which
are derived by using modifiers, are called conjuncts. Characters, derived by combining two or
more consonants, are called compound characters. A sample of Devanagari character set is
given in Tables 1 and 2. In Devanagari, there is a horizontal line at the upper part of every

Table 1 Vowels and corresponding
modifiers

23256 Multimedia Tools and Applications (2019) 78:23255–23280

character. This line is called as Shirorekha or headline. The shirorekha of one character adjoins
with the shirorekha of the same word’s next character.

Except above basic characters, Devanagari script has 3 common conjuncts. Table 3 shows
common conjuncts.

There are very large numbers of conjuncts in Devanagari script. Most of the conjuncts
contain 2 or 3 consonants, but there are some conjuncts which combine 4 or 5 constants. Some
of the conjuncts are given in Table 4.

3 Related work

Survey papers are available for segmentation of characters from the document image [8, 11,
12, 18, 27]. Mohite and Bombade [19] discussed some challenging issues in the recognition of
the Devanagari script. They used structural properties of the script and fuzzy logic based
approach to the segmentation of Devanagari documents. Srivastav and Sahu [31] used
horizontal and vertical projection profiles for segmentation of Devanagari documents with
90% accuracy in character segmentation. Fujisawa et al. [14] have used projection profiles for
touching component segmentation with 95% accuracy. They presented a pattern-oriented
segmentation method for optical character recognition that leads to document structure
analysis. But, this method fails when the text is strongly skewed or overlapping. Kim et al.
[17] have used contour-tracing features for segmentation. From the contour of a touching
component, valley and mountain points are estimated and the cutting path is found to segment
the characters. The Contour tracing algorithm does not work well if the two numerals touch in
a straight-line fashion. They obtained a recognition rate of 91.8%. Chen and Wang [10] used
thinning-based methods for segmenting touching handwritten numeral strings. In this paper,
the combination of background and foreground analysis is used to segment touching hand-
written numeral strings. Thinning of both foreground and background regions is done. Several

Table 2. Consonants

Table 3 Common conjuncts

Multimedia Tools and Applications (2019) 78:23255–23280 23257

possible segmentation paths are constructed. Finally, the parameters of geometric properties of
each possible segmentation path are determined and the best segmentation path is decided.
This algorithm can get a correct rate of 96% with a rejection rate of 7.8%. But, this method is
time-consuming and generates protrusions. These protrusions sometimes give wrong results.
Oliveira et al. [20] used a novel segmentation approach based on contour and profile features.
First, local minima of contour and profile features are defined as a basic point (BP). Second, a
point with more than two pixels in its neighborhood is defined as an intersection point (IP).
After that, the Euclidean distance scheme is applied to determine proximity between IP and
BP. This approach cannot solve the problem of multiple touching. Bansal and Sinha [5] used
the structural properties of the script like presence and relative location of a vertical line,
horizontal zero crossings, number of positions of the vertex points, moments and the nature of
constituent pure consonant form in the conjunct for segmentation of touching and fused
Devanagari characters.

Sulem et al. [32] presented a survey of existing line segmentation methods for historical
documents. They presented 6 line segmentation techniques as: projection profiles, smearing
methods, grouping, Hough based methods, repulsive-attractive network and stochastic
methods.

Pal et al. [21] used water reservoir based method and morphological, structural features to
segment touching numerals. In this sense, if water is poured on the top or bottom, then the
space will be filled with water. The distinction is performed based on the size and number of
water reservoir. Bounding box (BB) is applied on touching component to find touching
position. The authors considered close loops, reservoir height and distance from center of
the component as features for determining segmentation points. They achieved 94.8% accu-
racy. Several drawbacks are reported in this work, such as, ratio of two segmented digits is too
big, cutting length is very long, best reservoir did not exist, and boundary of the reservoir
contains a break point. Nevertheless, the water reservoir approach might have failed when deal
with broken character. Sharma and Lehal [29] proposed an algorithm to segment the words in
an iterative manner by focusing on the presence of headline, aspect ratio of the characters and
projection profiles. This work performed segmentation in three phases. First phase performs
basic segmentation, second phase segments under-segmented words and over-segmentation is
handled in the third phase. Tripathy and Pal [33] proposed water reservoir based method to
segment characters of unconstrained Oriya text. At first, isolated and touching characters in a
word are identified. Next touching characters of the word are segmented based on the reservoir
base area points and structural feature of the component. Brodic and Milivojevic [7] presented
water flow algorithm for text line segmentation. This algorithm assumes hypothetical water
flows under few specified angles of the image frame from left to right and vice versa. Bar-
Yosef et al. [6] proposed a novel approach for text line segmentation based on adaptive local
projection profiles for degraded documents with text lines written in large skew. They applied
the local algorithm in an incremental manner that adapts to the skew of each text line as it
progresses. They achieved very accurate results on a set of degraded documents with lines
written in different skew angles and curvature.

Table 4 Some of the conjuncts in
Devanagari script

23258 Multimedia Tools and Applications (2019) 78:23255–23280

Jindal et al. [16] studied segmentation problems in the printed degraded Gurmukhi script
and proposed solution for segmenting touching characters in the upper zone of machine
printed Gurmukhi script. This technique is based on the structural properties of the Gurmukhi
script characters. Concavity and convexity of the characters have been studied and using top
profile projections, the touching characters in upper zone have been segmented. The recogni-
tion rate of 91% has been achieved for segmenting the touching characters in the upper zone.
Alam and Kashem [2] gave a complete Optical Character Recognition (OCR) system for
printed Bangla characters. They used the headline and baseline to segment characters. Reddy
et al. [26] used topological properties in terms of zones, component combinations, and
behavioral aspects of syllables in the segmentation process for Telugu script. They proposed
split profile algorithm while handling touching components. Alaei et al. [1] used a piecewise
painting technique for line segmentation of unconstrained handwritten text. They decomposed
text block vertically into parallel pipe structures called as strips. Each row in each strip is
painted with a gray intensity, which is the average intensity value of the gray values of all
pixels present in that row-strip. Subsequently, painted pipes are converted into two-tone paint
and smoothed. They found piece-wise Potential Separating Line (PPSL) between two consec-
utive black space. The PPSLs are concatenated to produce the segmentation of text lines.
Sridevi and Sbashini [30] have used computational intelligence techniques for text line and
character segmentation of Tamil ancient documents. In this work, two methods are proposed,
one for line segmentation and another for character segmentation. First method uses projection
profile and PSO for line segmentation. In the second method combination of connected
components along with the nearest neighborhood methods are used to segment the characters.

Shah et al. [28] used neighborhood tracing algorithm and projection profile in order to
provide individual characters from a word in the handwritten Devanagari text.
Panichkriangkrai et al. [23] have proposed text and line extraction system for Japanese
historical woodblock printed books. Vertical projection was used on binarized images for
separating text lines. Connected components (CC) were extracted by applying an adaptive
binarization on the grayscale images. Rule-based integration was applied to merge or split the
connected components to extract characters. Gatos et al. [15] presented a novel segmentation
module for text zone as well as a text line detection for handwritten ancient documents to
handle several challenging cases such as horizontal and vertical rule lines overlapping with the
text, two column documents and characters of different text lines touching vertically. Bag and
Krishna [4] proposed segmentation of characters in handwritten Hindi words based on
structural patterns. The proposed method can cope with high variations in writing style and
skewed header lines as input. The average success rate is 96.93%. Rao et al. [25] have used a
hybrid model that entails segmentation in noisy images followed by binarization for segmen-
tation of ancient Telugu documents. In the first phase, the horizontal profile pattern is
convolved with a Gaussian kernel. The statistical properties of meaningful units are explored
through an extensive analysis of the geometrical patterns of meaningful units. In the second
phase, noisy documents are cleaned with the help of a modified IGT (Iterative Global
Threshold) algorithm and then segmented by using the conventional profile mechanism. They
obtained maximum accuracy of 95.59% for the cleaned story books. Chen et al. [9] have
presented a Conditional Random Field (CRF) model to segment handwritten historical
document images into different regions. Page segmentation was considered as a pixel-
labeling problem. Features were learned from pixel intensity values with stacked convolutional
auto-encoders in an unsupervised manner. Then a CRF model was introduced to improve the
segmentation. As per the best of our knowledge, not much work has been done for

Multimedia Tools and Applications (2019) 78:23255–23280 23259

segmentation of Devanagari ancient manuscripts. In this paper, we propose a scheme to
segment characters using an iterative approach in preprocessed binarized Devanagari ancient
manuscripts. Babu and Jangid [3] presented an algorithm for segmentation of touching
characters in Devanagari script using structural properties of the script. They achieved the
accuracy of 85%. Dutta et al. [13] released a new handwritten word dataset for Devanagari,
IIIT-HW-Dev to alleviate some of the challenging issued in Devanagari script. They
benchmarked the IIIT-HW-Dev dataset using a CNN RNN hybrid architecture. They used
the proposed pipeline on a public dataset, RoyDB and achieve state of the art results. Water
flow method was used to segment lines from the document image [7]. Also water flow method
assumes pouring of water at a certain angle. [24] used drop fall method. In this method, a
hypothetical drop of water falls in a downward direction to find segmentation path. Tripathy
and Pal [33] used the water reservoir method to segment characters. This method uses the thick
flow of water, but in the present work, we have used only a single drop of water to get the
water passage. In the proposed work, we have combined the above approaches to get a new
technique named drop flow. The drop flow method is used to segment some touching
characters.

4 Proposed work

A typical OCR system consists of a number of phases like image acquisition, pre-processing,
segmentation, feature extraction, and classification. In the present work, we have proposed
algorithm for the third phase of OCR (segmentation).

4.1 Digitization and pre-processing

For experimental work, Devanagari ancient documents were collected from various libraries
and museums. These documents were preprocessed to get clean black and white images. For
image preprocessing, 3 steps are taken. First, document image is enhanced by using an
autocorrect feature of office image viewer. As a second step image is converted into a binary
image and global threshold value is considered for binarization. If the global threshold value
does not provide good results, then the local threshold value is considered as the third step.

4.2 Segmentation

Segmentation phase is used to segment the input document image into lines, words and
characters. The algorithms used for segmentation are given below:

4.2.1 Line segmentation

Line segmentation is the process of identifying lines from a document image. Devanagari
ancient documents have slanting and touching/overlapping lines. We used piecewise projec-
tion profile to segment lines [1]. The document image is divided into vertical strips and then
piecewise horizontal projection profile was used to segment lines. Next average line height
was used to check the correctness of segmentation. Based on average line height some lines
were found to be over-segmented and some lines were found to be under-segmented. Under-
segmentation and over-segmentation were dealt with in the succeeding phase.

23260 Multimedia Tools and Applications (2019) 78:23255–23280

A general algorithm for line segmentation is given below:
Algorithm line_segmentation.

The results of this algorithm are shown in Figs from 1 to 5. Figure 1 depicts binarized and
preprocessed Devanagari ancient document. Line segmentation using piecewise projection
profile is depicted in Fig. 2. Figure 3a shows over segmented components and Fig. 3b shows
results after handling over-segmentation. An under segmented component and the search area
for missing PSL is depicted in Fig. 4. Figure 5a shows under segmented components and
Fig. 5b shows results after handling under-segmentation.

Complete results of line segmentation algorithm are shown in Fig. 6. In Fig. 6 different
lines of the document are shown in different colours.

Limitations of line segmentation algorithm Line segmentation algorithm depends on the
average line height. If this is computed wrong, the results may be wrong as shown in Fig. 7b.
Figure 7a gives the original document and Fig. 7b shows the document after line segmentation.
As we can see that lines are not correctly segmented. This is because of wrong average line
height.

4.2.2 Word segmentation

To segment words from segmented lines, the vertical projection profile method is used [33]. If
we get consecutive columns with 0 black pixels, then it is decided to be a word boundary.

Fig. 1 Binarized Devanagari Ancient Manuscript

Step I. Divide the document image in stripes of fixed size.

Step II. Compute horizontal projection profiles (HPP) of each row of each stripe.

Step III. If HPP<=2 for any row, then that row is considered as a piece-wise separating line (PSL).

Step IV. Consecutive PSLs are reduced to one PSL only.

Step V. Average line height(avg_line_height) is computed.

Step VI. Based on avg_line_height, over-segmentation is detected and handled.

Step VII. Based on avg_line_height, under-segmentation is detected and handled.

Step VIII. Finally, lines are separated.

Multimedia Tools and Applications (2019) 78:23255–23280 23261

4.2.3 Character segmentation

Character segmentation of words is difficult because (i) two consecutive characters of a word
may touch each other (ii) two side-by-side non-touching characters may overlap. They may not
be vertically separable. Character segmentation in Devanagari documents becomes very easy if
the headline (Shirorekha) is removed, but ancient Devanagari documents have thick and
uneven headline. So, it is very difficult to remove the headline from such documents.
Characters are segmented without removing headline. The process of character segmentation
using multiple iterations are illustrated in Fig. 8.

Fig. 2 Line segmentation using Piece wise projection profile

(a) Over-segmented components shown in circles

(b) Document after resolving over-segmentation

Fig. 3 a Over-segmented components shown in circles. b Document after resolving over-segmentation.

23262 Multimedia Tools and Applications (2019) 78:23255–23280

As depicted in Fig. 8, characters of the document image are segmented in multiple iterations. In
first iteration, connected components in the document image are found. Connected components of
the sample document are shown in Fig. 9. All the connected components were assigned a different
colour. Due to writing style of ancient documents, many times, most of the characters have been

Fig. 4 Search area for missing PSL in under-segmented lines

(a) Under-segmented components shown in circles

(b) Document after resolving under-segmentation

Fig. 5 a Under-segmented components shown in circles. b Document after resolving under-segmentation.

Multimedia Tools and Applications (2019) 78:23255–23280 23263

segmented correctly as in most of the ancient documents, there is a slight break in the headline after
every character as depicted in Fig. 10. But, there are many characters which are connected with the
headline as shown in Fig. 11.

Fig. 6 Different lines are shown in different colours

(a) Sample document

(b) Incorrect line segmentation

Fig. 7 a Sample document. b Incorrect line segmentation

23264 Multimedia Tools and Applications (2019) 78:23255–23280

Also, there are other types of components which are not connected with the headline, but
are connected somewhere else. Figure 12 shows one such component.

To find touching/overlapping characters, aspect ratio of all the connected components was
found. To find the aspect ratio we recorded the coordinates of the start and end of each
connected component.

aspect l½ � i½ � ¼
end char l½ � i½ �−start char l½ � i½ �

�

line end boundary s½ � l½ �−line start boundary s½ � l½ �ð Þ
Here, aspect[l][i] is the aspect ratio of ith component in lth line.

end_char[l][i] is the maximum x coordinate of the ith component in lth line
start_char[l][i] is the minimum x coordinate of the ith component in lth line
line_end_boundary[s][l] is the maximum y coordinate of lth line of sth strip
line_start_boundary[s][l] is the minimum y coordinate of lth line of sth strip

If the aspect ratio of any component is greater than the threshold value, it is identified as
having touching characters. This threshold value is determined after thorough experimentation
with different values. Figure 13 shows connected components of our sample document image.
Different connected components are shown in different colours. Components with touching
characters are shown in bounding boxes in Fig. 13. An example of a component with touching
characters is shown in Fig. 14a. As we can see that these characters are connected by the
headline only. In the second iteration, such touching characters were segmented.

In ancient documents, the headline is thick and uneven. So, headline removal algo-
rithms don’t work well with such documents. We tried to segment characters without
removing headline. Water flow method was used to segment lines from the document
image [7]. Also water flow method assumes pouring of water at a certain angle. [24]

Normalize segmented components using Nearest Neighbour Interpola�on(NNI)
technique.

Remove noise by removing components of a density less than the threshold value.

Segment matras in the upper zone by using the headline.

Find and segment components open at the headline, but connected elsewhere by
using drop flow method and Bresenham’s line drawing algorithm

Segment connected components connected at headline by using drop flow method.

Find touching components having aspect ra�o greater than the threshold value

Finds aspect ra�o of all connected components.

Find the connected components of the document image.

Word segmenta�on

Line segmenta�on

Fig. 8 Character segmentation process

Multimedia Tools and Applications (2019) 78:23255–23280 23265

used drop fall method. In this method, a hypothetical drop of water falls in a downward
direction to find segmentation path. Tripathy and Pal [33] used the water reservoir
method to segment characters. This method uses the thick flow of water, but in the
present work, we have used only a single drop of water to get the water passage. In the
proposed work, we have combined the above approaches to get a new technique named
drop flow. The drop flow method is used to segment some touching characters. For this,
first of all the presence of headline was estimated based on the maximum number of
pixels in the horizontal direction in the upper half of the connected component. To drop
flow method, a hypothetical drop of water was poured from the bottom towards the
upper side. Water would find its path if there was a white pixel just above or to the above
left or to the above right of the current pixel. If the water is able to find its path up to the
headline, then that path would be considered as the segment path and the headline was
segmented at that point. Figure 14b shows the segmented components after using drop
flow method of Fig. 14a. There are few problems with this method. Sometimes, though
very rarely, maximum number of pixels in a row is not in the headline.

In Fig. 15a, maximum number of pixels is in the vertical middle of the component. Such
situation gives bad results as can be seen in Fig. 15b. There are some characters which are

Fig. 10 Characters already segmented because of writing style

Fig. 11 Characters connected at headline

Fig. 9 Connected component of our sample document

23266 Multimedia Tools and Applications (2019) 78:23255–23280

connected by 1, 2 or 3 consecutive pixels at a place. Based on the thickness of the character, it
was observed that such connection between characters was due to noise in the document. Such
touching components were also segmented using drop flow method, but now 1, 2 or 3 black
pixels (based on thickness of characters) on the way were ignored and were changed to
background colour. One such component is illustrated in Fig. 16a and result after segmentation
of this component is shown in Fig. 16b.

In the next iteration, those components were considered which were open in the
headline but connected somewhere else. To segment this type of connected components,
flow of a drop is found from top to bottom in addition to the flow from bottom to top.
The point where the water stops was found in both the flows. Then Bresenham’s line
drawing algorithm was used to find the segmentation path between these two points. One
such component is shown in Fig. 17a and result after segmentation is shown in Fig. 17b.

Up to this iteration, we got vertical segmentation paths. But, in Devanagari characters are
divided in the top strip, core strip and the bottom strip. It was observed that in most of the
ancient documents, there is no clear separation between core strip and the bottom strip. But, we
can separate the top strip and core strip. For this work, we have considered only two strips: top
strip and core strip as shown in Fig. 18.

Up to this point, matra (modifier) in the top strip is not segmented. Matras in top strip
are segmented in the next iteration. To achieve the previous results, presence of headline
was estimated based on the maximum number of black pixels in the upper half of the
character. In these documents, the headline is a thick line. So, the line just above the
headline may not be the required segmentation line. From the headline, we continue

Fig. 12 Characters not connected
at headline but somewhere else

Fig. 13 Touching components in bounded boxes

Multimedia Tools and Applications (2019) 78:23255–23280 23267

moving in an upward direction until we get a line where difference of horizontal
projection profile between the headline and the current line is greater than the threshold
value. This line is considered to be the required segmentation line between matra and
character. Results of the matra segmentation are shown in Fig. 19.

There are still some connected components which need to be segmented such as shown in
Fig. 20.

We will treat some of these components as conjuncts. In the process of segmentation, we
got some small dots as noise. These dots were removed in the next iteration. To remove these
dots, number of pixels in each character was counted. Characters with pixels less than the
threshold value were removed from the segmented image as shown in Fig. 21. The threshold
value is decided after experimentation.

Final document after character segmentation is shown in Fig. 22. Different characters are
shown in different colours. In the next iteration separate image of each character was created.
These images were normalized into a 64 × 64 window using Normalization Nearest Neighbour
Interpolation (NNI) algorithm. Figure 23 shows finally separated characters.

Based on above discussion, character segmenting algorithm may be concluded as follows:

Fig. 15 Result using water flow method a A sample where maximum black pixels are not in the headline b
Characters not segmented correctly

(a) Characters connected at headline only

(b) Result after using water flow method

Fig. 14 a Characters connected at headline only. b Result after using water flow method

23268 Multimedia Tools and Applications (2019) 78:23255–23280

Algorithm for character_segmentation This algorithm gives detailed steps for character
segmentation. Following data structure has been used in the algorithm:

Step 1: Find connected components of the document image.
Step 2: Find aspect ratio of all connected components.

To find the aspect ratio we recorded the coordinates of the start and end of each connected
component.

aspect l½ � i½ � ¼
end char l½ � i½ �−start char l½ � i½ �

�

line end boundary s½ � l½ �−line start boundary s½ � l½ �ð Þ

Fig. 16 a Component before segmentation b after segmentation

Fig. 17 a Component before segmentation b after segmentation

aspect[l][i] is the aspect ratio of i
th

component in l
th

line

end_char[l][i] is the maximum x coordinate of the i
th

component in l
th

line

start_char[l][i] is the minimum x coordinate of the ith component in l
th

line

line_end_boundary[s][l] is the maximum y coordinate of lth line of s
th

strip.

line_start_boundary[s][l] is the minimum y coordinate of lth line of sth strip

con_startx[c] = minimum x coordinate of the cth touching component,

con_starty[c] = minimum y coordinate of the cth touching component,

con_endx[c] = maximum x coordinate of the cth touching component,

con_endy[c] = maximum y coordinated of the cth touching component,

hpp = horizontal projection profile

maxhpp = maximum value of hpp

heady = y coordinate of the component having maximum number of pixels in that row.

hpp_prev = hpp of previous lines

cc[y][x] = a number representing the intensity code of pixel(x, y). For a white pixel, cc[y][x]=0 and for any other colour

cc[y][x] != 0

Multimedia Tools and Applications (2019) 78:23255–23280 23269

Step 3: Find touching character components.

If aspect ratio of any connected component is greater than a certain threshold value,
then this connected component is assumed to be having touching characters. Then,
coordinates of this touching component are recorded as con_startx, con_starty,
con_endx and con_endy.

Here y_min is a function used to find the minimum y coordinate of the component.and

y_max is a function used to find maximum y coordinate of the component.

These functions are required because one touching component may span over more than
one stripes and each stripe may have different minimum y and maximum y values.

Step 4: Estimate the position of headline of each touching component (a line with maximum
number of black pixels).

Fig. 18 Two strips of Ancient Devanagari word

Fig. 19 a Component before matra segmentation b after segmentation

if (aspect[l][i]>1.3) then

con_startx[c]=start_char[l][i]

con_starty[c]=y_min(start_char[l][i],end_char[l][i],l)

con_endx[c]=end_char[l][i]

con_endy[c]=y_max(start_char[l][i],end_char[l][i],l)

end if

23270 Multimedia Tools and Applications (2019) 78:23255–23280

Step 5: Find those connected components which are connected with headline only or
connected anywhere by at most 3 pixels by using drop flow method from bottom
to upward direction and segment those.

for(y=con_starty[i] to con_starty[i]+(con_endy[i]-con_starty[i])/2) //upper half of the line

{

hpp=0;

for(x=con_startx[i] to con_endx[i])

if(cc[y][x]!=0) then

hpp = hpp+1

end if

end for

if(hpp>maxhpp) then

maxhpp=hpp;

heady=y;

end if

end for

Fig. 20 Components which are not correctly segmented

(a) Component with noise

(b) Component after noise removal

Fig. 21 a Component with noise. b Component after noise removal

Multimedia Tools and Applications (2019) 78:23255–23280 23271

for(x=con_startx[i]+1 to x<con_endx[i]-1)

x1=x

for(p=1 to 10)

onwaypixelx[p]=0

onwaypixely[p]=0

p=0

line_status=0

for(y = con_endy[i] to heady+7 step -1)

if(cc[y][x]!=0) then

if(cc[y-1][x]=0) then

onwaypixelx[p]=x

onwaypixely[p]=y

p = p+1

y = y-1

else

if(cc[y][x-1]!=0) then

if(cc[y][x+1]!=0) then

line_status=1

break

else

x+1

end if

else

x-1

end if

end if

end if

end for

if(line_status=0) then

for(y=heady-5 to y=heady+5)

cc[y][x]=0

if(onwaypixelx[0]!=0) then

for(temp=0 to temp=p)

cc[onwaypixelx[temp]][onwaypixely[temp]]=0

end for

end if

end for

end if

x=x1

end for

23272 Multimedia Tools and Applications (2019) 78:23255–23280

Step 6: Find those components which are open in the headline but connected elsewhere
by using drop flow method in an upward as well as downward direction and then
use Bresenham’s line drawing algorithm to segment these components.

Step 7: Segment matras in the upper zone by using the headline.

From the headline, we continue moving in an upward direction until we get a line where
difference of horizontal projection profile between the headline and the current line is greater
than the threshold value. This line is considered to be the required segmentation line between
matra and character.

[steps for drop flow in downward direction]

for x=con_startx[i]+1 to con_endx[i]

x1=x;

line_status=0;

for y = con_starty[i] to con_endy[i]

if(cc[y][x]!=0)

if(cc[y][x+1]!=0)

if(cc[y][x-1]!=0)

if(y>heady+4)

line_status=1

else

line_status=2

break;

end if

else

x = x-1

endif

end if

else

x = x+1

end if

end for

end for

Multimedia Tools and Applications (2019) 78:23255–23280 23273

Step 8: Remove noise by removing components with density less than threshold value.
Step 9: Normalize segmented components using Nearest Neighbourhood Interpolation

(NNI) technique.

5 Results and discussion

5.1 Results for line segmentation

For experiments of our algorithm, Devanagari ancient manuscripts were binarized and
preprocessed. Those images were selected which did not have partial lines. The proposed line
segmentation algorithm was tested on 1500 text lines from 130 document images. These lines
were taken from different manuscripts with different writing styles. To check whether a line is
segmented correctly or not, we generated a coloured image of the document with a different
colour for each line (as shown in Fig. 6). Accuracy of line segmentation algorithm is measured
according to the following rule: If X out of Y characters falls correctly in their respective lines,
then the accuracy of the algorithm is: X/Y × 100%. As observed, accuracy obtained for line
segmentation in these documents is between 97.0% and 100%. For many documents, line
segmentation accuracy is 100%. Most of the errors in segmentation are observed because of
the modifier () in the upper zone. Many times, this modifier is not connected with the

Fig. 22 Final result of our sample document after character segmentation

For y=heady-1 to ystart_char[l][i]

if(maxhpp-hpp_prev[y-ystart_char[l][i]]>5) then

reqd_y=y

endif

end for

23274 Multimedia Tools and Applications (2019) 78:23255–23280

headline. So it may be seen as part of the previous line. At least 97.0% of the characters fall
correctly in their respective lines. This accuracy can be enhanced in the next phases of OCR.

5.2 Results for character segmentation

Ancient manuscript contains isolated as well as touching/overlapping characters. To check
whether a character is segmented correctly or not, we generated a coloured image of the
document with a different colour for each character (as shown in Fig. 22). Accuracy of the
character segmentation algorithm is measured according to the following rule: If X out of Y
characters is segmented correctly, then the accuracy of the algorithm is: X/Y × 100%.

5.3 Results for isolated components

For isolated characters average accuracy of the proposed algorithm is 98.5%. An error occurs
when the width of a touching component is small and it is identified as an isolated character or
a character is over segmented.

5.4 Results for overlapping/touching components

Our algorithm can handle overlapping components very well. The average accuracy of
the proposed algorithm for overlapping components is considered to be 100%. In
Devanagari ancient manuscripts, there are two characters touching or more character
touching components. Our algorithm can deal with any number of touching characters.
Accuracy of our proposed algorithm for touching characters is about 96.0%. Our
algorithm can segment components which touch at multiple places. Our proposed

Fig. 24 Component with small
width of touching characters

Fig. 23 Separated and normalized characters of our sample document

Multimedia Tools and Applications (2019) 78:23255–23280 23275

algorithm is independent of character size, but depends somewhat on the thickness of
the character. There is no requirement of normalization for character segmentation. We
have proposed normalization for feature extraction phase. An error occurs if the
touching area of a connected component is large. Also, an error occurs when the width
of a touching component is small and it is identified as an isolated character (Fig. 24)
or the width of isolated character is large and the character is over segmented (Fig. 25).

5.5 Comparison with existing work

As no standard database is available for ancient Devanagari script and no literature is available
for complete segmentation of the same. So, we have tried to refer that work in result analysis
which is as close to our work as possible. In future, we are planning to benchmark our own
database. Accuracy comparison of proposed work with existing techniques is provided in
Table 5.

6 Inferences and future directions

An algorithm for character segmentation in Devanagari ancient manuscripts is proposed
in this paper. Here, at first, the piecewise horizontal projection profile was used for
identifying lines. Next based on average line height, under-segmentation and over-
segmentation was handled. After that, the words were segmented using vertical projec-
tion profiles. For character segmentation, a novel technique ‘drop flow method’ is
proposed. Also, connected component analysis, Bresenham’s line algorithm and other

Table 5 Comparison with existing methodologies

Author Data Technique Accuracy

Tripathy and Pal [33] Oriya Handwritten Text Water Reservoir method 95.0%
Palakollu et al. [22] Devanagari Handwritten Text Straighten Headline 89.9%
Rao et al. [25] Telugu Ancient Documents Hybrid model 70.6%
Proposed Work Ancient Devanagari Text Drop Flow Algorithm 96.0%

Fig. 25 Over-segmented
characters due to large width of
isolated character

23276 Multimedia Tools and Applications (2019) 78:23255–23280

structural features are used in the segmentation process. Then a noise was removed and
nearest neighbour interpolation method was used for normalization of characters. We
achieved an overall accuracy of 96% for character segmentation which is better than
other proposed techniques in the literature. To the best of our knowledge, this is the first
work of its kind on Devanagari ancient manuscripts. The proposed algorithm can be used
for some other Indian scripts also which are similar in structure to Devanagari. The
proposed work has following limitations: This algorithm depends a lot on average line
height. If it is not computed correctly, then our algorithm may not work correctly as
depicted in Fig. 7a and b. Also, this algorithm may not work well with manuscripts
having partial lines. Some conjuncts and very complex connected components are not
segmented correctly by this algorithm as shown in Fig. 20. This algorithm does not work
if the maximum number of pixels is not in the headline as depicted in Fig. 15a and b.
This method may result in less accurate if the width of the touching area is more or the
width of the connected component is less. Some of such components will be considered
as conjuncts while some components occur due to errors (Fig. 20). Also, an error occurs
when the width of a touching component is small and it is identified as an isolated
character (Fig. 24) or the width of isolated character is large and the character is over
segmented (Fig. 25). Future work may involve dealing with these limitations.

References

1. Alaei A, Nagabhushan P, Pal U (2011) Piece-wise painting technique for line segmentation of unconstrained
handwritten text: a specific study with Persian text documents. Pattern Anal Applic 14(4):381–394

2. Alam MM, Kashem MA (2010) A complete Bangla OCR system for printed characters. International
Journal of Computer and Information Technology 1(1):30–35

3. Babu S, Jangid M (2016) Touching character segmentation of Devanagari script. ICCCNT '16 Proceedings
of the 7th International Conference on Computing Communication and Networking Technologies, Article
No. 26, Dallas, TX, USA: doi:https://doi.org/10.1145/2967878.2967908

4. Bag S, Krishna A (2015) Character segmentation of Hindi unconstrained handwritten words. Proceedings of
the 17th International workshop on Combinatorial Image Analysis 9448:247–260

5. Bansal V, Sinha RMK (2002) Segmentation of touching and fused Devanagari characters. Pattern Recogn
35(4):875–893

6. Bar-Yosef I, Hagbi N, Kedem K, Dinstein I (2009) Line segmentation for degraded handwritten historical
documents. 10th International Conference on Document Analysis and Recognition, Barcelona, pp 1161–
1165

7. Brodic D, Milivojevic Z (2009) Reference text line identification based on water flow algorithm.
Proceedings of the International Scientific Conference on Information, Communication and Energy
Systems and Technologies 17(1):30–47

8. Casey RG, Lecolinet E (1996) A survey of methods and strategies in character segmentation. IEEE Trans
Pattern Anal Mach Intell 18(7):690–706

9. Chen K, Seuret M, Liwicki M, Hennebert J, Liu CL, Ingold R (2016) Page segmentation for historical
handwritten document images using conditional random fields. Proceedings of the International Conference
on Frontiers in Handwriting Recognition (ICFHR), 90–95

10. Chen Y, Wang J (2000) Segmentation of single-or multiple-touching handwritten numeral string using
background and foreground analysis. IEEE Trans Pattern Anal Mach Intell 22(11):1304–1317

11. Dogra S, Sehgal A (2017) Devanagari letters segmentation and recognition system: a brief review. IJSRD -
International Journal for Scientific Research & Development 5(01):1418–1422

12. Dunn CE, Wang PSP (1992) Character segmentation techniques for handwritten text-a survey. Proceedings
of the 11th International Conference on Recognition Methodology and Systems 2:577–580

13. Dutta K, Krishnan P, Mathew M, Jawahar CV (2018) Offline Handwriting Recognition on Devanagari
Using a New Benchmark Dataset. 13th IAPR International Workshop on Document Analysis Systems
(DAS), Vienna, pp 25–30. https://doi.org/10.1109/DAS.2018.69

Multimedia Tools and Applications (2019) 78:23255–23280 23277

https://doi.org/10.1145/2967878.2967908
https://doi.org/10.1109/DAS.2018.69

14. Fujisawa H, Nakano Y, Kurino K (1992) Segmentation methods for character recognition from segmenta-
tion to document structure analysis. Proc IEEE 80(7):1079–1092

15. Gatos B, Louloudis G, Stamatopoulos N (2014) Segmentation of historical handwritten documents into text
zones and text lines. Proceedings of the International Conference on Frontiers in Handwriting Recognition
(ICFHR), 464–469.

16. Jindal MK, Lehal GS, Sharma RK (2009) Segmentation of touching characters in upper zone in printed
Gurmukhi script. Proceedings of 2nd Bangalore Annual Compute Conference, 1–6

17. Kim KK, Kim JH and Suen CY (2000) Recognition of unconstrained handwritten numeral strings by
composite segmentation method. Proceedings of the 15th International Conference on Pattern Recognition:
594–597

18. Kumar A, Yadav M, Patnaik T, Kumar B (2013) A survey on touching character segmentation. International
Journal of Engineering and Advanced Technology 2(3):569–574

19. Mohite RS, Bombade BR (2014) Challenging issues in Devanagari script recognition. International Journal
Computer Technology & Applications 5(3):947–952

20. Oliveira LS, Lethelier E, Bortolozzi F, Sabourin R (2000) A new approach to segment handwritten digits.
Proceedings of the 7th International Workshop on Frontiers in Handwriting Recognition, 577–582

21. Pal U, Belaid A, Choisy C (2003) Touching numeral segmentation using water reservoir concept. Pattern
Recogn Lett 24(1–3):261–272

22. Palakollu S, Dhir R and Rani R (2012) Handwritten Hindi text segmentation techniques for lines and
characters. Proceedings of the World Congress on Engineering and Computer Science, 1–5

23. Panichkriangkrai C, Li L and Hachimura K (2013) Character segmentation and retrieval for learning support
system of Japanese historical books. Proceedings of the 2nd International Workshop on Historical
Document Imaging and Processing, 118–122

24. Rao S, Junitha M, Bhaskara S, Rao S (2014) Segmentation of touching Telugu characters under Noisy
environment. Journal of Emerging Trends in Computing and Information Sciences 5(9):698–702

25. Rao NV, Sastry ASCS, Chakravarthy ASN, Rao AVS (2015) Analysis of canonical character segmentation
technique for ancient Telugu text documents. J Theor Appl Inf Technol 82(2):311–320

26. Reddy LP, Babu TR, Rao NV, Babu BR (2010) Touching syllable segmentation using Split profile
algorithm. International Journal of Computer Science Issues 7(3):17–26

27. Saba T, Sulong G, Rehman A (2010) A survey on methods and strategies on touched character segmen-
tation. International Journal of Research and Reviews in Computer Science 1(2):103–114

28. Shah K, Singh J, Pushkarna P, Kurawadwala H, Alate A (2013) A new approach for segmentation of
Devnagari characters. Global Journal for Research Analysis 2(4):162–164

29. Sharma DV, Lehal GS (2006) An iterative algorithm for segmentation of isolated handwritten words in
Gurmukhi script. The 18th International Conference on Pattern Recognition (ICPR'06), pp 1022–1025

30. Sridevi N, Sbashini P (2012) Segmentation of text lines and characters in ancient Tamil script documents
using computational intelligence techniques. Int J Comput Appl 52(14):7–12

31. Srivastav A, Sahu N (2016) Segmentation of Devanagari handwritten characters. Int J Comput Appl
142(14):15–18

32. Sulem LL, Zahour A, Taconet B (2007) Text line segmentation of historical documents: a survey. Int J Doc
Anal Recognit 9(2–4):123–138

33. Tripathy N, Pal U (2006) Handwriting segmentation of unconstrained Oriya text. SADHANA 31(6):755–
769

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

23278 Multimedia Tools and Applications (2019) 78:23255–23280

Sonika Rani Narang received her Bachelor’s degree in Inter Arts in 1993 and Post Graduate degree in
Computer Applications from Guru Nanak Dev University, Amritsar, India in 1996. She is pursuing her PhD
degree in computer science from Panjab University, Chandigarh, India. She is working as Assistant Professor in
DAV College, Abohar, Punjab, INDIA. Her research interests include Character Recognition.

Manish Kumar Jindal received his Bachelors degree in science in 1996 and Post Graduate degree in Computer
Applications from Punjabi University, Patiala, India in 1999. He holds a Gold Medal in his Post graduation. He
received his Ph.D. degree in Computer Science & Engineering from Thapar University, Patiala, India in 2008. He
is working as Associate Professor in Panjab University Regional Centre, Muktsar, Punjab, India. His research
interests include Character Recognition.

Multimedia Tools and Applications (2019) 78:23255–23280 23279

Munish Kumar received his Master’s degree in Computer Science & Engineering from Thapar University,
Patiala, India in 2008. He received his Ph.D. degree from Thapar University, Patiala, India in 2015. He started his
career as an Assistant Professor in computer application at Jaito Centre of Punjabi university, Patiala. Presently,
he is working as Assistant Professor in Department of Computational Sciences, Maharaja Ranjit Singh Punjab
Technical University, Bathinda, Punjab, India. His research interests include Character Recognition, Computer
Vision and Pattern Recognition.

Affiliations

Sonika Rani Narang1 & Manish Kumar Jindal2 & Munish Kumar3

1 Department of Computer Science, D.A.V. College, Abohar, Punjab, India
2 Department of Computer Science & Applications, Panjab University Regional Centre, Muktsar, Punjab,

India
3 Department of Computational Sciences, Maharaja Ranjit Singh Punjab Technical University, Bathinda,

Punjab, India

23280 Multimedia Tools and Applications (2019) 78:23255–23280

	Drop flow method: an iterative algorithm for complete segmentation of Devanagari ancient manuscripts
	Abstract
	Introduction
	Characteristics of Devanagari script
	Related work
	Proposed work
	Digitization and pre-processing
	Segmentation
	Line segmentation
	Word segmentation
	Character segmentation

	Results and discussion
	Results for line segmentation
	Results for character segmentation
	Results for isolated components
	Results for overlapping/touching components
	Comparison with existing work

	Inferences and future directions
	References

