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Abstract
The main objective of blind image de-blurring is to recover a sharp image from a given blurry
image. A good estimation of the kernel plays an important role in recovering a sharp image.
However, if the local object textures are neglected when the kernel is being estimated, this can
lead to over-smoothing or can produce a strong ringing effect. In this paper, a new image
regularization term based on the Probability Weighted Moments (PWM) for kernel estimation
is proposed named as Probability Weighted Moments Regularization (PWMR). PWMR has
the ability to preserve the small local texture structure in an image while minimizing the
artifacts. Further, it can preserve the better contrast information between neighboring pixels
and their corresponding central pixels in a current sliding window; moreover, it has the ability
to resist outliers even in a small sample size. The kernel estimated by PWMR is subsequently
used to recover the sharp latent image. An extensive comparison of synthetic and real standard
benchmark images indicates the effectiveness of PWMR compared to current state-of-the-art
blind image de-blurring methods.

Keywords Blind image de-blurring . Image regularization . Kernel estimation . Probability
weightedmoments

1 Introduction

Digital imaging has enabled people to save memorable moments in their lives. However, when
they are being captured, images can be contaminated by various effects such as noise [34],
blurring [6, 13, 15, 17, 21, 28–31, 34, 36], hazing [24, 25], fogging [26], barcode de-blurring [22]
and sequential ocular images frommulti-spectral imaging [16] etc. These undesirable effects may
occur for a number of reasons; for example, cameramovement while the picture is being taken is a
common problem that can produce a blurred image. Based on the characteristics, image de-
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blurring algorithms are mainly divided into two types. In first type of image de-blurring, the blur
kernel is known. In the second type, the blur kernel is unknown; this is known as blind image de-
blurring. In this paper, we focus on blind image de-blurring and, more specifically, on kernel
estimation. The estimated kernel can be further used with any image de-blurring method to
recover an image.

There are two phases to blind image de-blurring:1) kernel estimation, and 2) image de-
blurring. Both phases play an equally important role in the recovery of a clear image. Kernel
estimation is an effective means of dealing with a blurred image. The better the estimation of
the kernel, the better will be the recovered image., blind image de-blurring has attained the
researchers’ attention. Blind image de-blurring has been successfully applied in different fields
such as audio signal processing, astronomical and medical image processing.

Based on different properties, kernel estimation techniques are broadly categorized into two
types: (1) Variational Bayes (VB) [6, 13, 28, 29] and (2) Maximum A Posterior (MAP) [3, 15, 17,
21, 23, 30, 31, 34, 36]. VB-based methods have the ability to evade trivial solutions; however, the
computational cost is higher compared to MAP. Two variants have been proposed to estimate the
kernel based on MAP: (1) Kernel estimation achieved by using the salient structures of an object is
known as Salient Structures-Based Kernel Estimation [2, 3, 12, 17, 23, 30, 36] and (2) Sparse
Regularization-Based Kernel Estimation [9, 11, 15, 21, 31, 34, 35]. The main focus of this paper is
on the second type of MAP-based image de-blurring method.

Earlier, single image de-blurring did not perform well because of kernel priors and different
latent variables [3, 30]. Although researchers used Gaussian priors, the estimated kernels were
not able to preserve the structures of salient objects and did not provide compact, sparse
representation. This led to a noise-contaminated image with dense structures. Salient edges are
detected from a gradient image by the use of l1-norm [2]. Image priors obtained in this way can
produce better results only under certain conditions [2, 15, 21]. To improve the quality of the
image, a combination of l1-norm and a new ring suppressing term was employed [23]. To
suppress the small structures, l1/l2-norm regularization term was introduced [11] where a l1 to l2
norm ratio was applied to high frequencies of an image. This regularization term was unable to
produce images with sharp edges, as the ratio of the l1 to l2 does not have this property.

A new method for generalized sparse representation for uniform and non-uniform motion
de-blurring was proposed by [31]. Here, the authors mathematically proved the soundness of
l0-norm for sparse representation. Moreover, the proposed system requires fewer iterations to
converge the system because no extra filtering is needed during the optimization process.
However, the proposed technique did not perform well on real images containing text.

To handle the outlier, a new effective kernel estimation method was proposed which
considered the data fidelity term to suppress the effect of outliers [7]. The estimated kernel
was further used to recover the degraded image. However, the computational cost increased
due to outlier detection. Row-Column sparsity has been used for blind image de-blurring [18].
Authors proposed to solve a new type of sparsity optimization problem by including rows and
columns to estimate the kernel. Singular value decomposition was used to recover the kernel
and latent image from the blurred image.

To remove the noise and recover the blurred image, a new inverse Radon transform-based
kernel was estimated [34]. Multiple directional filters with different orientations were applied
to the input image and a true Radon transform was estimated for each image. However,
multiple directional filters produced significant ringing artifacts in the recovered images. To
preserve the smooth structure of an object for blind image de-blurring, an iteration-wise
generalized shrinkage–threshold method was proposed [36]. Here, the authors extended the
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generalized shrinkage–thresholding (GST) that is used to sharpen the salient edges of an object
while eliminating the small details. However, the elimination of small details can lead to an
inaccurate estimation of the blind kernel.

A single-image blind de-blurring based on the color image priors has been proposed to
better preserve the sharp edges of an object [12]. The normalized color line was used to
estimate the blur kernel instead of the original color line that is not effective for estimation. A
method was proposed for the selection of effective centroids, which was more effective
compared to K-means method. A new generalized MAP-estimation framework for blind
image de-blurring was proposed [35], in which the scene specific edge priors were used. Dark
channel image priors were proposed by [9] who assumed that the dark channel image priors
are less sparse.

The salient structure of an image plays an important role in estimating the kernel. Most of
the existing methods neglect the small texture structures when estimating the kernel for
convolution with the image. The neglect of such structures can lead to the problem of over-
smoothed edges of an object within the image. Better contrast information gives a more
accurate estimation of the blurred kernel. Two well-known approaches are used to determine
the contrast of an image: maximum likelihood estimation (MLE) and probability weighted
moments (PWM). PWM has the proven ability to provide better contrast information while
preserving the edges of an object even for a small sample size as compared to MLE which is
further used for image classification [4].

This paper presents an effective image regularization method whereby a new type of image
regularization approach is introduced that recovers sharp images from blurry images. The
kernel estimated by using the PWMR has the ability to preserve the trivial structures that are
further used to recover the image. This allows an extremely cost-effective formulation to be
used for the blind de-convolution model, consequently obviating the need for additional
methods. The salient contributions of this work are as follows:

a) New image regularization term by utilizing the PWM to preserve the small textures of an
object which helps to recover an improved, sharper image.

b) The proposed PWMR has the ability to identify the outliers and disregard them during the
estimation of the kernel, and also reduces the ringing effect with comparable computational cost.

2 Background knowledge

In this section, a brief introduction to PWM is presented.

2.1 Probability weighted moments

PWM has the ability to uniquely determine the distribution of given data. MLE can be used to
capture the tails of distribution, which can affect the estimation because the tails or ending
points may be the outliers. However, the PWM can be used to better capture the middle of the
distribution, thereby providing a better estimation of given data.

Below is a better linear estimate of standard deviation for the normal distribution [5]:

PWM ¼
ffiffiffi
π

p
n

∑
n

i¼1
X i−2 1−

i−0:5
n

� �
X i

� �
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where Xi refers to the ordered observations within the sample of size n. The estimation of the
standard deviation using PWM is also a function of ordered observations. The expression (i −
0.5)/n denotes the empirical distribution function; π is 3.1416.

PWM has been successfully applied in different fields for better estimation such as in image
classification [4], in Heteroscedastic Linear Regression Model for adaptive estimation [20] and
estimation for the better-quality control charts [19].

3 Probability weighted moments based regularization

PWM as the linear function of the sample space has less influence on the sample variability.
PWM renders a better estimation of the parameters compared to the conventional moments in
the presence of outliers within the sample space. The closed form of a cumulative distribution
function provides unbiased, stable and particularly attractive PWM. This property improves
our estimation of the blind kernel for recovering the corrupted image.

The local relationships among the textures of image objects are investigated to estimate the
blind kernel named PWM-based Regularization (PWMR). More precisely, each pixel is
considered to estimate the kernel by utilizing efficient and effective PWMR defined as follows:

PWMR ¼ PWMx

PWMy
;

Where PWMxrefers to the estimated variance in the direction of x derivate, and PWMy denotes
the estimated variance in the direction of y derivate. As PWM are less sensitive to the outliers
when considering the coefficient in the direction of the x-axis, and the y-axis has the ability to
preserve the salient edges of an object. The terms PWMx and PWMyin the equation above
provide the horizontal and vertical structures in a given blurred image. The ratio of these terms
provides the compact value of a given structure which is neither a noisy value nor the motion
blur caused due to motion. Different regularization techniques have been proposed to find the
best estimate of a kernel. However, neglecting the small salient regions by considering the
outliers/ noise does not produce the better kernel which can then be used recover the latent
image. Most of regularization techniques approach the problem as a non-convex problem,
which needs an optimization technique to solve it.

4 Proposed framework

Commonly, image de-blurring models are defined as follows:

y ¼ kxþ n;

Where y is the obtained blurred image, n is the additive Gaussian i.i.d noise, x and k
denote the unknown sharp image and blurring matrix used to blur the sharp image x,
respectively. Blind image de-blurring is considered to be a greatly ill-posed inverse
problem, in which there is a need to estimate the sharp image x and the blurring matrix
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k, simultaneously The blind image de-blurring algorithm is mainly divided into two
parts: unknown kernel estimation and image de-blurring. A better estimation of the
unknown kernel can improve the quality of the recovered image. A standard blind image
de-blurring is presented in Algorithm 1.

Algorithm 1 (complete image de-blurring algorithm)

Input: Blurry image I, maximum size of kernel to estimate ker_h
Output: Obtained sharp Image x (Recovered image)
(The proposed algorithm is mainly divided into two stages)

1. Estimate the Blind kernel matrix k form high frequency image I (Obtained by applying the
derivative to blurred image y).
Estimate the blind kernel using subsection A 

Alternatively obtain the coarse-to-fine x and k in loop

a. Update the high frequency image x by using the proposed PWMR
b. Update the blurring (kernel) matrix k by using Section 4-A

Repeat till the finer version of x and k is obtained.

2. Recover the de-blurred image by non-blind method

Recover the sharp image x, using the estimated kernel k on blurred image I.

A. Kernel Estimation

Kernel estimation is accomplished for the high frequency of an image as in [11]. High
frequency image I is obtained from the blurry image, which is actually the combina-
tion of derivatives in the x and y direction. More precisely, the following filters are
used to obtain the high frequency images in horizontal (x-axis) and vertical (y-axis)
directions as,

∇x ¼ 1; −1½ �; ∇y ¼ 1; −1½ �T :

Where ∇x filter used in horizontal direction, and ∇y filter used in vertical direction (which is the
transpose (T) of ∇x). The de-blurring model can be defined as

min
x;k

λ x⊗k−Ik k22 þ PWMRþ β kk k1 ð1Þ

Where k and x represent the unknown kernel and sharp image, respectively. PWMR is the
proposed regularization term for image de-blurring, λ and βare the trade-off parameters used to
optimize the stability of kernel and image regularization terms, and is the 2D convolution
operator. l1-norm as regularization term is applied on k to reduce the noise during the kernel
estimation which also presents a good, sparse representation. In consideration of the physical
principles for blur formation, k is bounded by two restrictions: k ≥ 0 and ∑

i
ki ¼ 1. Due to the

high convexibility of Eq. 1, in order to optimize the solution, an initialization is assumed on
both x and k; after that, x and k are alternatively updated. To update x and k, the altering
method suggested by [11] is employed.

To update x and k, Eq. 1 can be divided into two parts as follows:

min
x;k

λ x⊗k−Ik k22 þ PWMR ð2Þ
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min
x;k

λ x⊗k−Ik k22 þ β kk k1 ð3Þ

The new term, PWMR, in Eq. 2 makes it a convex problem. The Iterative Shrinkage-
Thresholding Algorithm (ISTA) [1] is used to solve the general linear inverse problem. The
algorithm applied to update x is presented as follows:

Where k is the blurring matrix obtained after last iteration of k and t = 0.001 is the threshold
value used for ISTA. M and N denote the maximum number of inner and outer iterations,
respectively and considered as 2 in the proposed algorithm. S represents the vector soft
shrinkage operator to decrease the input vector towards zero as presented in Eq. 4.

Sx xð Þi ¼ max xij j−α; 0ð Þsign xið Þ ð4Þ

The ISTA algorithm is used for the inner iteration updating of x, and the outer iteration is used
only for the re-estimation of the likelihood term in eq. 2.

It is necessary to update k after updating x by using eq. 3. An unconstrained
Iterative Re-weighted Least Squares method [14] is used to estimate the kernel by
using the weights obtained from the previous updated matrix of k (with single outer
iteration). The estimated kernel may have negligible values at the finest level, which
are normalized to zero to enhance the efficiency of obtained kernel against noise.
Coarse-to-fine pyramid of image resolutions is used for the multi-scale estimation of
the kernel.

B. Image De-blurring

Once the fine kernel has been obtained, any non-blind image de-blurring algorithm can
be used to recover the sharp image [10, 14]. A fast image de-convolution algorithm is
used to recover the sharp image, which employs Hyper-Laplacian priors after the
estimated kernel has been obtained. The underlying algorithm [10] is robust against
small kernel errors, and is as follows:

min
x

λ x⊗k−Ik k22 þ ∇xk kb þ ∇y
�� ��

b
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Where ∇x and ∇y are the derivative filters used aforesaid section A. Where b = 0.8 and λ =
3000 as in [11]. Non-blind de-convolution is far lower ill-posed problem as compared to blind
de-convolution. Therefore, in the current scenario, a lp-type regularization term is used to solve
the aforementioned cost function as defined in [10].

5 Results and discussion

To validate the effectiveness of the proposed method, results are obtained for both synthetic
and real-world images with well-known performance measures. This section is further
subdivided into three sub-sections: performance measures, experimental results, and discus-
sion of the synthetic dataset and real-world images.

5.1 Performance measure

The performance of the PWMR method was evaluated using well-known performance
measures: Peak signal to Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM),
Error ratio, and time in seconds. The PSNR was obta ined with

PSNR ¼ 10:log10
MAX 2

MSE

� �

Where 'MAX' represents the maximum possible value present in an image. 'MSE' is the mean
squared error between the original image (pure image) 'O' and restored image 'R'as follows:

MSE ¼ 1

M � N

� �
∑
M

i¼1
∑
N

j¼1
O−Rð Þ2

M′ × N′ is the size of the original and restored image, where 'M' is the total number of
rows and 'N' is the total number of columns. The similarity structure between the
original image and restored image is obtained by Structural Similarity Index method
(SSIM) as follows:

SSIM ¼ 2μOμR þ c1ð Þ 2σOR þ c2ð Þ
μ2
O þ μ2

R

� 	
σ2
O þ σ2

R þ c2
� 	

Where 'c1' and 'c2' are constant values.0μ
0
O;

0 μ
0
R;

0 σ
0
O;

0 σ
0
R and ′σOR

′represent the means,
variances and co-variances. The subscript ‘o’ and ‘r’ represents the original and
restored images, respectively. The error ratio is defined as follows:

rerror ¼ std IEK ; IRð Þ=std IRK ; IRð Þ
IEKandIRK represents the image recovered by using the estimated kernel and true kernel
respectively. IR shows the real image and std. () is the standard deviation.
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5.2 Synthetic data

Awell-known standard benchmark dataset [15] for synthetic images was used to evaluate the
PWMR against other state-of-the-art methods. In all experiments, the same images were used
to validate the effectiveness of the PWMR. This dataset contained four 255 × 255 images as
well as eight different blur kernels varying in size from13 × 13 to 27 × 27. After convolving the
kernels with the images, a total of 32 images were obtained. The given dataset contained the
blurry images, ground-truth kernels and ground-truth images.

Table 1 shows a detailed comparison of the synthetic dataset provided by [15]. The results
of PWMR are compared in terms of PSNR, SSIM, computational time and the error ratio with
baselines [3, 9, 11, 15, 30, 32]. PWMR outperforms existing methods in terms of PSNR and

Table 1 Comparison of Levin et al.’s dataset (Levin et al. [15]) using Mean PSNR, SSIM, computational time
(In seconds) and Error RatiO

Method/ Image PSNR SSIM Time Error ratio

Known k 32.32 0.9385 – 1.0000
Levin et al. [15] 28.73 0.8916 80.5917 1.5531
Krishnan et al. [11] 28.22 0.8586 10.1178 2.1369
Cho and Lee [3] 28.87 0.8845 2.3942 1.4082
Xu et al. [30] 29.41 0.9000 2.9371 1.4071
Jinsha et al. [9] 30.87 0.9203 28.37 1.1934
Yue et al. [32] 30.1332 0.9119 12.7206 1.2198
PWMR 30.14 0.9122 25.1276 1.2271

Fig. 1 Example of de-blurring results for Levin et al. [15] (27 × 27 Kernel size.) (a) Original image, (b) image
recovered by Shan et al. [23], (c) Cho and Lee [3], (d) Xu et al. [30], (e) Levin et al. [13], (f) Xu et al. [31], (g)
Perrone et al. [21], (h) Jinsha et al. [9] and (i) PWMR
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SSIM except for [9]. However, the computational cost of [9] is little higher than PWMR. The
capability of PWMR to preserve the small texture while estimating the kernel gives a better
reconstruction of an image.

Figure 1 depicts the visual comparison of results between PWMR and other state-of-the-art
methods on dataset given by [15] for one image. Visual evaluation indicates that the kernel
estimated by employing PWMR has comparable results with other methods [3, 9, 13, 21, 23,
30, 31]. The image recovered by PWMR has better visualization except for [9, 21]. The dark
image prior with sparsity preserves the edges better than PWMR. However, PWMR is faster
than [9]. The image recovered by [23] has strong ringing effects and is still somewhat blurred
compared to the image recovered by [3].

Fig. 2 Visual results for the fish image (a) image recovered byWhyte et al. [27], (b) image recovered by Xu et al.
[31], (c) image recovered by Zhang et al. [33] (d) image recovered by Jinsha et al. [9], (e) image recovered by
Zuo et al. [36], (f) image recovered by PWMR

Fig. 3 Visual results on Lyndsey image. Image recovered by (a) Fergus et al. [6], (b) Xu et al. [30] (c) Krishnan
et al. [11], (d) Zhang et al. [28] (e) Perrone et al. [21] (f) PWMR
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5.3 Real-world images

Real-world standard images are also evaluated in order to compare the proposed regularization
method with state-of-the-art methods. The real-world images have no ground truth, enabling
them to be compared visually. To ensure a fair comparison, we have used all methods with
their proposed parameters.

Figure 2 depicts the comparison of PWMR with [9, 27, 31, 33, 36] for a real-world image
of fish. Although images recovered by the methods proposed by [9, 31, 36] are somewhat fine,
the recovered images have over-smoothened the local texture of the object. Therefore, the local
geometry of objects has not been preserved. The image recovered by [33] is over-sharp and the
ringing effect on the image is amplified. Similarly, the image recovered by [27] has a strong
ringing effect. PWMR has less ringing effect compared to that produced by state-of-the-art
methods, and also better preserves the fine textures during the removal of the blur.

Figure 3 presents the results for the Lyndsey image (with the zoomed area of an image to
show the effectiveness of image de-blurring methods) of PWMR with [6, 11, 21, 28, 30]. The
zoomed area of an image recovered by PWMR preserved the small texture structures

Fig. 4 Visual results for Mukta image also showing the estimated kernel. Image recovered by (a) Krishnan et al.
[11] (b) Zhong et al. [34], (c) Michaeli et al. [17], (d) Jinsha et al. [8], (e) Zuo et al. [36], (f) PWMR
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compared to results produced by the aforementioned methods. The image recovered by other
methods either over-smoothed [11, 28, 30] or increased the contrast [21] with a strong ringing
effect. It is also clear that image recovered by [6] still has a strong ringing effect.

Figure 4 shows the visual results for the Mukta image as well as the kernel recovered by
Michaeli et al. [17], Zhong et al. [34], Zuo et al. [36], Krishnan et al. [11], Jinsha et al. [8] and
PWMR. The visual images of the recovered kernels shows the effectiveness of PWMR
compared with the kernels recovered by other methods. The kernel recovered by PWMR is
less sparse and the neighboring pixels are more compact, which can help to recover a better
image during the convolution process while preserving a better texture. The image recovered
by Zuo et al. [36] produced a strong ringing effect and also increased the contrast of the image.
The image recovered by Jinsha et al. [38] neglected the small texture during image recovery,
causing an over- smoothed image.

6 Conclusion

An efficient and effective image regularization term based on Probability Weighted Moments is
proposed as a means of estimating kernel function for blind image de-blurring. It is concluded
that PWM has the ability to preserve the small textures regardless of the outliers in a small
sample space. One can also see that the kernel estimated by using the proposed PWMR has the
ability to restore the edges of objects much better and with less ringing effect compared to other
methods. The effectiveness of PMWR on synthetic and real-world images, in terms of visually
plausible de-blurring, PSNR, SSIM, Error ratio and computational cost has been confirmed.

For the future, when restoring an image, a better estimation of kernel can be considered
while taking into the global and local textures of the image.

Acknowledgements This work is fully supported by the grants from the Joint Re-search Fund in Astronomy (Grant
No. U1531242) under cooperative agreement between the National Natural Science Foundation of China (NSFC) and
Chinese Academy of Sciences (CAS), Prof. Ping Guo is the author to whom all correspondence should be addressed.

References

1. Beck, A.; Teboulle, M.: A fast iterative shrinkage- thresholding algorithm for linear inverse problems.
SIAM J Imag Sci, 2, pp. 183–202(2009)

2. Chanand TF, Wong C-K (1998) Total variation blind deconvolution. IEEE Trans Image Process
7:370–375

3. Cho S.; and Lee, S.: Fast motion deblurring. In ACM Trans Graph (TOG), 28, p. 145(2009)
4. Dawood H, Dawood H, Guo P (2012) Combining the contrast information with WLD for texture

classification. IEEE Int Conf Comput Sci Auto Eng (CSAE) 2012:203–207
5. Downton F (1966) Linear estimates with polynomial coefficients. Biometrika 53:129–141
6. Fergus R, Singh B, Hertzmann A, Roweis ST, Freeman WT (2006) Removing camera shake from a single

photograph. ACM Trans Graphics (TOG) 25:787–794
7. Jiangxin D, Pan J, Su Z, Yang M (2017) Blind image deblurring with outlier handling. Proc IEEE Conf

Comput Vision Pattern Recogn IEEE Conf Comput Vision Pattern Recogn (CVPR) 2017:2478–2486
8. Jinsha P, Deqing S, Hanspeter P, Hsuan YM (2016) Blind image deblurring using dark channel prior. IEEE

Conf Comput Vision Pattern Recogn (CVPR) 2016:1628–1636
9. Jinsha P, Deqing S, Hanspeter P, Hsuan YM (2017) Deblurring images via Dark Channel prior. IEEE Trans

Pattern Anal Mach Intell (PAMI)
10. Krishnan D, Fergus R (2009) Fast image deconvolution using hyper-Laplacian priors. Adv Neural Inform

Process Syst (NIPS) 2009:1033–1041

Multimedia Tools and Applications (2020) 79:4483–4498 4493



11. Krishnan D, Tay T, Fergus R (2011) Blind deconvolution using a normalized sparsity measure. IEEE Conf
Comput Vision Pattern Recogn (CVPR) 2011:233–240

12. Lai WS, Ding JJ, Lin YY, Chuang YY (2015) Blur kernel estimation using normalized color-line priors.
IEEE Conf Comput Vision Pattern Recogn (CVPR) 2015:64–72

13. Levin A, Weiss Y (2011) F. Durand, Freeman, W. T.: efficient marginal likelihood optimization in blind
deconvolution. IEEE Conf Comput Vision Pattern Recogn (CVPR) 2011:2657–2664

14. Levin A, Fergus R, Durand F, Freeman W (2007) Image and depth from a conventional camera with a
coded aperture. ACM Trans Graph (TOG) 26:70

15. Levin A, Weiss L, Durand F, Freeman WT (2009) Understanding and evaluating blind deconvolution
algorithms. IEEE Conf Comput Vision Pattern Recogn (CVPR) 2009:1964–1971

16. Lian J, Zheng Y, Jiao W, Yan F, Zhao B (2018) Deblurring sequential ocular images from multi-spectral
imaging (MSI) via mutual information. Med Biol Eng Comput 56(6):1107–1113

17. Michaeli T, Irani M (2014) Blind deblurring using internal patch recurrence. Eur Conf Comput Vision
(ECCV) 2014:783–798

18. Mohammad T, Li Y, Monga V (2018) Blind image Deblurring using row-column sparse representations.
IEEE Signal Process Lett (SPL) 25:273–278

19. Muhammad F, Riaz M (2006) Probability weighted moments approach to quality control charts. Econ Qual
Contrl 21:251–260

20. Muhammad F, Aslam M, Pasha GR (2008) Adaptive estimation of heteroscedastic linear regression model
using probability weighted moments. J Mod Appl Stat Methods 7:15

21. Perrone D, Favaro P (2014) Total variation blind deconvolution: the devil is in the details. IEEE Conf
Comput Vision Pattern Recogn (CVPR) 2014:2909–2916

22. Pu H, Fan M, Yang J, Lian J (2018) Quick response barcode deblurring via doubly convolutional neural
network. Multimed Tools Appl, pp.1–16

23. Shan Q, Jia J, Agarwala A (2008) High-quality motion deblurring from a single image. ACM Trans Graph
(TOG) 27:73

24. Singh D, Kumar V (2017) Modified gain intervention filter based dehazing technique. J Modern Optics
(JMO) 64:2165–2178

25. Singh D, Kumar V (2017) Dehazing of remote sensing images using fourth-order partial differential
equations based trilateral filter. IET Comput Vis

26. Singh D, Kumar V (2018) Defogging of road images using gain coefficient-based trilateral filter. J Electron
Imag 27:013004

27. Whyte O, Sivic J, Zisserman A, Ponce J (2012) Non-uniform deblurring for shaken images. Int J Comput
Vision (IJCV) 98:168–186

28. Wipf D, Zhang H (2013) Analysis of Bayesian blind deconvolution. Int Workshop Energy Minim Meth
Comput Vision Pattern Recogn 2013:40–53

29. Wipf D, Zhang H (2014) Revisiting bayesian blind deconvolution. J Mach Learn Res: 3595–3634
30. Xu L, Jia L (2010) Two-phase kernel estimation for robust motion deblurring. In European Conference on

Computer Vision (ECCV) 2010:157–170
31. Xu L, Zheng S, Jia J (2013) Unnatural l0 sparse representation for natural image deblurring. IEEE Conf

Comput Vision Pattern Recogn (CVPR) 2013:1107–1114
32. Yue T, Cho S, Wang J, Dai Q (2014) Hybrid image deblurring by fusing edge and power spectrum

information. Eur Conf Comput Vision (ECCV) 2014:79–93
33. Zhang H, Wipf D, Zhang Y (2013) Multi-image blind deblurring using a coupled adaptive sparse prior.

IEEE Conf Comput Vision Pattern Recogn (CVPR) 2013:1051–1058
34. Zhong DL, Cho S, Metaxas D, Paris S, Wang J (2013) Handling noise in single image deblurring using

directional filters. IEEE Conf Comput Vision Pattern Recogn (CVPR) 2013:612–619
35. Zhou Y, Komodakis N (2014) A map-estimation framework for blind deblurring using high-level edge

priors. Eur Conf Comput Vision (ECCV) 2014:142–157
36. Zuo W-M, Dongwei R, David Z, Shuhang G, Lei Z (2016) Learning iteration-wise generalized shrinkage–

thresholding operators for blind deconvolution. IEEE Trans Image Process (TIP) 25:1751–1764

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Multimedia Tools and Applications (2020) 79:4483–44984494



Hussain Dawood received his MS and PhD degree in Computer Application Technology from Beijing Normal
University, Beijing, china in 2012 and 2015, respectively. He is currently working as an Assistant Professor at
College of Computer Science and Engineering, University of Jeddah, Jeddah, Saudi Arabia. His current research
interests include image processing, pattern recognition, and Computer Vision.

Hassan Dawood is currently working as an Assistant Professor at Department of Software Engineering,
University of Engineering and Technology, Taxila, Pakistan. His research interests include image restoration,
feature extraction and image classification. He has received his MS and PhD degree in Computer Application
Technology from Beijing Normal University, Beijing, china in 2012, and 2015, respectively.

Multimedia Tools and Applications (2020) 79:4483–4498 4495



Ping Guo (IEEE Senior Member) is currently a professor at School of Systems Science, Beijing Normal
University, and the School of Computer Science and Technology of Beijing Institute of Technology. From
1993 to 1994 he was with the Department of Computer Science and Engineering at the Wright State University
as a visiting faculty. FromMay 2000 to August 2000 he was with the National Laboratory of Pattern Recognition
at Chinese Academy of Sciences as a guest researcher. He is the author or co-author of more than 200 papers. His
current research interests include neural network, pattern recognition, image processing, software reliability
engineering, optical computing, and spectra analysis.

Rashid Mehmood has received his Ph. D from Beijing Normal University, Beijing China. Currently he is
working as postdoc researcher at Karolinksa Institute, Sweden at the department of cancer and cell biology. He is
affiliated with University of kotli, AJ&K Pakistan and working there as Assistant Professor. His current research
interest includes genetics and cancer research, machine learning, image processing, data mining, and computa-
tional biology.

Multimedia Tools and Applications (2020) 79:4483–44984496



Ali Daud obtained his Ph.D. degree from Tsinghua University (July 2010). He is Associate Professor and head of
Data Mining and Information Retrieval Group, IIU, Islamabad, Pakistan. He has published about 70 papers in
reputed international Impact Factor journals and conferences. He has taken part in many research projects and is
Principal Investigator (PI) of two projects. His research interests include Data Mining, Social Network Analysis
and Mining, Probabilistic Models, Scientometrics, and Natural Language Processing.

Abdullah Alamri received his B.S. degree in Computer Science from King Khalid University, Saudi Arabia in
2007, and received M.S. degree in Information Technology from School of Engineering & Mathematical
Sciences, La Trobe University, Australia in 2009 and his Ph.D. in Computer Science from RMIT University,
Australia in 2014. He is currently working as an Assistant Professor with the College of Computer Science and
Engineering, University of Jeddah, Jeddah, Saudi Arabia. His research interests include Big Data, Internet of
Things, Database Systems and Semantic Web.

Multimedia Tools and Applications (2020) 79:4483–4498 4497



Jalal Alowibdi is a faculty member in the College of Computer Science and Engineering at University of Jeddah.
Alowibdi completed his Ph.D. in Computer Science at the University of Illinois at Chicago, his Master’s degree
in Software Engineering from DePaul University. He is working on various complex problems in Data Mining
and Privacy in Social Networks. Recently, he has focused on Image Processing, Data Mining, Privacy in Social
Networks and Information Retrieval. Currently, Alowibdi is the Chair of the Department of Computer Science
and the director of the center of the Information Technology at the University of Jeddah. Also, He is the Deputy
Director of Web Observatory research center at King Abdulaziz University.

Affiliations

Hussain Dawood1 & Hassan Dawood2 & Guo Ping3 & Rashid Mehmood4 & Ali Daud5 &

Abdullah Alamri6 & Jalal S. Alowibdi6

Hassan Dawood
hasandawod@yahoo.com

Guo Ping
pguo@ieee.org

Rashid Mehmood
gulkhan007@gmail.com

Ali Daud
ali.daud@iiu.edu.pk

Abdullah Alamri
amalamri@uj.edu.sa

Jalal S. Alowibdi
jalowibdi@uj.edu.sa

1 Department of Computer and Network Engineering, College of Computer Science and Engineering,
University of Jeddah, Jeddah, Saudi Arabia

2 Department of Software Engineering, University of Engineering and Technology, Taxila, Pakistan
3 School of Systems Science, Beijing Normal University, Beijing, People’s Republic of China
4 Department of Software Engineering, University of Kotli, Azad and Jammu Kashmir, Pakistan
5 Department of Computer Science & Software Engineering, International Islamic University, Islamabad,

Pakistan
6 College of Computer Science and Engineering, University of Jeddah, Jeddah, Saudi Arabia

Multimedia Tools and Applications (2020) 79:4483–44984498


	Probability weighted moments regularization based blind image De-blurring
	Abstract
	Introduction
	Background knowledge
	Probability weighted moments

	Probability weighted moments based regularization
	Proposed framework
	Results and discussion
	Performance measure
	Synthetic data
	Real-world images

	Conclusion
	References




