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Abstract
Parkinson’s disease is the second most common degenerative disease caused by loss of
dopamine producing neurons. The substantia nigra region is deprived of its neuronal functions
causing striatal dopamine deficiency which remains as hallmark in Parkinson’s disease.
Clinical diagnosis reveals a range of motor to non motor symptoms in these patients. Magnetic
Resonance (MR) Imaging is able to capture the structural changes in the brain due to dopamine
deficiency in Parkinson’s disease subjects. In this work, an attempt has been made to classify
the MR images of healthy control and Parkinson’s disease subjects using deep learning neural
network. The Convolutional Neural Network architecture AlexNet is used to refine the
diagnosis of Parkinson’s disease. The MR images are trained by the transfer learned network
and tested to give the accuracy measures. An accuracy of 88.9% is achieved with the proposed
system. Deep learning models are able to help the clinicians in the diagnosis of Parkinson’s
disease and yield an objective and better patient group classification in the near future.
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1 Introduction

Parkinson’s disease (PD) is a progressive neurodegenerative disorder caused by early death of
dopaminergic neurons in the substantia nigral region [26]. This pattern of neurodegeneration
starts from dorsal striatum and extends more to the ventral part of striatum as the disease
progresses. The striatum comprising the caudate nucleus and the putamen regulates various
aspects of motor and cognitive functions. In Parkinson’s disease, high levels of reactive
oxygen species produced by dopamine metabolism result in an increased level of iron content
which is liable to damage the cell components affecting the neuronal functions [12]. The
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striatal dopamine deficiency is seen in 2-3% of the population in the age group of greater than
65 years [26]. PD, being the second most common neurodegenerative disease, is strongly
associated with increased mortality rate in the recent years [25] with a mediocre of 1.4% of the
total population all over the world [8]. The manifestations of PD have become more wide-
spread in the striatal region in later stages of the disease. The knowledge pertaining to the
impairment of the dopaminergic pathways is related to the PD symptoms [17]. This depletion
of dopaminergic neurons creates a manifold of motor and non motor symptoms. Motor
symptoms include shaking, rigidity, slowness of movement and difficulty with walking.
Although the cardinal features of the disease are motor in nature, the major non motor
symptoms encompass of depression, psychosis, falls, genitourinary problems, and sleep
disturbances [4]. The symptoms appear when 60% of the dopaminergic neurons start declining
[5]. These motor and non motor symptoms correlate with the aging factors [28] and influence
the deterioration of quality of life. Appropriate treatment measures that could slow or halt the
progression of disease is crucial during the earlier stages of the disease.

Neuroimaging is able to capture the pathophysiological changes that determine the impair-
ment of the dopaminergic pathways for the diagnosis of the disease. A wide range of
neuroimaging studies are performed to yield an in vivo quantification of early PD [23].
Various neuroimaging modalities like Magnetic Resonance Imaging (MRI), Single Photon
Emission Computed Tomography (SPECT), Positron Emission Tomography (PET), Transcra-
nial Sonography, Functional Magnetic Resonance Imaging (fMRI) are used for diagnoses of
PD [1, 29]. PET and SPECT imaging modalities are used to visualise the striatal region to give
the dopaminergic deficiency. However these neuroimaging methodologies are liable to diag-
nose the disease only when 80% of the neurons start degenerating and when salient manifes-
tations of the disease develop [3]. The symptomatic treatments available for PD demand an
initiation of the treatment at a later stage. This creates an extensive deterioration of the disease
making the treatment procedure to be of minimal help. Hence early diagnosis of PD is required
for early management to allow for better treatment procedures to be followed. Thus the
definition of new biomarkers is required along with SPECT and PET imaging to diagnose
the disease severity and progression. Recently, Magnetic Resonance (MR) brain imaging
methods have reported promising results in providing better characterisation of PD in the
early stages and are expected to have better sensitivity than standard clinical measures [21].
MRI could monitor brain structural changes [3] and detect the iron accumulation in the
substantia nigra [12]. The quantification of structural changes would facilitate the evaluation
of disease progression. However, a comprehensive analysis of the MR images is required for
investigating these pathological changes.

Volumetric analysis is one of the widely used MRI protocols to demonstrate pathological
modifications related to PD in the striatal region [23]. Voxel based morphometry is an
automatic volumetric method employed for the detection of gray matter intensity reduction
[18] in the caudate and putamen regions [12]. These recent studies on shape differences in the
brain structures have revealed local atrophy. However these analyses suffer from lack of spatial
specificity. Deep learning neural network has recently emerged as a powerful analysis to
exploit spatial structure of subanatomical regions [7]. Various deep learning techniques have
been used in medical image analysis for segmentation, lesion detection, registration, shape
modelling and disease classification [10]. Deep neural networks have an exceptional general-
isation capacity and are capable of extracting higher level features that provide better accura-
cies in the disease classification. Additionally, the development of Convolutional Neural
Networks (CNN) for image processing has led to integration of feature extraction and learning

Multimedia Tools and Applications (2020) 79:15467–1547915468



of models into unified framework. CNN architectures have achieved remarkable performances
in a wide range of medical image applications that includes classification of Alzheimer’s
disease [36] and alcoholism detection using MR images [37]. The integration of feature
extraction and learning models improves the diagnostic performance, however, it makes the
construction of the CNN architecture more laborious and time consuming. Thus an alternative
approach is to utilise the weights of a trained model that has been constructed for a different
application [34]. The knowledge acquired from these pre-trained models can be used with
transfer learning for medical image analysis. Several CNN models such as LeNet, AlexNet,
VGG-Net, GoogLeNet, ResNet, and Inception were built for various image classification tasks
[32]. AlexNet is a deep convolutional neural network model that was trained to classify the
images on ImageNet Large-Scale Visual Recognition Challenge (ILSVRC), a subset of Image
Net [15]. Improved classification performance of the AlexNet architecture with transfer
learning has been reported in various medical applications such as detection of polyps from
colonoscopy data [34], soft tissue sarcoma classification [11], detection of pathological brain
conditions [20] and diagnosis of Leukemia from blood slides [35].

In this work, analysis of T2 weighted MR brain images for discrimination of healthy control
and PD subjects is attempted using CNN model. A transfer learned pre-trained AlexNet model
is used to classify these images into two classes as Healthy Control (HC) and PD. The MR
images are trained and tested using the modified network model and the performance measures
are evaluated. The paper is organised to expound the methodology and architecture used in this
work followed by the experimental results obtained by classification and the conclusion of the
proposed work.

2 Methodology

This section briefly explains on the MR image database, pre-processing of the MR images,
CNN AlexNet architecture, Transfer learning applied to the pre-trained AlexNet model and the
classification accuracy measures to evaluate the model for given input image dataset.

2.1 PD image database

The axial T2 weighted MR images are obtained from the Parkinson’s Progression Markers
Initiative (PPMI) public domain database [22]. The PPMI database is widely applied by
researchers to identify the progression biomarkers in PD and access the structures and the
function of brain over the course of disease. The PPMI cohort used in this study consists of
182 subjects with 82 Healthy Control and 100 Parkinson’s disease subjects. The demographics
of the subjects used in this study are given in Table 1.

Table 1 Demographics of the subjects

Healthy Control Parkinson's Disease

Number of subjects 82 100
Sex (Female/Male) 34/48 34/66
Age* 59.27 ± 11.71 60.44 ± 9.49
Weight* 77.62 ± 15.77 82.03 ± 17.64

*mean ± standard deviation
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2.2 MR image pre-processing

In the pre-processing stage, the input MR images are normalised to achieve a uniform
contrast and intensity range across all the images [24]. Each MR image in the input
dataset is normalised to the range (0, 1) by selecting a general normalisation criterion
[10, 27]. The normalised MR images are then subjected to filtering operation for
noise reduction. A 2D Gaussian filter with a smoothening kernel of size 5 X 5 and an
optimised standard deviation σ of 0.8 is used to smoothen and thus reduce the
intensity inhomogeneities from the images to be used for further processing.

2.3 Architecture

AlexNet model is used as the CNN architecture which comprises of different layers
such as the input layer, convolution layer, pooling, dropout layer and the fully
connected layer. These layers perform the necessary operations to classify the input
data as HC and PD. The input layer obtains the MR images from the user and resizes
the images as specified by the pre-trained model to transfer them to the next layer.
The first few slices of each subject which do not carry any information required for
the analysis are removed [13] and the remaining are chosen for the analysis.

The architecture of the considered AlexNet model is shown in Fig. 1. There are
five convolution layers and three fully connected layers. The output from the first,
second and the fifth convolution layer are pipelined to the max-pooling layer. The
convolution layer performs the convolution of the input images with the predefined
kernels. The kernel size and the stride parameters considered in this model are given
in the Fig. 1. The convolution layers of AlexNet use nonlinear activation function
known as the Rectified Linear Unit (ReLU). The problem of diminishing or vanishing
gradient can be solved by the ReLU activation function. The ReLU activation
function can be given as

f xð Þ ¼ 0 if x < 0
x if x≥0

�
ð1Þ

Fig. 1 Architecture Diagram
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Normalisation is applied to the first two convolution layers in the network. The
pooling layers use downsampling to reduce the dimensionality of the outputs pro-
duced by the previous layer by either max-pooling or average pooling. The fully
connected layer determines the features correlating to a given class. The compact,
high level features are extracted by the fully connected layers. The atrophy in the PD
subjects compared to HC is captured as high level features for classification. The
dropout layers are added after the fully connected layer in order to reduce the over-
fitting of the entire network [9]. The drop out probability is set to be 0.5 [31].

2.4 Transfer learning

The transfer of knowledge from one learned task to a new task is known as transfer
learning in machine learning algorithms [14]. The pre-trained AlexNet model with
transfer learning is considered and adapted for classification of MR images for
Parkinson’s disease. The weights of the convolutional layers of CNN are initialised with
the weights of the pre-trained AlexNet CNN model with the same architecture. The
features in CNN are more generic in the early layers and pertain specifically to the
Parkinson’s dataset in the later layers. The last fully connected layers are fine-tuned with
Parkinson’s disease MR images and thus high level features of the Parkinson’s data are
learnt. This is achieved by appropriately modifying the last fully connected layer with
two output neurons to classify MR images as HC and PD. Additionally, CNN would
require large number of Parkinson’s data for generating and updating the weights. Hence
transferring the weights from pre-trained model to CNN would yield desirable perfor-
mance and improved rate of convergence [34]. The memory required for computation is
reduced by utilising a pre-trained model. The softmax layer following the fine-tuned
fully connected layer utilises the softmax output unit activation function as

yr xð Þ ¼ ear xð Þ

∑k
j¼1 e

a j xð Þ ð2Þ

where 0 ≤ yr ≤ 1 and ∑k
j¼1y j ¼ 1. The weights of the network in the fully connected layer

are optimised during training using stochastic gradient descent algorithm [2, 16]. The
parameters in the training process are updated by the stochastic gradient descent solver
method in batches known as mini-batch. The cross entropy function commonly called the
log loss evaluates the network by assigning its output a probability value between 0 and
1. Thus cross entropy function is used in the classification layer where each input image
is assigned to the specific class in the network.

2.5 Classification metrics

The performance of the classifier using transfer learned pre-trained AlexNet CNN is
obtained by measuring its accuracy, specificity and sensitivity. Specificity is calculated
by the proportion of the true negatives where the negative cases are correctly
identified. The proportion of the true positives is calculated to give the sensitivity
of the classification procedure. Accuracy is calculated by the proportion of the true
positive and true negative to obtain the total number of predictions that are correct.
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3 Experiments

3.1 Data preparation

The MR image dataset used in this work includes the Healthy Control and Parkinson’s disease
subjects considered from the PPMI database. The representative sets of MR images for HC and
PD subjects are shown in Fig. 2(a-b). These images are pre-processed using Gaussian filter and
the corresponding filtered images are shown in Fig. 2(c-d). MR images can illustrate the extent
to which brain structures have degenerated. A significant grey matter intensity loss with
changes in the striatum region is observed in PD subjects when compared with HC. Gaussian
filtering reduces the noise and thereby improves the sensitivity of the analysis.

CNN AlexNet architecture is used in this study to classify the HC and PD subjects. AlexNet
has been pre-trained with colour images of size 227 X 227 pixels and process them in its
respective layers, from input to output. The image dataset with 80% of the input data is used
for training and the remaining 20% is used for testing. The number of images from each
subject given to the deep learning model is averaged to be 40 ± 5 slices based on the selection
criterion as shown in Table 2. These images are given to the subsequent convolution layers.
The last three layers of the pre-trained AlexNet model is modified by transfer learning. The

Fig. 2 Representative sets of (a) Healthy Control (b) Parkinson’s disease MR images and (c-d) their Gaussian
filtered images respectively
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momentum parameter is set to be 0.9 for the stochastic gradient descent solver method. The
learning rate is initially set to be 1 × 10−4.

3.2 Experimental results

The MR images are trained on the proposed network model with the suitable hyper-parameters
as stated in the previous section. The first convolution layer obtains the raw data and performs
convolution of the images with the filters. At each convolution layer, the features extracted are
visualised as those originating from pixels, edges from the pixels and obtaining the shapes
from the edges and finally complex regions as features from the shapes for discriminating
between the two classes. The feature map of the fifth convolution layer containing the first 64
features is shown in Fig. 3. The variation in the intensity levels and complex regions learnt by
the network are captured as features for the classification process. Thus the high level
combination of features learned by the previous layers is obtained by the fully connected
layers. Interpretation of the CNN model is done by visualisation of the weights. The modified
fully connected layer corresponds to the two classes as healthy control and Parkinson’s disease.
The feature maps obtained from the modified last fully connected layer pertaining to each class
as HC and PD is shown in Fig. 4. It is found that the discriminative features which could
capture the structural variations between the two classes are retrieved by the final fully
connected layer.

The network is trained for 30 epochs where in each epoch the entire dataset is gone through.
The entire image dataset is trained and tested for every thirty iterations in order to reduce the
computation load on the network and reduce the time taken for the learning process. The

Table 2 Number of images in each category

Healthy Control Parkinson’s Disease

Number of images for Training 2820 3296
Number of images for Testing 705 824
Total number of images 3526 4120

Fig. 3 First 64 features of the fifth
convolution layer
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accuracy and loss incurred during the training and the test phase are monitored to estimate the
effectiveness of the network for classification.

The learning process is shown as accuracy plot in Fig. 5. The learning process converges to
be stable subsequently from 2500 iterations in both the training and testing phase. The loss
incurred during the training and the testing cycle is given in Fig. 6. The loss or error rate in
classifying the HC and PD images saturates to remain constant starting from 2500 iteration,
similar to the learning curve. The proposed transfer learned AlexNet architecture is able to
achieve an accuracy of 88.90%. Sensitivity and specificity values of 89.30% and 88.40% are
exhibited by this architecture respectively. Without complicated image feature extraction and
selection, the proposed model is able to discriminate between HC and PD subjects with a better
accuracy for objective classification of MR images.

The Receiver Operating Characteristic (ROC) curve is computed for both the classes to
evaluate the performance of the network. The area under the curve (AUC) is calculated to be
0.9618 from the ROC curve as given in Fig. 7. Thus an acceptable performance of the trained
model is achieved which is evidenced from the ROC curve tending to perform a better
classification for each class. Additionally, the transfer of knowledge from the natural image

Fig. 4 Last fully connected layer
corresponding to each class as HC
and PD

Fig. 5 Accuracy plot for training and test set during the learning process
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to the MR images is made possible by fine tuning the latter layers of the pre-trained AlexNet
model.

Several studies have investigated machine learning strategies for diagnosis of PD using
MRI data. The effectiveness of the proposed method is compared with the other state-of-art
studies utilising the MR images from PPMI database as shown in Table 3. Amoroso et al. [3]
have developed diagnostic support system using Random Forest and SVM. In this study, the
complex network measures derived from brain patches were used as PD measures. Cigdem

Fig. 6 Loss incurred for training and test set during the learning process

Fig. 7 ROC Curve of the transfer learned pre-trained AlexNet architecture
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et al. [6] have assessed the feasibility of principal component analysis (PCA) and probability
distribution function (PDF) with SVM for the classification of PD. Though all these studies on
the PPMI dataset have achieved comparable accuracy, they have investigated PD patterns
based on the selected regions of interest. Hence these approaches could suffer from loss of
information. Also, these methods are intrinsically biased by segmentation errors and would
affect the discrimination power. The proposed CNN model based on whole brain analysis
exploits the spatial structure without relying on hand-crafted features and hence considered to
be robust.

Previous studies have reported comparable performance levels on different Parkinson’s
disease datasets, utilising various dimensionality reduction techniques [30] and machine
learning algorithms [19, 23]. Similarly, assessment of PD has been carried out on MR and
SPECT images using different configurations of CNN [33]. However, the preliminary results
stated by this method shows an accuracy of 74%.

4 Conclusion

The assessment of pathophysiological changes using neuroimaging would be essential for the
diagnosis of Parkinson’s disease. MRI has been receiving greater attention in the recent years
on the study of degenerative diseases. The progression of Parkinson’s disease can be assessed
by structural changes in the MR images. Many machine learning to deep learning algorithms is
used in the field of image analysis to identify these pathological changes to discriminate
between HC and PD. In this work, an attempt has been made to classify the MR images of HC
and PD subjects by applying deep learning architecture. The images used for classification are
taken from PPMI public domain database. The MR images are pre-processed by normalisation
and a Gaussian filter is applied to the normalised images. An AlexNet model considered as a
convolution neural network is used for the classification purpose. The weights of the pre-
trained model is utilised and the last fully connected layer is fine tuned with suitable hyper-
parameters to classify the HC and PD subjects. The model is trained to learn the low level to
high level features and the classification results are validated. An accuracy of 88.90% is
achieved for classifying the HC and PD subjects. An AUC value of 0.9618 is reported from the
ROC curve which shows a better discriminative proficiency of the proposed deep learning
model. The proposed methodology can be extended on deep fine tuning of the AlexNet model
to obtain improved performance levels. Thus with a rapid growth in the deep learning
architectures, an objective diagnosis of Parkinson’s disease will no longer be a laborious job
for the clinicians in the near future.

Table 3 Comparison of performance of the classifiers (units in %)

Method Accuracy Sensitivity Specificity

Complex brain network model + SVM [3] 88 85 88
PCA, PDF + SVM [6] 73.1 67.5 78.7
AlexNet + Transfer learning (proposed) 88.9 89.3 88.4
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