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Abstract
This paper presents a proposed approach for the enhancement of Infrared (IR) night vision
images. This approach is based on a trilateral contrast enhancement in which the IR night
vision images pass through three stages: segmentation, enhancement and sharpening. In the
first stage, the IR image is divided into segments based on thresholding. The second stage,
which is the heart of the enhancement approach, depends on additive wavelet transform
(AWT) to decompose the image into an approximation and details. Homomorphic enhance-
ment is performed on the detail components, while plateau histogram equalization is per-
formed on the approximation plane. Then, the image is reconstructed and subjected to a post-
processing high-pass filter. Average gradient, Sobel edge magnitude and spectral entropy are
used as quality metrics for evaluation of the proposed approach. The used metrics ensure good
success of this proposed approach.
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1 Introduction

Image enhancement techniques have been widely used in many applications of image pro-
cessing in which the subjective quality of images is important for human interpretation.
Contrast is an important factor in any subjective evaluation of image quality. Contrast is the
difference in visual properties that makes an object distinguishable from other objects and the
background [1, 2, 7, 17, 20, 22, 23].

Night vision signifies the ability to see in dark (night). This ability is normally possessed by
owls and cats, but with the development of science and technology, devices have been developed
to enable human beings to see in the dark and in adverse atmospheric conditions such as fog, rain,
and dust [3, 5, 19]. Themain purpose for the development of night vision technologywas military
use to locate enemies at night. Night vision technology is not only used extensively for military
purposes, but also for navigation, surveillance, targeting and security [4, 8, 18, 19, 26].

Few thermal IR datasets have been published in the past such as the OTCBVSBenchmark [24,
27], the LITIV Thermal-Visible Registration Dataset [6, 21, 25]. These datasets can be used for
the evaluation of any image processing algorithm that can be applied for better night vision. The
proposed approach is based on trilateral contrast enhancement of IR night vision images. The
paper is arranged as follows. Section 2 gives the motivations and related work. Section 3 gives an
explanation of the histogram equalization. Section 4 gives the bilateral histogram equalization
referred to as bi-histogram equalization. Section 5 gives a discussion of the segmentation stage in
the proposed approach. Section 6 gives a discussion of the plateau histogram equalization. Section
7 covers an IR image enhancement approach based on the AWTwith homomorphic processing.
Section 8 presents the proposed trilateral contrast enhancement approach. In section 9, perfor-
mance evaluation quality metrics are given. Section 10 gives a discussion of the experimental
results. Finally, section 11 gives the conclusions and the future work.

Fig. 1 Steps of the proposed approach
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Fig. 2 Estimation of spectral and spatial entropies for an image
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2 Motivations and related work

This paper deals with a vital topic derived from the problems addressed for IR images
[1–3, 7, 17, 20, 22, 23]. The objective is the development of image processing technol-
ogies to enhance IR night vision images. The proposed approach is based on a hybrid
implementation of three stages: segmentation, enhancement and sharpnening [3–5, 8, 18,
19, 24, 26, 27]. Compared to the most relevant work [2, 6], this work depends on
performance evaluation with spectral entropy, average gradient and Sobel edge magnitude
[16, 21, 25]. The proposed approach depends on trilateral contrast enhancement. The IR

(a) Original IR night image (b) AWPH

(d) Bi-histogram equalization

(e) Histogram equalization (f) Proposed approach

(c) Adaptive plateau histogram

Fig. 3 Visual results of the first experiment
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night vision images pass through three stages: segmentation, enhancement, and sharpen-
ing. It is clear that the obtained results in this paper are better than those of the previous
works as shown in the Tables 1, 2, 3, 4, 5 and 6 for six cases. Enhancement of the night
vision images and videos is very important for many computer vision tasks, such as visual
tracking in the night [11, 13]. The use of multiple features for tracking from IR videos can
be enhanced with the proposed approach since different types of variations such as
illumination, occlusion and pose can be enhanced [9, 10].

To intelligently analyze and understand video content, a main step is to accurately perceive
the motion of the objects of interest in videos. The task of object tracking aims to determine the
position and status of the objects of interest in consecutive video frames. This field is very
important, and has received great research interest in the last decade. Although numerous
algorithms have been proposed for object tracking in RGB videos, the task is still limited in IR
videos [12, 14, 15].

3 Histogram equalization

Histogram equalization (HE) is a specific case of the more general class of histogram
remapping methods. These methods seek to adjust the image to make it easier to analyze or
improve its visual quality. It can also be used on color images by applying the same method
separately to the Red, Green and Blue components of the RGB color values of the image [7].

Still, it should be noted that applying the same method on the Red, Green, and Blue
components of an RGB image may yield dramatic changes in the image color balance
since the relative distributions of the color channels change as a result of applying the
algorithm. However, if the image is first converted to another color space, Lab color space,
or HSL/HSV color space in particular, then the algorithm can be applied to the luminance
channel without resulting in changes in the hue and saturation of the image. The HE
operation can be represented as follows [22].

b x; yð Þ ¼ f c x; yð Þ½ � ð1Þ

where c(x,y) is an image with a poor histogram, and f is the function that transforms the
image c(x,y) into an image b(x,y). The Probability Density Function (PDF) of a pixel value
a in the image c is given by:

pc að Þ ¼ 1

Area
Hc að Þ ð2Þ

Table 1 Numerical results of the first experiment before the last sharpening stage

Average
Gradient

Sobel Edge
Magnitude

Original image 7.8714 69.678
Adaptive plateau histogram equalization 20.8703 185.15
AWTH with adaptive plateau histogram (AWPH) equalization 20.8965 185.36
Histogram equalization 21.0830 186.92882
Bi-histogram equalization 22.0327 194.067
The proposed approach 160.17 1204.9
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In fact, pc(a) is the probability of finding a pixel with the value a in the image c. Area is the
area or number of pixels in the image, and Hc(a) is the histogram value of the image c for gray
level a. The Cumulative-Density Function (CDF) for gray level a in image c is therefore given
by:

Pc að Þ ¼ ∑
a

i¼0
pc ið Þ ¼ 1

Area
∑
a

i¼0
Hc ið Þ ð3Þ

(f) Proposed approach

(d) Bi-histogram equalization(c) Adaptive plateau histogram

(e) Histogram equalization

(a) Original IR night image (b) AWPH

Fig. 4 Visual results of the second experiment
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The CDF is the sum of all PDFs up to the value a. Note that ideally the image b has a flat
histogram such that Hb(0) =Hb(1) = .... =Hb(a) = .... =Hb(255). Therefore, the probabilities of
all pixel values are now equal. They all occur similar times. So, the desired HE function f(a)
simply takes the PDF for the values in the image c and multiplies its reciprocal by the CDF of
the values in the same image.

(a) Original IR night image (b) AWPH

(f) Proposed approach

(c) Adaptive plateau histogram

(e) Histogram equalization

(d) Bi-histogram equalization

Fig. 5 Visual results of the third experiment

Table 2 Numerical results of the second experiment before the last sharpening stage

Average Gradient Sobel Edge Magnitude

Original image 5.0963 49.8839
Adaptive plateau histogram equalization 9.5717 93.7917
AWTH with adaptive plateau histogram (AWPH) equalization 9.6002 94.0607
Histogram equalization 0.0299 0.2928
Bi-histogram equalization 10.4130 101.8715
The proposed approach 63.0036 536.73
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f að Þ ¼ Dm
1

Area
∑
a

i¼0
Hc ið Þ ð4Þ

Dm is the number of gray levels in the new image b. Assuming histogram uniformity in the
image b, we can conclude that Dm = 1/pb(a) for all pixel values a in the image b. It is important
to realize that HE reduces the number of gray levels in the image, because the equalization
process is a nonlinear process, which may transform multiple gray levels in the image with a
poor histogram into a single gray level in the equalized image.

4 Bi-histogram equalization

Bi-histogram equalization (BHE) divides the original image histogram into two different
histograms with the reference as the mean value of the original image. Then, the sub-divided
image histograms are equalized separately by histogram equalization. The following steps are
performed to perform BHE.

1. Mean computation: Mean value of the input image xm is computed.
2. Bi-histogram formation: From the mean value the input image histogram, two sub-image

histograms xa and xb are generated as [22]:

xa ¼ x i; jð Þjx i; jð Þ≤xmf g ð5Þ

xb ¼ x i; jð Þ│x i; jð Þ > xm
� � ð6Þ

x ¼ xa∪ xbf g ð7Þ
where x is the input image, xa and xb are the sub-image histograms.

3. Histogram equalization of sub-images: Histogram equalization of sub-images is per-
formed similar to that of the traditional image.

Table 3 Numerical results of the third experiment before the last sharpening stage

Average
Gradient

Sobel Edge Magnitude

Original image 11.4057 118. 7959
Adaptive plateau histogram equalization 18.3561 190.3882
AWTH with adaptive plateau histogram (AWPH) equalization 27.8058 283.7404
Histogram equalization 0.0732 0.7589
Bi-histogram equalization
The proposed approach 124.6050 1141.5
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(a) Original IR night image (b) AWPH

(c) Adaptive plateau histogram (d) Bi-histogram equalization

(f) Proposed approach(e) Histogram equalization
Fig. 6 Visual results of the fourth experiment
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(e) Histogram equalization (f) Proposed approach

(c) Adaptive plateau histogram (d) Bi-histogram equalization

(a) Original IR night image (b) AWPH

Fig. 7 Visual results of the fifth experiment
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5 Segmentation stage

This stage is based on Otsu’s N thresholding method. Otsu’s method of segmentation is an
optimum global thresholding method. It is a non-parametric and unsupervised method of
automatic threshold selection for segmentation of images. It is a simple procedure, and it
utilizes only the zeroth and the first-order cumulative moments of the gray-level histogram. It
is optimum in the sense that it maximizes the between-class variance, a well-known measure
used in statistical discriminant analysis [16].

MN ¼ n0 þ n2 þ…þ nL−1 ð8Þ
whereM × N is the size of the image, ni is the total number of pixels in the image with level i.
Suppose we select a threshold k, and use it to threshold the image into two classes, C1 and C2.
Class C1 consists of pixels with intensity values in the range [0, k]. Class C2 consists of the
pixels with intensity values in the range [k + 1, L-1]. Using this threshold, the probability,
P1(k), that a pixel is assigned to class C1 is given by the cumulative sum as follows:

P1 kð Þ ¼ ∑
k

i¼0
pi ð9Þ

(a) Original IR night image (b) AWPH

(c) Adaptive plateau histogram (d) Bi-histogram equalization

(e) Histogram equalization (f) Proposed approach

Fig. 8 Visual results of the sixth experiment
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The pixels of the input image are represented in L gray levels, and k is a selected threshold
from 0 < k < L-1.
Similarly, the probability of pixels in Class C2 is,

P2 kð Þ ¼ ∑
L−1

i¼kþ1
pi ¼ 1−P1 kð Þ ð10Þ

where P1(k) is the probability of pixels in Class C1.
The mean intensity values of the pixels assigned to class C1 are

m1 kð Þ ¼ 1

P1 kð Þ ∑
k

i¼0
i pi ð11Þ

Similarly, the mean intensity values of the pixels assigned to class C2 are

m2 kð Þ ¼ 1

P2 kð Þ ∑
L−1

i¼kþ1
i pi ð12Þ

Table 4 Numerical results of the the fourth experiment before the last sharpening stage

Average Gradient Sobel Edge Magnitude

Original image 3.8202 39. 6949
Adaptive plateau histogram equalization 9.9480 104
AWTH with adaptive plateau histogram (AWPH) equalization 12.2954 125.67
Histogram equalization 0.0435 0.04543
Bi-histogram equalization 10.2307 107.0131
The proposed approach 47.1873 415.5

Table 5 Numerical results of the fifth experiment before the last sharpening stage

Average Gradient Sobel Edge Magnitude

Original image 4.4699 47. 2122
Adaptive plateau histogram equalization 9.7038 103.14
AWTH with adaptive plateau histogram equalization 12.3691 128.81
Histogram equalization 0.0419 0.444
Bi-histogram equalization 10.5909 112.4488
The proposed approach 41.9002 389.65

Multimedia Tools and Applications (2020) 79:6085–6108 6095



Table 6 Numerical results of the sixth experiment before the last sharpening stage

Average Gradient Sobel Edge Magnitude

Original image 9.1109 92.6412
Adaptive plateau histogram equalization 12.1672 123.71
AWTH with adaptive plateau histogram (AWPH) equalization 19.0076 187. 62
Histogram equalization 0.0477 0.4844
Bi-histogram 11.9353 121.3512
The proposed approach 74.5888 636.49
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The global mean is given by,

mG kð Þ ¼ ∑
L−1

i¼0
i pi ð13Þ

The problem is to find an optimum value for k, which maximizes the criterion defined by this
equation:

y kð Þ ¼ σB
2 kð Þ

σG2 kð Þ ð14Þ
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where σB2(k) is the between-class variance defined as

σB
2 kð Þ ¼ P1 m1−mGð Þ2 þ P2 m1−mGð Þ2 ð15Þ

and σG2(k) is the global variance defined as,

σG
2 kð Þ¼ ∑

L−1

i¼0
i−mGð Þ2 Pi ð16Þ

where the optimum threshold is the value k* that maximizes σB2(k).
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Fig. 11 Distributions of block spectral entropies for third experiment (a) after the AWPH (b) after the adaptive
plateau histogram equalization (c) after the bi-histogram equalization (d) after the HE (e) after the proposed
approach
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6 Plateau histogram equalization

Plateau histogram equalization (PHE) modifies the shape of the input histogram by reducing or
increasing the values in the histogram bins based on a threshold limit before the equalization
takes place. An appropriate threshold value is selected firstly, which is represented as T. If the
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Fig. 12 Distributions of block spectral entropies for the fourth experiment (a) after the AWPH (b) after the
adaptive plateau histogram equalization (c) after the bi-histogram equalization (d) after the HE (e) after the
proposed approach
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value of P(Xk) is greater than T, then it is forced to be equal to T. Otherwise, it is unchanged, as
shown below [17]:

P X kð Þ ¼ nk
n

ð17Þ
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Fig. 13 Distributions of the block spectral entropies for the fifth experiment (a) after the AWPH (b) after the
adaptive plateau histogram equalization (c) after the bi-histogram equalization (d) after the HE (e) after the
proposed approach
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where nk represents the number of times that the level Xk appears in the input image and n is
the total number of samples in the input image, for k = 0, 1, ...., L − 1.

PT X kð Þ ¼ f P X kð Þ P X kð Þ≤T

T P X kð Þ > T
ð18Þ

where P(Xk) is the modified probability density function, and T is the selected threshold value.
Then, histogram equalization is carried out using this modified probability density function.

There is one main problem associated with plateau histogram equalization. Most of the
methods need the user to set manually the plateau threshold of the histogram, which makes
these methods not suitable for automatic systems. Although some methods can set the plateau
threshold automatically, the process for deciding one threshold is often complicated.
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Selection of plateau threshold value is very important for IR image enhancement.
It has an effect on the contrast of images. An appropriate plateau threshold value
would greatly enhance the contrast of the image. In addition, some plateau values
would be appropriate to some IR images, but not appropriate to others. As a result,
the plateau threshold value would be selected adaptively according to the IR image.
The steps of this algorithm are performed as follows:

1. The IR image is obtained for an object through the optical lens of a thermal imager.
2. The image is considered in matrix form with different pixel values.
3. All pixel values of the image are arranged in an ascending order.
4. Histogram is estimated.
5. The median of the image levels is estimated and used as a threshold.
6. Comparison with the estimated threshold is performed to determine the required

processing.
7. Histogram equalization for every pixel is performed.

7 AWT with homomorphic enhancement

In this approach, we merge the benefits of the AWT and homomorphic enhancement.
First, the IR image is decomposed into sub-bands using the AWT. After that, each
sub-band is processed, separately, using the homomorphic enhancement to reinforce
image details.
A visual image can be represented as a product of two components as folows:

f n1; n2ð Þ ¼ i n1; n2ð Þr n1; n2ð Þ ð19Þ

where f(n1, n2) is the obtained image pixel value, i(n1, n2) is the light illumination incident on
the object to be imaged and r(n1, n2) is the reflectance of that object.

It is known that illumination is approximately constant, since the light falling on
all objects is approximately the same. The only change between objects is in the
reflectance component.

If we apply a logarithmic process on Eq. (19), we can change the multiplication process into
an addition process as follows:

log f n1; n2ð Þð Þ ¼ log i n1; n2ð Þð Þ þ log r n1; n2ð Þð Þ ð20Þ
The first term in the above equation has small variations, but the second term has large
variations as it corresponds to the reflectivity of the object to imaged. By attenuating the
first term and reinforcing the second term of Eq. (20), we can reinforce the image details.
This idea can be extended to IR image enhancement by working with the image pixels as
values only without considering the composition process of pixel values in IR imaging.
The steps of the AWTH approach can be summarized as follows:

1. Decompose the IR image into four subbands p3, w1, w2 and w3 using the additive wavelet
transform and the low-pass filter mask given by [2]:
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H ¼ 1

256

1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1

0
BBBB@

1
CCCCA ð21Þ

2. Apply a logarithmic operation on each sub-band to get the illumination and reflectance
components of the subbands w1, w2 and w3 as they contain the details.

3. Perform a reinforcement operation on the reflectance component in each sub-band and an
attenuation operation on the illumination component.

4. Reconstruct each sub-band from its illumination and reflectance using addition and
exponentiation processes.

5. Apply adaptive plateau histogram equalization on p3
6. Perform an inverse additive wavelet transform on the obtained sub-bands by adding p3,

w1, w2 and w3 after the homomorphic processing to get the enhanced image.

In image processing, it is often desirable to emphasize high-frequency components
representing the image details without eliminating low-frequency components. The high-
boost filter can be used to enhance high-frequency components. It is used for amplifying
high-frequency components of images. The amplification is achieved via a procedure, which
subtracts a smoothed version of the image from the original one [1].

Whb ¼ AWallpass þWhp ð22Þ

where Whp is a high-pass filter, A is a constant, and Whb is a high-boost filter

Whb ¼
0 −1 0
−1 Aþ 8 −1
0 −1 0

2
4

3
5 ð23Þ

Wallpass ¼
0 0 0
0 1 0
0 0 0

2
4

3
5 ð24Þ

8 The proposed trilateral contrast enhancement approach

The proposed approach is concerned with the enhancement of IR night images based on
trilateral contrast enhancement. The word trilateral means three stages. The IR night images
pass through three stages: segmentation, enhancement, and sharpning (Fig. 1).
The steps of the proposed approach can be summarized as follows:
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1. Pick IR night vision image from IR camera.
2. Divide the IR image into overlapping sub-images by a segmentation stage.
3. Apply the AWPH equalization on the resultant image.
4. Apply the high-boost filter on the enhanced resultant image.

9 Performance evaluation metrics

This section presents the quality metrics used for the valuation of the enhancement results.
These metrics include average gradient (AG), spectral entropy (Ef) and Sobel edge magnitude
(∇f). These metrics are evaluated as follows [8]:

AG ¼ 1

mn
∑
m

x¼1
∑
n

y¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂ f
∂x

� �2 þ ∂ f
∂y

� �2
	 


2

vuuut ð25Þ

where AG is the average gradient of the IR image f, and m×n is the size of the IR image
The spectral entropy is computed in the discrete cosine transform (DCT) domain on a

block-by-block basis as illustrated in Fig. 2. It is a function of the probability distribution of the
local DCT coefficient values. This probability distribution function (PDF) is given as follows
[15]:

p i; jð Þ ¼ c2 i; jð Þ
∑
i
∑
j
c2 i; jð Þ ð26Þ

where 1 ≤ i ≤ 8, 1 ≤ j ≤ 8, i, j ≠ 1, and c(i, j) represents the DCT coefficients.
The local spectral entropy is defined as [27]:

E f ¼ −∑
i
∑
j
p i; jð Þlog2p i; jð Þ ð27Þ

∇ f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f x

2 þ f y
2

q
ð28Þ

where ∇f is the Sobel edge magnitude, fx and fy are two images containing the horizontal and
vertical derivative approximations, respectively.

10 Simulation results

This section presents several simulation experiments executed on IR night vision
images. These results adopt a strategy of presenting the original IR images with
their enhanced versions using different enhancement methods. The results of the first
experiment are shown in Fig. 3. Part (a) gives the original IR night vision image.
Part (b) gives the IR image after AWPH equalization. Part (c) gives the IR image
after adaptive plateau histogram equalization. Part (d) gives AWT with homomorphic
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enhancement on three sub-bands. Part (e) gives the IR image after the bi-histogram
equalization. Part (f) gives the enhanced IR image using the proposed algorithm.
Comparing between Parts (b), (c), and (d), it is clear that the proposed enhancement
approach enhances the visual quality of the processed image. The performance
metrics results are given in Table 1. Similar experiments have been carried out on
other IR images and the results are given in Figs. 4 and 5. The higher the value of the
average gradient and Sobel edge magnitude, the better the image quality. It has been shown that
this algorithm has succeeded in the improvement of the visual quality of the IR images with much
details. From these results, it is clear that the proposed approach has succeeded in obtaining the
best results in the improvement of IR night vision images from both the visual quality and
performance metrics perspectives as illustrated in Tables 2 and 3.

To further confirm the effectiveness of the proposed approach experiments on
images from other datasets are presented. The Dune and Otcbvs images with size
300 × 300 pixels, respectively, and the Car images with size 301 × 149 pixels were
provided by Shao et al. [6, 21, 24, 25]. The proposed approach has been tested on
these images and the results are shown in Figs. 6, 7 and 8. The results illustrate that
the proposed approach is superior as compared with other methods. The numerical
results are given in Tables 4, 5 and 6. The results of distributions of block spectral
entropy for all experiments are shown in Figs. 9, 10, 11, 12, 13 and 14. These
results also ensure that the proposed approach is superior as compared with other
methods.

11 Conclusions and future work

This paper presented an approach for enhancement of IR night vision images. It is a
trilateral contrast enhancement approach. It depends on three stages: segmentation,
enhancement and sharpning. The proposed approach comprises an enhancement
stage using AWTH. Simulation results revealed that the proposed approach gives
superior results to the other methods from the quality metrics perspectives. For
future work, deep learning models for object detection from IR images will be
considered in conjunction with IR image pre-processing.
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