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Abstract
Multilevel thresholding using Otsu or Kapur methods is widely used in the context of image
segmentation. These methods select optimal thresholds in gray level images by maximizing
between-class variance or entropy criterion. These methods become time consuming and less
efficient with increasing number of thresholds. To increase the efficiency of the image
segmentation using multilevel thresholding based on Kapur and Otsu methods, we developed
a hybrid optimization algorithm named BMO-DE based on bird mating optimization (BMO)
and differential evolutionary (DE) algorithms. The efficiency of the proposed method was
evaluated on eight standard benchmark images. The proposed method achieved better seg-
mentation results in term of solution quality and stability in comparison with other well-known
techniques including bacterial foraging (BF), modified bacterial foraging (MBF), particle
swarm optimization (PSO), genetic algorithm (GA) and hybrid algorithm named PSO-DE.

Keywords Image segmentation .Multilevel thresholding .Birdmatingoptimization .Differential
evolutionary

1 Introduction

Image segmentation is the process of partitioning an image into a number of homogenous
regions, each containing pixels with similar attributes like intensity or texture. It is considered
as an important pre-processing step in applications such as object detection and tracking, and
medical image analysis [8, 12, 22, 29, 31, 37, 39, 40, 46, 48]. One of the widely used methods
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for image segmentation is thresholding. It can be classified into bi-level and multilevel
thresholding depending on the number of regions. In bi-level thresholding, the image pixels
are classified into two regions, with gray levels greater or less than a certain threshold. In
multilevel thresholding, an input image is segmented into several distinct regions with multiple
thresholds [3, 7, 17, 22]. As an efficient tool, histogram thresholding can be used for image
segmentation. However, finding the exact location of valleys in a multimodal histogram is not
trivial.

The optimal thresholds in bi-level or multilevel thresholding can be determined using
parametric or non-parametric approaches [14]. In the parametric approach, a probability
density function is assigned to each class (region) with the distribution parameters computed
by using the least-squares methods. In the non-parametric approaches, the thresholding method
searches for optimal thresholds in the histogram by optimizing an objective function based on
some criteria such as between-class variance (Otsu’ [28]) or entropy [19]. However, all of these
methods are computationally complex and less efficient due to the exhaustive search especially
when the number of thresholds increases.

Recently, evolutionary algorithms inspired by biological evolution have been combined
with multilevel thresholding algorithms such as Genetic Algorithm (GA) [11], Particle swarm
optimization (PSO) [9, 13, 18, 26, 33, 44] bacterial foraging algorithm (BFO) [36, 37],
differential evaluation (DE) [34, 43], artificial bee colony (ABC) [2, 16], cuckoo search
(CS) [1, 32], watershed algorithm [47], fuzzy logic [24], hybrid method [30], honey bee
mating optimization (HBMO) [15], wind driven optimization (WDO) [5], self-adaptive
parameter optimization [23], grey wolf optimizer (GWO) [20], Whale Optimization Algorithm
(WOA) and Moth-Flame Optimization (MFO) [10] for optimal multilevel thresholding. The
multilevel thresholding using evolutionary algorithms have been applied in various applica-
tions including brain tissue segmentation from magnetic resonance images [21, 25, 38, 41] and
satellite hyper-spectral image segmentation [6, 35]. Among all the multilevel thresholding
algorithms, GA, PSO and BFO have shown good segmentation results with significant
reduced computational cost for multilevel thresholding using Otsu criterion or Kapur’s
entropy.

Although the evolutionary algorithms provide promising results for finding optimal thresh-
olds in comparison with the parametric approaches, most of them exhibits slow convergence
and may get trapped in local minima highly affecting their quality of segmentation [20]. The
hybridization of the evolutionary methods is a practical solution to overcome this limitation by
improving their efficiency in terms of convergence speed and solution quality.

Recently, Askarzadeh [4] proposed the bird mating optimization (BMO) algorithm, a
population based method based on bird mating phenomenon, in which each bird attempts to
breed a quality brood as much as possible. BMO employs distinct patterns to move through the
search space without being trapped in local extrema. Thus, it can explore the search space and
generate new solutions while maintaining the population diversity. Although BMO presents
promising results in solving optimization problems, it is still inefficient in terms of conver-
gence speed and quality of solution [49]. In order to improve the quality of the BMO solution,
we introduce a hybrid algorithm (called BMO-DE) based on BMO and the differential
evolutionary (DE) algorithm. DE is an easy-to-use general search algorithm with a simple
structure holding acceptable convergence properties; however it may get trapped in local
minima. The proposed hybrid algorithm BMO-DE was used to efficiently solve the multilevel
thresholding problem for image segmentation by using the objective functions of Kapur’s and
Otsu’s methods.
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The paper is organized as follows: Section 2 presents the Kapur’s and Otsu’s methods for
multilevel thresholding. Section 3 gives an overview of the BMO, DE and proposed hybrid
BMO-DE algorithms. The application of the proposed BMO-DE algorithm for multilevel
thresholding is presented in Section 4. Finally, performance evaluation and conclusion are
given in sections 5 and 6, respectively.

2 Optimal thresholding methods

Suppose a given image has N pixels and L gray levels over [0, L-1]. The probability of gray
level i is given as follows:

Pi ¼ f i
N
; N ¼ ∑

L−1

i¼0
f i; i ¼ 0; 1; :::;L−1 ð1Þ

Where fi is the number of pixels with gray level i. In optimal thresholding methods optimal
thresholds are found such that the segmented classes satisfy desired properties. We used the
entropy criterion (Kapur’s) and between-class variance (Otsu’s) method to perform image
segmentation via multilevel thresholding.

2.1 Entropy criterion method

The Kapur’s method for image thresholding maximizes the posterior entropy by measuring the
homogeneity of image regions [19, 45]. According to this criterion, the objective function
based on bi-level thresholding is described as follows:

fit xð Þ ¼ H1 þ H2 ð2Þ
where

H1 ¼ − ∑
x−1

i¼0

Pi

w1
ln
Pi

w1
; w1 ¼ ∑

x−1

i¼0
Pi

H2 ¼ − ∑
L−1

i¼x

Pi

w2
ln
Pi

w2
; w2 ¼ ∑

L−1

i¼x
Pi

ð3Þ

Gray level that maximizes eq. 2 is considered as the optimal threshold x.
The Kapur’s method can be extended to multilevel thresholding to find c thresholds

X = [x1, x2, ..., xc] by maximizing the following objective function:

fit Xð Þ ¼ H1 þ H2 þ :::þ Hc ð4Þ
where

H1 ¼ − ∑
x1−1

i¼0

Pi

w1
ln
Pi

w1
;w1 ¼ ∑

x1−1

i¼0
Pi

H2 ¼ − ∑
x2−1

i¼x1

Pi

w2
ln
Pi

w2
;w2 ¼ ∑

x2−1

i¼x1
Pi

⋮
Hc ¼ − ∑

L−1

i¼xc

Pi

wc
ln
Pi

wc
;wc ¼ ∑

L−1

i¼xc
Pi

ð5Þ
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where H1, H2, ..., Hcare the Kapur’s entropies and w1, w2, ..., wcare the probabilities of the
segmented classes.

2.2 Between-class variance method

Otus’s method selects the optimal threshold at levelx, which maximizes the between-class
variance. According to this threshold, the input image is divided into two classes: C1 and C2;
where class C1includes gray levels from 0 to x − 1 and class C2 consists of gray levels from x to
L − 1. The cumulative probabilities w1 and w2, and the mean gray levels μ1 and μ2 for classes
C1 and C2are defined as follows:

w1 ¼ ∑
x−1

i¼0
Pi; μ1 ¼ ∑

x−1

i¼0
i� Pi

w1
ð6Þ

w2 ¼ ∑
L−1

i¼x
Pi; μ2 ¼ ∑

L−1

i¼x
i� Pi

w2
ð7Þ

The optimum threshold is selected in a way that maximizes the objective function:

fit xð Þ ¼ σ1 þ σ2 ð8Þ
where

σ1 ¼ w1 μ1−μTotalð Þ2; σ2 ¼ w2 μ2−μTotalð Þ2 ð9Þ

and μTotal is the mean intensity of the whole image defined as follows:

μTotal ¼ w1μ1 þ w2μ2 ð10Þ
This process can be extended to multilevel thresholding:

fit Xð Þ ¼ σ1 þ σ2 þ :::þ σc ð11Þ
where

σ1 ¼ w1 μ1−μTotalð Þ2;
σ2 ¼ w2 μ2−μTotalð Þ2;

⋮
σc ¼ wc μc−μTotalð Þ2

ð12Þ

and c thresholds are defined as X = [x1, x2, ..., xc].

3 Proposed BMO-DE method

3.1 Bird mating optimization (BMO)

BMO is a meta-heuristic optimization algorithm based on mating behavior of birds. In this
algorithm the population is called society and each member of the society is named bird, which

23006 Multimedia Tools and Applications (2019) 78:23003–23027



represents a feasible solution. The society has two parts consisting of males and females. The
birds in the society are responsible to breed a quality brood as much as possible. The female
birds are classified into parthenogenetics and polyandrous. The males are divided into three
groups namely monogamous, polygynous and promiscuous. According to the mating pattern
of the birds, BMO possesses five updating patterns, each of them has different updating phase
and produces a solution as described below [4].

Monogamy is a mating system that a male bird mates with one female. Each
monogamous bird selects an interesting female by evaluating the quality of the female
birds in a probabilistic approach and mates with her. The chance of each female
depends on promising gens of that female. In this system the new offspring brood is
generated as follows:

X
!

b ¼ X
!þW � r!� X

!l
−X!

� �
for m ¼ 1 to c
if r1 > mcf

X b mð Þ ¼ lb mð Þ−r2 � lb mð Þ−ub mð Þð Þ
else
X b mð Þ ¼ X mð Þ;
end if

end for

ð13Þ

The first part of Eq. 13 shows that by combining the monogamous bird X
!

with the interesting

female X
!l

, the new brood X
!

b inherits the good genes from his parents. In this equation,W is a
time-varying weight showing the role of the interesting female on each of the offspring broods.

r!denotes a c dimensional vector, in which each element has a uniform distribution between 0
and 1, and c is the dimension of the problem. The second part of the Eq. 13 defines the
mutation operation in one of the brood’s genes with the probability of 1 −mcf, where lb and ub
are lower and upper bounds of the dimension of the problem and rn is a random variable
between 0 and 1.

Polygyny indicates a mating system that polygynous bird mates with several female birds to
have better genes for the brood. The new offspring brood is calculated as below:

X
!

b ¼ X
!þW � ∑

nl

k¼1
r!k � X

!l

k−X
!� �

for m ¼ 1 to c
if r1 > mcf

X b mð Þ ¼ lb mð Þ−r2 � lb mð Þ−ub mð Þð Þ
else
X b mð Þ ¼ X mð Þ;

end if
end for

ð14Þ

where nlis the number of interesting female birds.
Promiscuity is a mating system in which two birds have unstable relationships. This mating

presents a chaotic sequence. In this system amale birdmates with one female according to Eq. 13.
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Parthenogenesis is another mating system that each female can raise brood without the help
of males. By making a small change in genes of each female the offspring brood is generated
as follows:

for m ¼ 1 to c
if r1 > mcfp
X b mð Þ ¼ X mð Þ þ mu� r2−r3ð Þ � X mð Þ;

else
X b mð Þ ¼ X mð Þ;
end if
end for

ð15Þ

where mcfp and mu are the mutation control factor and the step size, respectively.
Polyandry implies a mating system that a female bird mates with several males. The polyan-

drous bird choices monogamous males probabilistically. The brood is generated using Eq. 14.

3.2 Differential evolution (DE)

The differential evolution (DE) algorithm is an evolutionary optimization technique introduced
by Storn and Price in 1995 [42]. DE with good global search ability uses crossover and
mutation operators like GA but with different mechanism. In c dimensional search spaces,
each individual in the DE population is produced by Xj = (xj, 1, … , xj, c) from the feasible
solution space. At each generation, mutant vectors (Xmut, Xmut1, Xmut2 and Xmut3) are generated
for each individual according to the following three strategies:

Xmut ¼ X p0 þ F1 � X p1−X p2
� �

Xmut 1 ¼ X p0 þ F1 � X p1−Xp2
� �þ F2 � X best−Xworstð Þ

Xmut2 ¼ F3 � X best−Xworstð Þ þ X p3

Xmut3 ¼ X p0 þ F1 � X p4−Xp3
� � ð16Þ

where p0, p1, p2, p3 and p4 are the different random integer numbers from [1,Npop] andNpop is
the size of the population. In order to adjust the difference vectors F1, F2 and F3 are chosen as
scaling factors selected randomly by using normal distribution.

After applying mutation, trial vectors Xnew, Xnew1, Xnew2 and Xnew3 named crossover vectors
are produced by crossover operation based on Xjand Xmut, Xmut1, Xmut2, and Xmut3 vectors as:

xnew;m ¼
n
xmut1;m
x j;m

if rand < CR or m ¼ z
otherwise

xnew1;m ¼
n
xmut3;m
x j;m

if rand < CR1 or m ¼ z
otherwise

xnew2;m ¼
n
xmut;m
xmut2;m

if rand < CR2 or m ¼ z
otherwise

xnew3;m ¼
n
xmut;m
xmut1;m

if rand < CR3 or m ¼ z
otherwise

m ¼ 1:::c

ð17Þ

where xj, m and xnew, m, xnew1, m, xnew2, m, xnew3, m are the mth dimensional components of the
vectors Xj and xnew, xnew1, xnew2, xnew3, respectively. CR, CR1, CR2 and CR3 are the crossover
constants, which are usually set to fixed values within (0,1); z is an integer number that is
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randomly chosen from the index set {1, 2, ..., c}, which makes sure crossover vectors get at
least one parameter from mutant vectors.

3.3 Hybrid BMO-DE algorithm

The proposed hybrid evolutionary algorithm (called BMO-DE) was developed by integrating
DE into BMO for updating population (society). We used DE to improve the solution quality
of the BMO algorithm. The proposed hybrid algorithm was implemented as follows:

Step 1: Initialization: an initial society S is randomly generated as S ¼ X 1;X 2; :::;XNpop

� �
where Xj= [x1, ...xc] represents the jth bird in the society.
Step 2: Fitness function: in this step, a constrained optimization problem with regard to
predefined variables should be solved:

Fit Xð Þ ¼ fit Xð Þ−k1 ∑
a¼1

Neq

ha Xð Þð Þ2
 !

−k2 ∑
Nueq

b¼1
Max 0;−gb Xð Þ½ �ð Þ2

� �
ð18Þ

where fit(X) is the objective function; Neq and Nueq are the number of equality and inequality
constraints of the problem, respectively; ha(X) for a = 1, ..., Neq and gb(X) for b = 1, ..., Nueq are
constraints that should be fulfilled; and k1 and k2 are the penalty coefficients that are set in
order to meet the constraints. If there are no constraints in the problem, the penalty coefficients
are set to zero and the value of the fitness function Fit(X) and the objective function fit(X) are
equal.

Step 3: Ranking and classification: the birds in the society are ranked and classified into
two groups (male and female) according to their fitness function. The females are equally
divided into two groups as parthenogenetic and polyandrous birds. The males are
categorized into three groups called monogamous, polygynous and promiscuous.
Step 4: Breeding: select the jth bird and calculate a brood using its pattern.
Step 5: Replacement: replace the new brood with its own bird if it has a better quality.
Step 6: Hybrid BMO-DE: apply the DE to the jth brood of the monogamous or
polygynous birds. If the quality of the DE mutant vector is better than its own brood,
the brood abandons the society and the DE vector is joined to the society as a new brood.
Step 7: repeat steps 4–6 until all birds are evaluated.
Step 8: if the termination criterion is satisfied, stop the search procedure. Otherwise,
replace the initial population with the current population and go back to step 3.
Step 9: the bird with the best quality is selected from the society as the final solution.

The flowchart of the hybrid BMO-DE is illustrated in Fig. 1.

4 Image segmentation using the proposed BMO-DE

In the society of birds, they are responsible to breed a quality brood with superior genes. In the
multilevel thresholding problem, the proposed BMO-DE algorithm is applied to imitate the
behaviour of birds to breed broods (optimal threshold values) that optimize objective functions
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given by Eqs. 4 or 11. The image histogram is the input of this algorithm and the optimal bird

X
!

b, which represents the optimal threshold is the output.

No 

Yes 

Yes No 

Start 

Initialize the parameters 

Generate initial society

Calculate the fitness function for each bird  

Sort birds according to the fitness function values and specify each species 

j=1 

Select the jth bird  

Generate the brood of the jth bird 
(monogamous using Eq. 13 and polygynous 
using Eq. 14) and replace the bird with brood 
if it has better quality. 

If the jth bird is from 
monogamous or 

polygynous birds?

 Generate the brood of the jth bird 
(promiscuous, polyandrous or  
pathenogenetic ) according to its pattern and 
replace the bird with brood if it has better 
quality. 

Replace initial society 
with new society 

End 

Apply DE to the new solution and replace 
with it if its fitness function is better. 

Are all birds selected? 

Is the termination 
criteria satisfied? 

j=j+1 

No 

Yes 

Fig. 1 The flowchart of the proposed hybrid BMO-DE algorithm
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Suppose that to find c thresholds for the segmentation problem, the search space is
c-dimensional and the jth bird can be represented by a c-dimensional vectorXj = [xj, 1,
xj, 2, ..., xj, c] of the possible real values corresponding to the thresholds. In the first
stage of the proposed multilevel thresholding method, an initial society consisting of
Npop vectors Xj = [xj, 1, xj, 2, ..., xj, c], j = 1, ..., Npop is generated randomly as birds
according to Eq. 19:

x j;k ¼ rand :ð Þ � xmax;k−xmin;k
� �þ xmin;k ð19Þ

Where xmin, k and xmax, k are the minimum and maximum of the gray levels in the input image
and the birds Xj = [xj, 1, xj, 2, ..., xj, c] (thresholds) are initialized within this range. Each bird with
length c is a feasible solution of the thresholding problem. The fitness function is
used to assess the quality of each bird Xj. Since there are no constraints in our
problem, the objective function and fitness function in Eq. 18 are the same. Therefore,
the fitness function is calculated based on Kapur’s entropy (Eq. 4) or Otsu’s criterion
(Eq. 11) for each bird Xj in the society.

In the second stage, the birds of the society (thresholds) are sorted based on their
quality (value of fitness function) and they are classified into males and females. The
females are those birds that have promising genes (i.e. the most fitness function
value) and they are equally divided into two groups: i) parthenogenetic group with
better genes (better thresholds) and ii) polyandrous group. On the other hand, the
males are categorized into three groups (step 3 in subsection 3.3). The better ones
make the first group named monogamous and the birds in the second group are
named polygynous. The birds in the third group, named promiscuous, have the worse
quality (worse threshold) are excluded from the society and replaced with ones that
are generated using a chaotic sequence. Each bird as an optimal threshold breeds a
brood according to its pattern (Eqs. 13 to 15). The bird (threshold in the previous
iteration) can be replaced with its own brood (threshold in the new iteration) if the
quality of the brood is better, in other words, it has a fitness function value greater
than that of its parent.

In the third stage, DE is applied to each brood of the monogamous or polygynous
birds based on Eqs. 16 and 17. If the fitness function value of the DE mutant vector
is better than that of its own brood, the brood is updated with the DE vector. The
search procedure is repeated until the termination criterion is satisfied. The bird Xj

with the best quality, a vector consisting of c thresholds, represents the final solution
of the multilevel thresholding problem.

5 Performance evaluation

The performance of the proposed method and that of other well-known methods
including PSO, GA, BF, MBF [37] and hybrid PSO-DE algorithm [27] was evaluated
on standard test images: Lena, Peppers, Baboon, Hunter, Cameraman, Living room,
Airplane and Butterfly. The original images and their corresponding histograms are
shown in Fig. 2. The proposed BMO-DE based multilevel thresholding method was
implemented in MATLAB using a Pentium(R) Dual core 2.30 GHz and 2 GB of
memory. The mean and standard deviation of the objective function values as well as
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the corresponding CPU time were reported within a range of thresholds for each
multilevel thresholding method included in the study.

5.1 Segmentation result

Figures 3 and 4 show the segmentation results obtained by the proposed BMO-DE methods
based on Kapur’s entropy and Otsu criteria using three thresholds, respectively. As shown, the
segmentation accuracy was improved significantly with increasing the number of thresholds.

(a) Lena (b) Peppers 

(c) Baboon (d) Hunter 

(e) Cameraman (f) Livingroom 

(g) Airplane (h) Butterfly 

Fig. 2 Original gray level test images and the corresponding histograms that are used to perform experiments.
The size of images are 512 × 512. (a) Lena, (b) Peppers, (c) Baboon, (d) Hunter, (e) Cameraman, (f) Living room,
(g) Airplane and (h) Butterfly
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5.2 Solution quality

Tables 1 and 2 show the mean (± std) objective values obtained using both Otsu’s and Kapur’s
objective functions for BMO-DE, PSO-DE, GA, PSO, BF and MBF. The corresponding
threshold values are shown in Tables 3 and 4. In order to evaluate the stability of the

c=5 c=4 c=3 

Fig. 3 Segmentation of test images using the proposed BMO-DE-Kapur multilevel thresholding method. The
first, second and third columns represent the segmented image into four (c = 3), five (c = 4) and six (c = 5)
regions, respectively. From top to bottom: Lena, Peppers, Baboon, Hunter, Cameraman, Living room, Airplane
and Butterfly
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evolutionary methods for multilevel thresholding we computed the standard deviation (std) of
their objective function values over K runs as follows [37]:

std ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
K

a¼1

δa−μð Þ
K

s
ð20Þ

where K is number of runs for each algorithm, δais the best objective value obtained by the ath

run of the algorithm, and μ is the mean value of δ. A lower standard deviation indicates higher

(continued)
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stability for the algorithm. We evaluated the stability of the evolutionary algorithms over 50 runs
(K= 50). As shown in Tables 1 and 2, the proposedmethod exhibited higher stability in comparison
with other methods using both Otsu’s and Kapur’s objective functions. We also performed a

c=5 c=4 c=3 

Fig. 4 Segmentation of test images using the proposed BMO-DE-Otsu multilevel thresholding method. The first,
second and third columns represent the segmented image into four (c = 3), five (c = 4) and six (c = 5) regions,
respectively. From top to bottom: Lena, Peppers, Baboon, Hunter, Cameraman, Living room, Airplane and
Butterfly
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statistical analysis using t-test at a significance level of 0.05 to assess the significant differences
between the objective values of the proposed algorithm and those of PSO-DE, MBF, BF, PSO and
GA over the runs. The statistical differences (P < 0.05) between our algorithm and each of the other
approaches are shown by asterisks in Tables 1 and 2. Moreover, in most cases our method yielded
higher values using both Otsu’s and Kapur’s objective functions. The Kapur based PSO-DE
algorithm, however, showed a comparable accuracy to that of our method.

(continued)
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We further evaluated the accuracy of the proposed BMO-DE based multilevel
thresholding algorithm on synthetic images corrupted with white Gaussian noise
scaled so that the signal to noise ratio (SNR) ranged from 2 to 12 according to eq.
21. Figure 5 shows a series of noisy images containing three layers with different
SNR. Figure 6 shows the mean objective function values obtained using the Otsu
based BMO-DE multilevel thresholding (two thresholds) algorithm for the noisy
images illustrated in Fig. 5. As shown, our method performed better on noisy images
with low SNR in comparison with other methods.

SNR ¼ μsig

δsig
ð21Þ

where μsig and δsigare average and standard deviation of the signal values respectively.

5.3 Computation time

Table 5 shows the computational efficiency of the proposed BMO-DE algorithm for multilevel
thresholding in comparison with other evolutionary algorithms in terms of average execution
time (CPU time taken in seconds) over 50 runs. Compared to other evolutionary algorithms
[37], the proposed BMO-DE multilevel thresholding algorithm provided lower computational
time. The comparison between the run time of the Kapur and Otsu based evolutionary
algorithms showed that the multilevel thresholding based on Otsu’s objective function was
faster.

SNR=12    SNR =10     SNR=8       SNR=6       SNR =4     SNR=2 

Fig. 5 Synthetic images with three layers and different SNR

Fig. 6 Objective values for Otsu based multilevel thresholding (c = 2) for synthetic images with different SNR
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5.4 Advantage and disadvantage of the proposed algorithm

Multilevel thresholding using Kapur’s or Otsu’s algorithms is computationally expensive with
increasing number of thresholds. The proposed BMO-DE-based algorithm exhibited signifi-
cantly reduced computational complexity by reducing efficiently the search space.

Success of the evolutionary algorithms depends on the balance between generation of new
solutions in untested regions (exploration) and concentration in the vicinity of the current good
solution (exploitation) [4]. The proposed BMO-DE method provides a good balance between
the exploration and exploitation parameters, which enable the algorithm to avoid local optima
and achieve better performance in comparison with other algorithms.

The main limitation of the proposed segmentation method is its sensitivity to noise and
intensity inhomogeneity. In these cases, the fitness function should be improved to use local
information derived from neighboring pixels.

6 Conclusion

For image segmentation, the optimal thresholds in bi-level/multilevel thresholding methods can
be obtained by maximizing an objective function based on some criteria such as the Otsu’
criterion or Kapur’s entropy, which tries to maximize the between-class variance and the posterior
entropy, respectively. These methods achieve good performances for bi-level thresholding.
However, by increasing the number of thresholds in multilevel thresholding, the computational
complexity is increased and the segmentation accuracy might be affected be getting trapped in
local extrema. Thus, a practical solution to overcome these weaknesses is to combine evolution-
ary methods with multilevel thresholding algorithms. In this paper, we presented a hybrid
multilevel thresholding method based on the combined BMO and DE algorithms.

BMOemploys distinct patterns tomove through the search spacewithout getting trapped in local
extrema. It can explore the search space and generate new solutions while maintaining the
population diversity. Although BMO presents promising solutions for optimization problems, it is
still insufficient in terms of convergence speed and quality of solution [49]. In order to improve the
quality of the BMO solution, we proposed an efficient hybrid algorithm, namedBMO-DE, based on
the BMO and DE algorithms. DE is easy to use, keeps a simple structure, holds acceptable
convergence properties and can find the solution rapidly; however it may get trapped in local
minima. By hybridization of BMO andDE, these shortcomings can be overcome. The performance
of the proposed algorithmwas evaluated on eight standard test images. Compared to the other well-
known evolutionary algorithms including GA, PSO, BF and MBF, our algorithm achieved better
results in terms of solution quality and stability. In future work, we will improve the objective
function by integrating the spatial constraints and local information to further improve the accuracy
of image segmentation using multilevel thresholding.
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