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Abstract
Deep convolutional networks bring new energy to image steganography. It is an opportu-
nity for steganalysis research. However, the operations to widen the gap between covers and
stegos are only in the preprocessing layers for most existing networks. In this paper, a resid-
ual steganalytic network (RestegNet) is proposed to overcome this limitation. We design a
novel building block group, which consists of two alternating building blocks: 1) A sharpen-
ing block based on residual connections (ShRC), which makes the noise of steganography
overwhelm the image content, and aims to enhance steganographic signal detectability. 2)
A smoothing block based on residual connections (SmRC), which seeks to downsample the
feature maps to boil them down to useful data. First, we use the same preprocessing layers
as previous methods to ensure minimum performance. Then, we use these building block
groups to exaggerate the traces of steganography further and make the difference between
covers and stegos in the feature extraction layers. Contrastive experiments with previous
methods conducted on the BOSSbase 1.01 demonstrate the effectiveness and the superior
performance of the proposed network.
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1 Introduction

Image steganography aims to conceal messages in images to covert communication. The
goal of steganalysis is to detect it. Steganalysis is a challenging task because it needs to
recognize the change in pixels while it is entirely invisible to the naked eye.

In the past, the main steganalyzers are based on well-designed handcrafted features,
trying to cope with the content-adaptive steganographic schemes better. For instance, the
Spatial Rich Model (SRM) [4] and its variants tSRM [12], maxSRM [3]. Recently, the ste-
ganalysis results have been improved over a short period. In large part, these advances have
been driven by Convolutional Neural Network (CNN). CNN has obtained spectacular results
in image recognition and segmentation tasks. It also brings new air to image forensics,
which is an opportunity for steganalysis. For instance, Qian [9], XuNet [14, 15], TLU-CNN
[16], SCA-TLU-CNN [16], Yedroudj-Net [17], Zhu-Net [19], ReST-Net [8], JPEG-phase-
aware XuNet [2], deep network targets to J-UNIWARD [13]. All these methods have
comparable or even better performances than traditional handcrafted feature-based meth-
ods. The typical steganalysis networks combine two elements from the traditional computer
vision tasks. The first one is image preprocessing, where the goal is to extract noise residuals.
The second one is the binary classification, where the goal is to classify the data into two groups,
namely covers and stegos. However, most of these schemes only focus on increasing the dif-
ference between covers and stegos in the preprocessing layer, e.g., high-pass filtering layers for
transforming original images to noise residuals, activation layers to capture the hidden signals
better. The other layers are merely deepened, widened, or use various convolution kernels.

To break the limitations as mentioned above, our goal in this work is to widen the
gap between covers and stegos in the feature extraction layers and make the detection of
embedding traces more accurate. We propose a residual deep learning network for image
steganalysis, which is called RestegNet. The feature extraction layers of the proposed
network are composed of two building blocks: A sharpening block based on residual con-
nections (ShRC), and a smoothing block based on residual connections (SmRC). ShRC first
performs parallel filtering and batch normalization operations on the same input, then it con-
catenates them to one single output. Finally, it sums the feature maps with the initial input
in the end, which supplements the information by adding residuals. SmRC first performs
parallel filtering and batch normalization operations on the same input, and downsamples
them. Then, it concatenates them to one single output. In the end, it sums the feature maps
with the downsampled initial input, which distills the information by downsampling. ShRC
and SmRC are alternately used to supplement and distill the information after preprocessing
layers to overcome the existing limitations. The preprocessing layers of previous networks
are preserved, which allows us to enhance the performance without breaking their initial
behavior. Fig. 1 illustrates the above process in a simplified sequence flow diagram.

In summary, the main contributions of our work are two-fold:

(1) A novel steganalysis network is proposed, and two building blocks are designed to
emphasize traces of steganography to be further exaggerated:

(a) ShRC is intended to supplement information, aims to highlight small, faint
evidence of embedding to be greatly exaggerated.

(b) SmRC is designed to distill information, aims to compress redundant of the
useless image content of covers and stegos.

(2) The proposed network brings substantial improvements and achieves superior perfor-
mance on both detection accuracy and convergence speed. It surpasses the results of



Multimedia Tools and Applications (2019) 78:22711–22725 22713

Preprocessing Feature Extraction Classification

cover
stego

ShRC

SmRC

1 1 conv 
stride 1 

1 1 conv 
stride  1

SmRC

ShRC

Fig. 1 The flow diagram for RestegNet

XuNet (the detection accuracy is increased by 3.0787% to 7.4514%) and TLU-CNN
(The convergence speed is significantly improved by more than 8 times).

The rest of this paper is organized as follows. In Section 2, we review the related works.
Section 3 presents the proposed network architecture. Related experiments and discussions
are presented in Section 4. The conclusion is drawn in Section 5.

2 Related work

In this section, we briefly review the previous achievements and existing problems. Tan
et al. first utilized a CNN for steganalysis [11]. Their tests appear that it should be com-
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parable or even better than handcrafted feature-based methods. Qian et al. [9] proposed a
steganalytic demonstrate utilizing CNN can automatically learn feature representations with
convolutional layers, and it achieves comparable performance with SRM [4]. Xu et al. [14,
15] introduced a CNN structure with batch normalization (BN), global average pooling and
the absolute activation function, exceed the performance of SRM for the first time. Ye et al.
[16] proposed a CNN structure with 30 high-pass filters for preprocessing, and a new acti-
vation function called truncated linear unit (TLU) is used. By incorporating the selection
channel knowledge, their network obtains significant performance improvements than pre-
vious networks. Li et al. [8] proposed a different network architecture with parallel sub-nets
using diverse activation functions for preprocessing to learn in more pipelines and have a
better performance.

It is shown that the usual ways to improve performance include [19]: using high pass
filters and proper activation functions, incorporating the selection channel knowledge, and
using deeper or broader networks with various types of convolutional kernels as ResNet
[5], DenseNet [7], and GoogleNet [10]. However, all the operations tailored for steganaly-
sis are in the preprocessing layers, and the other layers are not designed for widening the
gap between covers and stegos. They are intended only to extract information on different
scales or depths. Residual connections can solve this problem. The classic building block of
residual connections is described in ResNet [5]. The output layer is adding in, element-wise,
the input layer to the residual layer. Concurrent with our work, the paper of [13] presents
residual connections to achieve the strength of modeling, since it allows the gradient to
pass backward (and the data to move forward) directly. We find it has other uses. Since the
residual connections can be regarded as a filter to learn something new, and when the stride
of the convolution layer is not equal to 1, it is equivalent to a downsampling operation.
By alternately adding residuals (sharpening) and downsampling (smoothing), we can make
the difference between covers and stegos through the feature extraction layers. It inspires us to
design two building blocks to solve the problem, which will be presented in the next section.

3 RestegNet

In this section, we elaborate on the proposed steganalysis network. The overall process flowchart
is shown in Fig. 1, and the step-by-step instructions are provided in the following parts.

RestegNet accepts an input image and outputs a two class labels (cover and stego). First,
as stated earlier, it retains the preprocessing part of the existing network to ensure minimum
performance. Then, it is alternately constructed of two building blocks for feature extraction:
ShRC and SmRC. Finally, a pooling layer and a fully connected layer followed by a softmax
are at the end of the RestegNet to normalized probabilities for classification.

The two building blocks mentioned above are described as follows:

ShRC As illustrated in Fig. 2, the complete process is given as follows:

Input: The original signal x, the stacked convolutional layers Fn, the layers of batch
normalization BNn, a concatenation layer //, a summation layer +.

Output: The sharpened signal of previous layers.

Step 1: Multiple convolution filters first simultaneously filter the original signal x (with
the stride size is one), that extract the additional components Fn(x). The batch
normalized version of the outputs are then concatenated. This allows the model
to get multi-level feature extraction.
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Fig. 2 a building block of ShRC

Step 2: The output of Step1 is added to the original signal x, thus producing a sharpened
signal of the original:

[x + BN1(F1(x))]//[x + BN2(F2(x))]//...//[x + BNn(Fn(x))]. (1)

We visualize the input and the output to give an intuitive understanding of it in Fig. 3. As
can be seen, ShRC creates a much richer signal.

SmRC As illustrated in Fig. 4, the complete process is given as follows:

(a) (b) (c) (d)

Fig. 3 An intuitive understanding of ShRC. a The original image. b The signal before a ShRC. c The signal
extracted by the branch of a ShRC. d The signal after ShRC
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Fig. 4 a building block of SmRC

Input: The original signal x, the stacked convolutional layers Fn, the layers of batch
normalization BNn, the stacked layers for downsampling Dn (1 × 1 convolu-
tional layers with a stride of n (n �= 1)), a concatenation layer //, a summation
layer +.

Output: The smoothed signal of previous layers.

Step 1: The original signal x is first filtered by multiple convolution filters (m × m (m >

1), and the stride size is one). Next, the outputs are batch normalized and filtered
by the stacked layers for downsampling (1×1 convolutional layers with the stride
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Fig. 5 The effect of alternately using ShRC and SmRC. a The original cover image. b The original stego
image. c The original pixel value difference histogram. d The pixel value difference histogram after a ShRC.
e The pixel value difference histogram after alternately using a ShRC and a SmRC
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of n (n �= 1)). The results Dn(BNn(Fn(x))) are then concatenated. This allows
the model to get downsampled multi-level feature extraction.

Step 2: A 1× 1 convolutional layer filters the original signal with the stride of n (n �= 1)
that downsamples the input signal directly D0(x).

Step 3: Sum them up to produce the smoothed signal of the original:

[D0(x) + D1(BN1(F1(x)))]//[D0(x) + D2(BN2(F2(x)))]//
...//[D0(x)+Dn(BNn(Fn(x)))].(2)

The reason we use this building block group is that we notice it effectively widens the gap
between covers and stegos, which is shown in Fig. 5.

It looks like the inception module used in ReST-Net [8] as proposed in GoogLeNet [10].
The difference is that ReST-Net concatenates the outputs in the depth dimensions to con-
struct subnets, while RestegNet sums up the results of parallel operations to get the enhanced
signals.

Instantiated RestegNet is instantiated with preprocessing layers of XuNet [14, 15] and
TLU-CNN [16]. See Figs. 6 and 7. The contrastive experiments will be presented in the next
section.

It is designed with computational efficiency and practicality in mind so that inference
can be run on individual devices including even those with limited computational resources.

4 Experiments

The environments We use a well-known content-adaptive steganographic methods S-
UNIWARD [6] by Matlab implementations with random embedding key. Our proposed
network is compared with two popular networks: XuNet [14, 15], TLU-CNN (YeNet) [16].
All the experiments were ran on two Nvidia GTX 1080 GPU cards.

Datasets In this paper, we use standard datasets to test the performance of the proposed
networks. The dataset is 10,000 grey-level images of the BOSSbase 1.01 [1] at different
payloads(0.1, 0.2, 0.3, 0.4 bit per pixel(bpp)). Due to our GPU computing power and time
limitation, images are cropped such that their scale (all edges) is 256 pixels with a ratio of
1 : 1 of positive to negatives and 2 : 1 : 1 of training to validation to test.

Hyper-parameters We apply an adaptive learning rate method (AdaDelta) to train all the
networks. The momentum and the weight decay of networks are set to 0.95 and 0.0005
respectively. Each mini-batch has 16 images. The base learning rate is 0.4. The learning rate
policy is poly, which the effective learning rate follows a polynomial decay, and the power
is 0.5. The maximun number of iterations is 60k. The code1 is available.

Complexity analyses The trainable parameters number of RestegNet with preprocessing
layers of XuNet is 9,370,747, and it has a speed of 5.13915 iter/s, 19.4585s/100 iters.
Although it is about 4 times slower than XuNet (21.1308 iter/s, 4.73242s/100 iters), 60k iter-
ations of training only takes about 3.5 hours. The trainable parameters number of RestegNet
with preprocessing layers of TLU-CNN is 9,393,876, and the speed is around 2.62887 iter/s,

1http://github.com/spadeke/RestegNet

http://github.com/spadeke/RestegNet
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Fig. 6 The instantiated RestegNet with preprocessing layers of XuNet (RestegNet XuVer). Data sizes
following (number of channels) × (height) × (width) are displayed on the both sides.
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Fig. 7 The instantiated RestegNet with preprocessing layers of TLU-CNN (RestegNet TLUVer). Data
sizes following (number of channels) × (height) × (width) are displayed on both sides
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Fig. 8 Performance comparison of the detection accuracy (Left) and training loss (Right) of XuNet and
RestegNet XuVer for S-UNIWARD at different payloads(0.1, 0.2, 0.3, 0.4 bit per pixel(bpp)) on cropped
images
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Table 1 Detection Accuracy (%) of XuNet and RestegNet XuVer

Network Embedding Payload (bpp)

Architecture 0.1 0.2 0.3 0.4

XuNet 52.6250 58.4375 66.8750 73.3750

RestegNet XuVer 55.7037 65.8889 73.8518 79.3333

38.0391s/100 iters. It is about 2 times slower than TLUNet (5.64659 iter/s, 17.7098s/100
iters), 60k iterations of training takes about 6.5 hours.

Results The comparison result of test accuracy and loss for XuNet [14, 15] and the
instantiated RestegNet with preprocessing layers of XuNet (shown in Fig. 6, named

Fig. 9 Performance comparison of the detection accuracy (Up) and training loss (Down) of TLU-CNN and
RestegNet TLUVer for S-UNIWARD at 0.4 bit per pixel(bpp) payload
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as RestegNet XuVer) for 60k iterations is shown in Fig. 8 and Table. 1. The involved
staganographic methods is S-UNIWARD. The crop size is 256 × 256.

As Fig. 8, RestegNet has significantly better performance than XuNet at any payload,
especially at the payload of 0.2, 0.3 and 0.4 bpp. At the beginning of training, XuNet quickly
reaches the highest accuracy, and the convergence stops at the same time, while the accuracy
of RestegNet continues to increase, and the loss continues to decrease. After 60k iterations,
the proposed network has reduced error rate by 3.0787% to 7.4514%.

We also compare the detection accuracy and training loss of TLU-CNN [16] and
the instantiated RestegNet with preprocessing layers of it (shown in Fig. 7, named as
RestegNet TLUVer). Since training TLU-CNN is time-consuming, we only experiment S-
UNIWARD at 0.4 bpp payload with our limited hardware resources. The results can be
seen in Fig. 9, which can be shown that even at more than eight times the iterations (since
the training of RestegNet TLUVer is about 2 times slower than TLUNet as mentioned
before, 4 times the training time), the performance of TLU-CNN (the detection accuracy is
79.85% after 500k iterations) still worse than RestegNet TLUVer (the detection accuracy is
81.5625% after 60k iterations).

Results show that it effectively improves detection accuracy, dramatically accelerates
the convergence speed, and keeps the computational budget affordable. For S-UNIWARD
with different payloads on cropped images, the proposed network is distinctly better than
XuNet. Besides, it tremendously accelerates the convergence speed of TLU-CNN. Briefly,
the experiment results indicate that even with the same preprocessing layers, RestegNet
dramatically improves the performance of previous networks due to the vast differences in
the architecture of the feature extraction layers.

5 Conclusion

RestegNet yields substantial evidence that constructing a network with ShRC and SmRC
is a viable method for improving convolutional neural networks for steganalysis. The main
advantage of this method is a significant quality gain with a modest increase in computa-
tional requirements compared to previous networks. RestegNet is one incarnation of these
guidelines used in our assessment. We hope our effective approach will help ease future
research in image steganalysis.

It is expected that RestegNet can achieve a better quality of result with better preprocess-
ing layers (i.e.,ReST-Net [8], etc.). It is still an open question how to comprehensively construct
building blocks to better distinguish covers and stegos. Although the strategy of our work
has been proved to be effective, a more systematic method is desirable as future work.
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